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CCR5 antagonist reduces HIV-induced
amyloidogenesis, tau pathology,
neurodegeneration, and blood-brain barrier
alterations in HIV-infected hu-PBL-NSG
mice
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Abstract

Background: Neurocognitive impairment is present in 50% of HIV-infected individuals and is often associated with
Alzheimer’s Disease (AD)-like brain pathologies, including increased amyloid-beta (Aβ) and Tau hyperphosphorylation.
Here, we aimed to determine whether HIV-1 infection causes AD-like pathologies in an HIV/AIDS humanized mouse
model, and whether the CCR5 antagonist maraviroc alters HIV-induced pathologies.

Methods: NOD/scid–IL-2Rγcnull mice engrafted with human blood leukocytes were infected with HIV-1, left untreated
or treated with maraviroc (120mg/kg twice/day). Human cells in animal’s blood were quantified weekly by flow
cytometry. Animals were sacrificed at week-3 post-infection; blood and tissues viral loads were quantified using p24
antigen ELISA, RNAscope, and qPCR. Human (HLA-DR+) cells, Aβ-42, phospho-Tau, neuronal markers (MAP 2, NeuN,
neurofilament-L), gamma-secretase activating protein (GSAP), and blood-brain barrier (BBB) tight junction (TJ) proteins
expression and transcription were quantified in brain tissues by immunohistochemistry, immunofluorescence,
immunoblotting, and qPCR. Plasma Aβ-42, Aβ-42 cellular uptake, release and transendothelial transport were quantified
by ELISA.
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Results: HIV-1 significantly decreased human (h)CD4+ T-cells and hCD4/hCD8 ratios; decreased the expression of BBB
TJ proteins claudin-5, ZO-1, ZO-2; and increased HLA-DR+ cells in brain tissues. Significantly, HIV-infected animals
showed increased plasma and brain Aβ-42 and phospho-Tau (threonine181, threonine231, serine396, serine199),
associated with transcriptional upregulation of GSAP, an enzyme that catalyzes Aβ formation, and loss of MAP 2, NeuN,
and neurofilament-L. Maraviroc treatment significantly reduced blood and brain viral loads, prevented HIV-induced loss
of neuronal markers and TJ proteins; decreased HLA-DR+ cells infiltration in brain tissues, significantly reduced HIV-
induced increase in Aβ-42, GSAP, and phospho-Tau. Maraviroc also reduced Aβ retention and increased Aβ release in
human macrophages; decreased the receptor for advanced glycation end products (RAGE) and increased low-density
lipoprotein receptor–related protein-1 (LRP1) expression in human brain endothelial cells. Maraviroc induced Aβ
transendothelial transport, which was blocked by LRP1 antagonist but not RAGE antagonist.

Conclusions: Maraviroc significantly reduced HIV-induced amyloidogenesis, GSAP, phospho-Tau, neurodegeneration,
BBB alterations, and leukocytes infiltration into the CNS. Maraviroc increased cellular Aβ efflux and transendothelial Aβ
transport via LRP1 pathways. Thus, therapeutically targeting CCR5 could reduce viremia, preserve the BBB and neurons,
increased brain Aβ efflux, and reduce AD-like neuropathologies.

Keywords: HIV-1, NSG mice, Amyloid-beta, Tau phosphorylation, Neuronal damage, Blood-brain barrier injury, CCR5,
Maraviroc, Monocytes-derived macrophages, Human brain microvascular endothelial cells, RAGE, LRP1

