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A B S T R A C T   

Background and Purpose: Conventional magnetic resonance imaging (MRI) poses challenges in quantitative 
analysis because voxel intensity values lack physical meaning. While intensity standardization methods exist, 
their effects on head and neck MRI have not been investigated. We developed a workflow based on healthy tissue 
region of interest (ROI) analysis to determine intensity consistency within a patient cohort. Through this 
workflow, we systematically evaluated intensity standardization methods for MRI of head and neck cancer 
(HNC) patients. 
Materials and Methods: Two HNC cohorts (30 patients total) were retrospectively analyzed. One cohort was 
imaged with heterogenous acquisition parameters (HET cohort), whereas the other was imaged with homoge
nous acquisition parameters (HOM cohort). The standard deviation of cohort-level normalized mean intensity 
(SD NMIc), a metric of intensity consistency, was calculated across ROIs to determine the effect of five intensity 
standardization methods on T2-weighted images. For each cohort, a Friedman test followed by a post-hoc 
Bonferroni-corrected Wilcoxon signed-rank test was conducted to compare SD NMIc among methods. 
Results: Consistency (SD NMIc across ROIs) between unstandardized images was substantially more impaired in 
the HET cohort (0.29 ± 0.08) than in the HOM cohort (0.15 ± 0.03). Consequently, corrected p-values for in
tensity standardization methods with lower SD NMIc compared to unstandardized images were significant in the 
HET cohort (p < 0.05) but not significant in the HOM cohort (p > 0.05). In both cohorts, differences between 
methods were often minimal and nonsignificant. 
Conclusions: Our findings stress the importance of intensity standardization, either through the utilization of 
uniform acquisition parameters or specific intensity standardization methods, and the need for testing intensity 
consistency before performing quantitative analysis of HNC MRI.   

1. Introduction 

Magnetic resonance imaging (MRI) is routinely used in clinical 
practice and has revolutionized how physicians evaluate diseases [1]. 
Conventional “weighted” MRI, where various acquisition parameters 
are modulated to generate T1-weighted (T1-w) or T2-weighted (T2-w) 

images, has become commonplace in clinical workflows. Although 
conventional MRI acquisitions are useful for the qualitative assessment 
of disease, advanced quantitative evaluation (e.g., through radiomics 
[2] or deep learning [3]) is seemingly precluded by a fundamental 
problem: arbitrary voxel intensity. Unlike computed tomography, in 
which voxel intensities correspond to inherent tissue properties, the 

* Corresponding authors at: Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, 
United States. 

E-mail address: kawahid@mdanderson.org (K.A. Wahid).   
1 Co-first authors. 

Contents lists available at ScienceDirect 

Physics and Imaging in Radiation Oncology 

journal homepage: www.sciencedirect.com/journal/physics-and-imaging-in-radiation-oncology 

https://doi.org/10.1016/j.phro.2021.11.001 
Received 26 July 2021; Received in revised form 9 November 2021; Accepted 10 November 2021   

mailto:kawahid@mdanderson.org
www.sciencedirect.com/science/journal/24056316
https://www.sciencedirect.com/journal/physics-and-imaging-in-radiation-oncology
https://doi.org/10.1016/j.phro.2021.11.001
https://doi.org/10.1016/j.phro.2021.11.001
https://doi.org/10.1016/j.phro.2021.11.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.phro.2021.11.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Physics and Imaging in Radiation Oncology 20 (2021) 88–93

89

absolute voxel intensities of MRI correspond to both tissue properties 
and hardware-specific settings [4] and thus do not have a specific 
physical meaning. Consequently, MRI voxel intensity can vary from 
scanner to scanner and even within the same scanner [5]. A few 
important exceptions include images generated through various quan
titative MRI acquisitions [6], such as diffusion-weighted MRI [7], dy
namic contrast-enhanced MRI [8], or T1/T2 mappings [9], which are 
not routinely acquired in standard-of-care imaging. Unfortunately, in
tensity standardization (sometimes referred to as normalization or 
harmonization) is an often overlooked but crucial pre-processing step in 
studies attempting a quantitative analysis of conventional MRI 
acquisitions. 

