Skip to main content
. 2021 Nov 9;14:100214. doi: 10.1016/j.vas.2021.100214

Table 1.

Effect of dietary tannins on methane production and other major effects in vitro and in vivo studies.

Plant Dosage Trial type Unit Methane reduction potential (% of control) Other major effects reported References
Acacia tannins 50 g/kg DM In vitro mL/24h 15% −11% of total VFA Staerfl, Kreuzer, and Soliva, 2010
Chestnut and sumarch (HT) and mimosa and quebracho (CT) 1 g/L In vitro mL/L 3% CT
7% HT
−14% CT and
−5.8% HT of total VFA
Jayanegara et al., 2015
Chestnut leaves ∼24 mg/g DM of HT tannin in vitro mL/24h 28% −13% total VFA Terranova, Kreuzer, Braun, and Schwarm, 2018
CT from leaves of Gliricidia sepium, Leucaena leucocephala, and Manihot esculenta. 0, 0.25, 0.5, 0.75, and 1.0 g CT/Kg, respectively In vitro and in vivo (rumen-cannulated sheep) mL/24h Up to 22% (in vitro) Up to −25% (in vitro) of total VFA
No effect on Methanogens population (in vivo)
Rira et al., 2015
Vaccinium vitis idaea 140 g of extract containing 2 g of tannins/kg DM In vivo (Polish Holstein-Friesian dairy) mM 8% −46% rumen NH3
−35% Protozoa
−21% Methanogens
No effect on total VFA
Cieslak, Zmora, Pers-Kamczyc, and Szumacher-Strabel, 2012
Acacia mearnsii tannin extract 7 g/Kg DMI In vivo (dairy cows) g/day 32% No effect on milk production Alves et al., 2017
Chestnut or Chestnut+Quebracho tannin extract 1.5 g/Kg In vivo (crossbred steers) g/day No effect No effect on Protozoa population
No effect on total VFA production
Aboagye et al., 2018

CT, Condensed tannins; HT, Hydrolysable tannins; VFA, Volatile Fatty Acids.