Background
The human immunodeficiency virus-1 (HIV-1) enters tar-
get cells by binding its envelope glycoprotein gp160 to the
CD4 receptor and/or coreceptors such as the C-C chemo-
kine receptor type-5 (CCR5) and C-X-C chemokine recep-
tor type-4 (CXCR4) [1]. CCR5- and CXCR4-tropic viral
strains use CCR5 and CXCR4, respectively, as their core-
ceptor to enter and infect target cells; whereas some HIV
strains are dual-tropic and can use CCR5 and/or CXCR4
[1]. CCR5 is expressed on several cell types, including
brain endothelial cells [2], T-cells, dendritic cells, and leu-
kocytes [3, 4]. In HIV-infected humans, CCR5-tropic vi-
ruses predominate during the early stages of infection,
whereas CXCR4-tropic viruses usually emerge during the
later stages [3, 4]. The importance of CCR5 in HIV infec-
tion and acquired immunodeficiency syndrome (AIDS)
pathology was demonstrated by studies showing that a 32-
base-pair deletion in the CCR5 gene resulted in resistance
to HIV-1 infection or slower progression to AIDS [5, 6].
Given the importance of CCR5 in HIV-1 transmission, in-
fection, and disease progression, this chemokine receptor
has been a major therapeutic target for HIV/AIDS preven-
tion and treatment. Maraviroc (MVC, Selzentry, ViiV
Healthcare) is a small-molecule CCR5 antagonist with fa-
vorable safety, pharmacokinetic, and pharmacodynamic
profiles [7, 8] that is FDA-approved for the treatment of
CCR5-tropic HIV infection in both antiretroviral therapy
(ART)-naïve and treatment-experienced patients [9, 10].
Following infection, HIV induces blood-brain barrier

(BBB) injury, enters the central nervous system (CNS),
and productively infects brain macrophages and glial cells
[11–13]. This infection of CNS cells, production and re-
lease of virions and viral proteins into the brain, as well as
subsequent increased inflammation and oxidative stress,

results in neuronal injury and death [13–15]. These brain
pathologies frequently result in behavioral, motor, and
cognitive abnormalities referred to as HIV-associated neu-
rocognitive disorders (HAND) [13, 15, 16]. Although the
prevalence of HIV-associated dementia, the most severe
form of HAND, has declined in the current ART era,
milder forms of HAND [asymptomatic neurocognitive im-
pairment and mild neurocognitive disorders] are still
highly prevalent and occur in up to 50% of HIV-infected
persons [13, 15, 16].
The molecular mechanisms associated with the develop-

ment of HAND have not been well elucidated. Autopsy
studies of HIV-infected people, including those who had
been on long-term ART, showed the presence of proteo-
pathy and Alzheimer’s Disease (AD)-like CNS pathologies,
including increased deposits of amyloid-beta (Aβ), forma-
tion of amyloid plaques in neuronal cells and perivascular
areas, hyperphosphorylation of Tau proteins, and the pres-
ence of neurofibrillary tangles (NFTs)-like structures [17–
20]. The presence of Aβ deposits and Tau hyperphosphor-
ylation in brain tissues of HIV-infected persons is often as-
sociated with high viral loads [21] and neurocognitive
impairments, including impairments in speed of informa-
tion processing, attention, and working memory [21, 22].
For the current study, our objective was to determine
whether AD-like pathologies occur in a humanized mouse
model of HIV/AIDS [NOD/scid–IL-2Rγc