MRI is often performed for head and neck cancer (HNC) patients as 
part of radiotherapy treatment planning. Weighted images, particularly 
T2-w images, are commonly acquired in the scanning protocol because 
they provide excellent soft-tissue contrast in the complex anatomical 
areas involved in HNC. Thus, they are useful for region-of-interest (ROI) 
delineation [10,11]. Notably, the increasing use of MRI-guided tech
nology for adaptive HNC radiotherapy will likely increase the clinical 
integration of MRI quantitative analysis [12]. While several recent HNC 
studies have implemented cohort-level quantitative analysis of con
ventional weighted MRI [13–22], relatively few have investigated 
incorporating intensity standardization into processing pipelines 
[16–20,22], and even fewer have tested multiple standardization 
methods [20]. Furthermore, while rigorous studies have tested MRI 
intensity standardization methods for various anatomical regions, 
chiefly the brain [5,23], such methods for the head and neck region have 
yet to be systematically investigated. The head and neck region may 
pose additional challenges for MRI intensity standardization when 
compared with relatively piecewise homogeneous regions like the brain. 
For instance, fields of view often vary across acquisitions, and the head 
and neck region is home to many tissue-tissue and tissue-air interfaces 
[24], which may result in a greater range and complexity of the un
derlying intensity distributions. Therefore, there is a pressing need to 
systematically investigate the effects of available MRI intensity stan
dardization methods in HNC cohorts. 

To address the growing importance of intensity standardization in 
the quantitative analysis of HNC MRI, we developed a novel, ROI-based 
workflow to compare existing standardization methods in T2-w images 
of HNC patients. We used two independent HNC cohorts—a multi- 
institutional cohort with heterogeneous acquisition parameters and a 
single-institutional cohort with homogeneous acquisition parameter
s—to systematically determine the effect of different intensity stan
dardization methods for HNC MRI. 

2. Materials and methods 

2.1. Patient cohorts, image acquisitions, and ROIs 

Two separate sets of patients who were diagnosed with oral or 
oropharyngeal cancer and for whom T2-w MRI images were available 
before the start of radiotherapy were included in this proof-of-concept 
study. A subset (cohort) of patients from each set was randomly 
selected for the analysis. The first cohort consisted of 15 patients with 
images acquired at different institutions and was termed “heteroge
neous” (HET) because of the variety of scanners and acquisition pa
rameters used in image generation. All 15 patients in the HET cohort 
were imaged with different scanning protocols; the MRI scanners orig
inated from several manufacturers, including Siemens, GE, Phillips, and 
Hitachi. The second cohort consisted of 15 patients from a single pro
spective clinical trial with the same imaging protocol (NCT03145077, 
PA16-0302) and was termed “homogeneous” (HOM) because of the 
uniformity of both the scanner and the acquisition parameters used for 
image generation. Patients in the HOM cohort were imaged on a 
Siemens Aera scanner and immobilized with a thermoplastic mask. 
Image acquisition parameters for the cohorts are shown in Table 1; the 

demographic characteristics of each cohort are summarized in Table 2. 
All images were retrospectively collected in the Digital Imaging and 
Communications in Medicine (DICOM) format under a HIPAA- 
compliant protocol approved by our institution’s IRB (RCR03-0800). 
The protocol included a waiver of informed consent. The anonymized 
image sets analyzed during the current study are publicly available 
online through Figshare (https://doi.org/10.6084/m9.figsh 
are.13525481). For each image, ROIs of various healthy tissue types 
and anatomical locations were manually contoured in the same relative 
area for five slices by one observer (medical student) using Velocity AI 
v.3.0.1 (Atlanta, GA, USA), verified by a physician expert (radiologist), 
and exported as DICOM-RT Structure Set files. The ROIs were: 1. cere
brospinal fluid inferior (CSF_inf), 2. cerebrospinal fluid middle 
(CSF_mid), 3. cerebrospinal fluid superior (CSF_sup), 4. cheek fat left 
(Fat_L), 5. cheek fat right (Fat_R), 6. nape fat inferior (NapeFat_inf), 7. 
nape fat middle (NapeFat_mid), 8. nape fat superior (NapeFat_sup), 9. 
neck fat (NeckFat), 10. masseter left (Masseter_L), 11. masseter right 
(Masseter_R), 12. rectus capitus posterior major (RCPM), 13. skull, and 
14. cerebellum. A visual representation of the ROIs is shown in Sup
plementary Figure S4. All DICOM and radiotherapy structure files were 
converted to Python data structures for processing and analysis with 
DICOMRTTool v.0.3.21 [25]. 