null mice
engrafted with human blood leukocytes (hu-PBL-NSG)]
and to assess the effects of the CCR5 antagonist MVC on
HIV-induced brain pathologies in vivo. We have repro-
duced AD-like pathologies in this animal model. We dem-
onstrate increased phosphorylation of Tau [at threonine
(Thr)181, Thr231, serine (Ser)396, and Ser199)], and in-
creased production and accumulation of Aβ in brain
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tissues and plasma of HIV-infected animals associated
with transcriptional upregulation of gamma-secretase acti-
vating protein (GSAP), an endoprotease that catalyzes γ-
secretase cleavage of amyloid precursor proteins (APP)
and Aβ formation [23–26]. Most significantly, we
have demonstrated that in addition to preserving the im-
mune system and decreasing systemic and brain viral
loads, the CCR5 antagonist MVC reduced HIV-induced
BBB alterations and infiltration of leukocytes into the
brain of infected animals, and significantly reduced HIV-
induced neuronal injury, CNS Aβ formation, and Tau
phosphorylation. Additional studies showed that MVC in-
creased plasma Aβ levels, reduced Aβ retention and in-
creased Aβ release in primary human macrophages;
decreased brain endothelial expression of the receptor for
advanced glycation end products (RAGE), an influx recep-
tor that binds and transports circulating plasma Aβ into
the CNS [27–30]; increased brain endothelial expression
of the low-density lipoprotein receptor–related protein-1
(LRP1), an efflux-clearance receptor that binds and trans-
ports brain-derived Aβ into the blood [31–33]; and in-
creased transendothelial Aβ transport via LRP1. These
data suggest that therapeutically targeting CCR5 can re-
duce or abrogate HIV-induced AD-like neuropathologies.

Methods
Hu-PBL-NSG mice model
Four-week-old NOD/scid–IL-2Rγc

null (NSG) mice were
purchased from the Jackson Laboratory (Bar Harbor,
ME), maintained in sterile microisolator cages under
pathogen-free conditions in accordance with the Univer-
sity of Nebraska Medical Center (UNMC) and National
Institutes of Health (NIH) ethical guidelines for the care
of laboratory animals, and bred at the UNMC animal fa-
cility to expand the colony. This study was performed
under a protocol approved by the UNMC Institutional
Animal Care and Use Committee. Human peripheral
blood lymphocytes (PBL) were obtained by countercur-
rent centrifugal elutriation of leukopheresis packs from
HIV-1, 2, and hepatitis B seronegative donors, as previ-
ously described [34]. Mice (4 to 6 weeks old males) were
engrafted by intra-peritoneal (i.p.) injection of human
PBL (30 × 106 cells/mouse). One week after PBL injec-
tion, levels of human CD45+ cells in each animal’s blood
were quantified by fluorescence activated cell sorting
(FACS) to confirm engraftment. Engrafted animals were
randomly assigned into 4 groups (11 to 15 mice per
group): non-treated and non-infected mice (PBS); non-
infected animals treated with MVC (MVC); untreated
and HIV-infected mice (HIV), HIV-infected mice treated
with MVC (HIV +MVC). For infection, a single dose of
104 tissue culture infectious doses-50 (100 μl) of HIV-
1ADA (a CCR5-tropic viral strain) was injected (i.p.) into
animals. Controls were mock-infected by i.p. injection of

phosphate-buffered saline (PBS, 100 μl). Animals’ blood
samples were collected and analyzed at week-1, week-2,
and week-3 post infection (p.i.). Animals were sacrificed
at week-3 p.i. and tissue samples harvested and analyzed
(Fig. 1).

Processing of brain tissues
Immediately following animals’ sacrifice, each brain lobe
was cut (at the midbrain region) into two equal parts (cor-
onal plane), for a total of 4 equal parts. One half lobe was
embedded into paraffin (for immunohistochemistry), one
half lobe was embedded into optimal cutting temperature
(OCT) compound on dry ice and frozen at − 80 °C (for
immunofluorescence analyses). The remaining two half
lobes were frozen at − 80 °C and used for protein extrac-
tion and Western blot analysis, RNA extraction, and
quantitative polymerase chain reaction (qPCR).