2.2. Intensity standardization methods 

We applied a variety of MRI intensity standardization methods to 
both cohorts’ images. These methods were chosen because of their 
relative ubiquity in other studies and simple implementations. Details of 

Table 1 
MRI acquisition parameters for heterogeneous (HET) and homogeneous (HOM) 
cohorts.*  

MRI Acquisition Parameter HET Cohort (n = 15) HOM Cohort (n = 15) 

Magnetic Field Strength (T) 1.50–3.00 1.50 
Repetition Time (ms) 3000.00–8735.00 4800.00 
Echo Time (ms) 70.80–123.60 80.00 
Echo Train Length 10–65 15 
Flip Angle (◦) 90–150 180 
In-plane Resolution (mm) 0.35–1.01 0.50 
Slice Thickness (mm) 2.00–6.00 2.00 
Spacing Between Slices (mm) 1.00–7.00 2.00 
Imaging Frequency (MHz) 12.68–127.77 63.67 
Number of Averages 1.00–4.00 1.00 
Percent Sampling (%) 78.91–100 90.00 

*Data shown for HET cohort are ranges. All HOM cohort patients had the same 
scanning parameters. 

Table 2 
Patient demographic characteristics for heterogeneous (HET) and homogeneous 
(HOM) cohorts.*  

Characteristic HET Cohort (n = 15) HOM Cohort (n = 15) 

Age (median, range) 61 (41–78) 61 (46–77) 
Patient Sex   
Men 13 14 
Women 2 1 
T Stage   
T1 5 7 
T2 6 3 
T3 1 1 
T4 3 4 
N Stage   
N0 4 0 
N1 5 4 
N2 6 11 
Primary Tumor Site   
Base of Tongue 5 9 
Tonsil 6 6 
Oral Cavity 4 0 

*Unless otherwise indicated, data shown are number of patients. 
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the implementation of these methods are presented below. 
1. Unstandardized (Original): No intensity standardization was 

performed. 
2. Rescaling (MinMax): This method standardized the image by 

rescaling the range of values to [0,1] using the equation 

f (x) =
x − min(x)

max(x) − min(x)

where x and f(x) were the original and standardized intensities, 
respectively, and min(x) and max(x) were the minimum and maximum 
image intensity values per patient, respectively. 

3. Z-score standardization using all voxels (Z-All): This method 
standardized the image by centering it at a mean of 0 with a standard 
deviation of 1. The standardization was based on all voxels in the image 
and used the equation 

f (x) =
x − μx

σx  

where x and f(x) were the original and standardized voxel intensities, 
respectively, and μx and σx were the mean and standard deviation of the 
image intensity values per patient, respectively. 

4. Z-score standardization using only voxels in an external mask (Z- 
External): Z-All was performed as described in item 3 above, but μx and 
σx were derived from voxels located in an external mask of the head and 
neck region (Supplementary Figure S5). 

5. Cheek fat standardization (Fat): This method standardized the 
image with respect to left and right cheek fat (healthy tissue) and was 
adapted from van Dijk et al. [19]. The intensity of each voxel was 
divided by the mean intensity of the cheek fats and multiplied by an 
arbitrary scaling value of 350 using the equation 

f (x) =
x

μfat
*350  

where x and f(x) were the original and standardized intensities, 
respectively, and μfat was the mean intensity of both cheek fat ROIs per 
patient. 