Maraviroc (MVC) preparation
MVC (Selzentry, ViiV Healthcare) was purchased from
the UNMC pharmacy in 300 mg tablets. To prepare
stock concentrations of 75 mg/ml, 1 tablet was crushed
using a mortar and pestle and dissolved in 4ml of a 1:1
mixture of dimethyl sulfoxide (DMSO) and PBS. Stock
solutions were stored at − 80 °C in 600 μl aliquots and
used within 2 days of preparation. For animal injections,
500 μl stock solution was further diluted in 2 ml PBS for
a working concentration of 18.75 mg/ml. This solution
was passed through a 0.45 μm syringe filter to remove
undissolvable drug excipients. Each MVC-treated mouse
was injected (i.p.) with MVC (120 mg/kg, 200 μl) in a
DMSO:PBS solution, twice/day, beginning at 12 h p.i.
(Fig. 1). This dose and treatment schedule was based on
recommended human MVC doses of 300–600 mg twice/
day and the consensus human-mouse interspecies allo-
metric scaling factor of 12.6 [35, 36]. Untreated animals
were injected (i.p.) with 200 μl of a DMSO:PBS solution
that had similar amounts of DMSO as the final MVC so-
lution used for treatment.

Antibodies
Antibodies to human CD45 (CD45-PE-Cy7, catalog [cat]
#304016), CD8 (CD8-APC, cat #344722), and CD3 (CD3-Pacific
blue, cat #300330) were purchased from Biolegend (San Diego,
CA). Antibodies to human CD4 (CD4-FITC, cat #555346) were
from BD Biosciences (San Jose, CA); human leukocyte antigen
(HLA)-DR (cat #NB100-77855SS), and Aβ1–42 (cat #NBP2-
13075SS) from Novus Biologicals (Centennial, CO). Antibodies
for microtubule-associated protein-2 (MAP 2, cat #ab32454),
neurofilament-L (NFL, cat #ab223343), NeuN (cat #ab177487),
claudin-5 (cat #ab15106), zonula occludens (ZO)-1 (cat #61–
7300), β-actin (cat #ab8226), LRP1, (cat #ab92544), RAGE (cat
#ab216329), phospho(p)-Tau (Ser396) (cat #ab32057), pTau
(Ser199) (cat #ab4749), pTau (Thr231) (cat #ab151559), and
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pTau (Thr205) (cat #ab254410) were from Abcam (Cambridge,
MA). Antibodies for ZO-2 (cat #71–1400) were from Invitrogen
(Carlsbad, CA); Tau (cat #46687S) and p-Tau (Thr181) (cat
#12885S) from Cell signaling Technologies (Danvers, MA).

FACS analysis
Human (hCD4+, hCD8+, hCD3+, and hCD45+) cells in
animals’ blood were quantified by FACS. Briefly, blood
(200 μl) collected in ethylenediaminetetraacetic acid
(EDTA)-tubes were centrifuged (543×g, 8 min at 4 °C)
and plasma was collected and cryopreserved. Cell pellets

were resuspended in 50 μl FACS buffer (PBS containing
2% fetal bovine serum) and transferred into 5 ml poly-
propylene round-bottom tubes (BD Falcon, Franklin
Lakes, NJ). An antibody cocktail [20 μl containing the
following fluorochrome-conjugated human monoclonal
antibodies: CD45-PE-Cy7, CD8-APC, CD3-Pacific blue,
and CD4-FITC] was added to each sample, mixed, and
incubated for 1 h on ice in the dark. One ml red blood
cells lysis buffer (Roche) was then added to each sample.
Samples were incubated for 5 min at room temperature
(RT) and were centrifuged (377×g, 5 min at 4 °C). Cell

Fig. 1 Schematic representation of animals’ engraftment, infection, treatment, samples collection, and analyses. Abbreviations: NSG: NOD/scid–IL-2Rγcnull; hPBL:
human peripheral blood lymphocytes; FACS: fluorescence activated cell sorting; h: hours; MVC: maraviroc; DMSO: Dimethyl sulfoxide; PBS: phosphate-buffered
saline; UPLC-MS/MS: ultraperformance liquid chromatography-tandem mass spectrometry; IHC: immunohistochemistry; IF: immunofluorescence; qPCR: quantitative
(real-time) polymerase chain reaction; ELISA: enzyme-linked immunosorbent assay
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pellets were washed two to four times in FACS buffer (2
ml), resuspended in 0.5 ml PBS containing 2% parafor-
maldehyde, and analyzed using BD LSRII and FACSDiva
8.0 (BD Biosciences).