6. Histogram standardization (Nyul): This method was adapted from 
Nyul and Udupa [26] using a code implementation from Reinhold et al. 
[27]. It used images for all patients in a cohort to construct a standard 
histogram template through the determination of histogram parameters 
and then linearly mapped the intensities of each image to the standard 
histogram template. The histogram parameters in this implementation 
were defined as intensity percentiles at 1, 10, 20, 30, 40, 50, 60, 70, 80, 
90, and 99 percent. Only voxels within the head and neck external mask 
were used in the construction of the standard histogram template. 

2.3. Intensity-Based ROI evaluation 

According to the statistical principles of image normalization criteria 
[5], MRI intensities for a single type of tissue should maintain similar 
distributions within and across patients. Therefore, for a set of non
pathological ROIs representing a corresponding set of tissues within a 
cohort of patients, an increase in the quality of MRI intensity stan
dardization should lead to an increase in the consistency of ROI intensity 
distributions (Supplementary Figure S6). Importantly, our aim is not 
to match distributions of the entire image since targets of quantitative 
analysis (e.g., tumors or healthy tissues altered by radiotherapy, such as 
the parotid glands) are expected to vary among patients. Motivated by 
this goal of population-level analysis that relies on the consistency of 
replicable units within tissue types and across patients, we used a simple 
and interpretable metric of comparison to quantify ROI intensity his
togram overlap—termed the standard deviation of cohort-level 
normalized mean intensity (SD NMIc)—which can be applied before or 
after an intensity standardization procedure in a given cohort. The steps 
to calculate this metric are provided in Supplementary Data S1. 

Briefly, the metric is calculated by dividing the mean of a given ROI 
intensity distribution for a patient by the range of distributions for a 
cohort and then computing the standard deviation of the resulting 
values for the entire cohort. Given a set of ROIs that are not anticipated 
to vary from patient to patient, we would expect that for an ideal in
tensity standardization method, the cumulative SD NMIc would remain 
close to 0. For both cohorts, the SD NMIc was calculated for each in
tensity standardization method per ROI and visually compared on a 
heatmap. Of note, the cheek fat ROIs were not included in the evaluation 
since they were used for the Fat standardization method, and this could 
bias results. 

2.4. Statistical analysis 

After applying the Shapiro-Wilk test for normality [28], we found the 
SD NMIc to be non-normally distributed (p < 0.05). Therefore, 
nonparametric tests were deemed appropriate for statistical analysis. 
For each cohort, the Friedman test [29], a nonparametric analog to the 
one-way repeat measures analysis of variance test, was conducted to 
compare SD NMIc values among intensity standardization methods with 
standardization methods acting as within-subject factors. We note that 
the Friedman test included unstandardized (Original) images. If the 
Friedman test was statistically significant, a subsequent post-hoc two- 
sided Wilcoxon signed-rank test with a Bonferroni correction [30] was 
performed for all pair-wise combinations of standardization methods to 
determine which methods were significantly better than others. For both 
the Friedman and Wilcoxon signed-rank tests, p-values<0.05 were 
considered significant. Statistical analysis was performed in Python 
v.3.7.6. The code used to produce our analysis is available through 
GitHub (https://github.com/kwahid/MRI_Intensity_Standardization). 
The overall workflow of our approach is shown in Supplementary 
Figure S7. 

3. Results 

On visual inspection, unstandardized images from the HET cohort 
had noticeably different intensities when compared to standardized 
images (Fig. 1a). These qualitative observations were confirmed 
through quantitative estimates of intensity consistency where unstan
dardized images compared to standardized images often had higher SD 
NMIc values in the HET cohort (Fig. 1c). Oppositely, in the HOM cohort 
unstandardized images were similar to standardized images qualita
tively (Fig. 1b) and quantitatively (Fig. 1d). When considering SD NMIc 
across all tissue sites (mean ± SD), the worst method was Original (0.29 
± 0.08) in the HET cohort and MinMax (0.18 ± 0.04) in the HOM cohort. 
Conversely, the best method was a tie between Z-External and Nyul for 
both cohorts, where SD NMIc was 0.17 ± 0.04 in the HET cohort and 
0.13 ± 0.03 in the HOM cohort. Additional intermediary data in the 
form of ROI intensity distributions for the HET and HOM cohorts are 
found in Supplementary Figure S8 and Supplementary Figure S9, 
respectively, and demonstrated consistency with the SD NMIc values 
presented. Moreover, we performed additional analysis on T1-weighted 
images in a subset of cases from the HOM cohort in Supplementary 
Data S2, and demonstrated similar results to our observations on T2- 
weighted images. 

The Friedman tests showed that SD NMIc values across all ROIs were 
significantly different for the intensity standardization methods in both 
cohorts (p < 0.001) (Fig. 2). Post-hoc analysis in the HET cohort (Fig. 2, 
above diagonal) revealed significantly higher SD NMIc values in Original 
compared with MinMax (p < 0.05), Z-All (p < 0.05), Z-External (p <
0.05), Fat (p < 0.01), and Nyul (p < 0.01). None of the intensity stan
dardization methods in the HET cohort had significantly different SD 
NMIc values when compared with each other (p > 0.05). Post-hoc 
analysis in the HOM cohort (Fig. 2, below diagonal) revealed signifi
cantly lower SD NMIc values in Original compared with MinMax (p <
0.05). None of the other standardization methods in the HOM cohort (Z- 
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All, Z-External, Fat, and Nyul) had significantly different SD NMIc values 
compared with Original (p > 0.05). Moreover, the HOM cohort 
demonstrated significantly higher SD NMIc values in MinMax compared 
with Z-External (p < 0.01), Fat (p < 0.01), and Nyul (p < 0.05). Finally, 
the HOM cohort demonstrated significantly higher SD NMIc values in Z- 
All when compared with Z-External (p < 0.01), and Nyul (p < 0.01). 

4. Discussion 

In this study, we proposed a workflow to test the consistency of 
standardized and unstandardized conventional MRI within a given HNC 
cohort. The scale-invariant, and thus comparable, SD NMIc metric was 
calculated to systematically investigate the effects of intensity 

standardization methods on T2-w images for two independent cohorts of 
HNC patients based on healthy tissue intensity consistency in multiple 
ROIs. Broadly, we determine that depending on the underlying imaging 
characteristics of a given cohort, explicit intensity standardization has 
varying effects on intensity consistency, which has the potential to 
impact downstream quantitative analysis. 

Our results show that intensity standardization, when compared to 
no standardization, substantially improved T2-w MRI ROI intensity 
consistency in the HET cohort (Fig. 1a,b), but had a minimal impact in 
the HOM cohort (Fig. 1c,d). Since scanner and acquisition parameters 
were vastly different in the HET cohort, the marked intensity variation 
between Original images (Fig. 1a) was in line with our expectations. In 
contrast, while the HOM cohort included patients from clinical trial data 

Fig. 1. Intensity standardization comparisons for the heterogeneous (HET) and homogeneous (HOM) cohorts. Single-slice representations of T2-weighted images 
from each intensity standardization method for five patients from the (a) HET and (c) HOM cohorts. Images for each method in each cohort are displayed using the 
same window width and center. Standard deviation of cohort-level normalized mean intensity (SD NMIc) heatmaps of intensity standardization methods by region of 
interest (ROI) for (b) HET and (d) HOM cohorts. The resulting means across all ROIs for each method are shown in the rightmost columns of the heatmaps. 
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with the same scanner and acquisition parameters, the relatively minor 
intensity variation between Original images (Fig. 1c) was better than 
expected. In a sense, the use of identical acquisition parameters in the 
HOM cohort seemed to act as an inherent method of pre-processing 
intensity standardization. This may also indicate that flexible head 
and neck MRI coil positioning was performed systematically and reliably 
in this cohort, as positioning the coil at varying distances from the pa
tient can result in different image intensities. While the use of uniform 
acquisition parameters on the same MRI scanner may circumvent the 
need for the application of intensity standardization methods, further 
work is likely needed to verify these results. 

Upon visual inspection, it was difficult to discriminate between the 
various intensity standardization methods for either cohort (Fig. 1a,c). 
Quantitatively, most intensity standardization methods had similar 
performance in both cohorts, regardless of overall consistency 
improvement compared to unstandardized images (Fig. 1b,d and Fig. 2). 
Recent work by Carré et al [31]. demonstrated results similar to those of 
our study in that various intensity standardization methods improved 
the consistency between brain images with heterogeneous acquisition 
parameters, although the authors did not identify a specific superior 
standardization method. In the current study, paired significance testing 
(Fig. 2) revealed that the standardization methods Z-External and Nyul 
performed relatively well in both the HET cohort (significantly better 
than Original) and the HOM cohort (significantly better than MinMax 
and Z-All), with both methods achieving the lowest SD NMIc values. 
Interestingly, the only methods that performed significantly worse than 
any others in the HOM cohort were MinMax and Z-All, possibly sec
ondary to the large number of background elements influencing the 
standardization parameters in the HOM cohort. 

A potential limitation of this proof-of-concept study was that it 
included a small number of patients for each cohort. However, we 
implemented conservative significance testing to ensure the robustness 
of our results. Moreover, this study focused on analyzing T2-w se
quences for initial testing since they are favored in head and neck 

imaging due to their exquisite anatomical detail for various ROIs 
[32,33]. Since healthy tissue ROIs are regularly contoured during 
radiotherapy treatment planning, our analysis tools and workflow can 
facilitate future large-scale HNC investigations with additional MRI se
quences. To guide further research in different MRI sequences, we pre
sent preliminary analyses on T1-weighted images from the HOM cohort 
in Supplementary Data S2, which are broadly consistent with the 
findings in this study. Another limitation of our study is that our 
workflow may not apply to patients who have already received radio
therapy, as radiation can cause structural and functional changes in 
healthy tissue that may impact the intensity profiles of various ROIs 
[34]. This may be mitigated by selecting ROIs that are known not to 
change significantly with treatment. Finally, acquisition artifacts, such 
as magnetic field inhomogeneities, can affect MRI intensity [35]. While 
images from the HOM cohort were free of artifacts, some images from 
the HET cohort contained bias fields (Supplementary Figure S10). 
Therefore, bias-field correction techniques may need to be explored in 
combination with intensity standardization methods in future studies to 
determine their effects on ROI intensity consistency in HNC MRI. 

To our knowledge, this is the first study to systematically investigate 
the effects of intensity standardization in head and neck imaging. In 
addition, whereas many studies of MRI intensity standardization for 
other anatomical sites implemented test–retest data for individual pa
tients to determine the effects of standardization [31,36–39], our anal
ysis is unique because it investigated the impact of standardization 
within a cohort of patients. Our approach may be more relevant to the 
downstream cohort-level model construction often implemented in 
quantitative analysis studies. Finally, we have publicly disseminated our 
data and analysis tools through open access platforms to foster increased 
reproducibility and help the imaging research community extrapolate 
our workflow to MRI of other anatomical regions. 

In summary, we propose a workflow to robustly test MRI intensity 
consistency within a given HNC patient cohort and demonstrate the 
need for evaluating MRI intensity consistency before performing quan
titative analysis. This study verifies that intensity standardization, either 
through the utilization of uniform acquisition parameters or specific 
intensity standardization methods, is crucial to improving the consis
tency of inherent tissue intensity values in conventional weighted HNC 
MRI. Our study is an essential first step towards widespread intensity 
standardization for quantitative analysis of conventional MRI in the 
head and neck region. 
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