HIV p24 ELISA
Immediately following animal sacrifice, blood was col-
lected by cardiac puncture into EDTA tubes, and plasma
was obtained by centrifugation (543×g, 8min at 4 °C) and
cryopreserved. HIV-1 p24 antigen levels in each plasma
sample (100 μl) were quantified using Quantikine HIV-1
group-specific antigen (Gag) p24 immunoassay kit (R&D
Systems, Minneapolis, MN) per the manufacturer’s proto-
col; with optical density readings at 450 nm and wave-
length corrections at 540 nm, using a SpectraMax M5
(Molecular Devices, San Jose, CA). Standard curves from
HIV-1 Gag p24 antigen standards were used to quantify
each sample’s p24 antigen levels.

Human monocyte-derived macrophage (MDM) culture
Monocytes were obtained by countercurrent centrifugal
elutriation of leukopheresis packs from HIV-1, − 2 and
hepatitis-B seronegative donors, and MDM obtained as
previously described [34, 37]. Briefly, freshly elutriated
monocytes (2 million cells per well in 6-well plates) were
differentiated into MDM by culture for 7 days in Dulbec-
co’s Modified Eagle’s Medium (DMEM, Sigma, St. Louis,
MO) supplemented with 10% heat-inactivated pooled hu-
man serum, 1% glutamine, 50 μg/ml gentamicin, 10 μg/ml
ciprofloxacin (Sigma), 1000U/ml highly purified recom-
binant human macrophage colony stimulating factor.
MDM were cultured as we previously described [34, 37]
and all reagents were prescreened for endotoxin (< 10 pg/
ml, Associates of Cape Cod, Woods Hole, MA) and myco-
plasma contamination (Gen-probe II, Gen-probe, San
Diego, CA).

MDM HIV-1 infection and Aβ treatment
For infection, MDM were cultured in media containing
HIV-1 (multiplicity of infection: 0.01) for 4 h, washed 3
times with serum-free media and cultured for 24 h.
MDM Aβ uptake was performed as previously described
[38]. Briefly, infected and non-infected MDM were cul-
tured for 1 h in media containing human Aβ (amino acid
1–42) (Aβ-42) peptide (Invitrogen) dissolved in DMSO,
at 10 μM as previously reported [38], washed 3 times
with serum-free media, and cultured again for 24 h with
or without MVC (2.5 or 5 μM). Controls included MDM
treated with DMSO (vehicle). Culture supernatants were
collected at 24 h and any cell debris removed by centri-
fugation (1000 x g for 10 min at 4 °C). Cells were har-
vested by trypsinization, washed three times with PBS,
and lysed using CelLytic™ M reagent (Sigma). Cell lysates
and culture supernatants were used for Aβ-42 ELISA.

Human brain microvascular endothelial cells (HBMEC)
culture
Primary HBMEC were isolated from brain tissue ob-
tained during surgical removal of epileptogenic cerebral
cortex in adult patients, under an Institutional Review
Board-approved protocol as previously described [37,
39]. Routine evaluation by immunostaining for von-
Willebrand factor, Ulex europaeus lectin and CD31
showed that cells were > 99% pure. Freshly isolated cells
were cultured in collagen-coated flasks or 6-well culture
plates using DMEM/F12 (Life Technologies, Grand Is-
land, NY, USA) containing 10% fetal bovine serum (At-
lanta Biologicals, Flowery Branch, GA) supplemented
with 10 mML-glutamine (Life Technologies), 1% hep-
arin (Thermo Fisher Scientific, Pittsburgh, PA), 1%
endothelial cell growth supplement (BD Bioscience, San
Jose, CA), 1% penicillin-streptomycin (Life Technolo-
gies), and 1% fungizone (MP Biomedicals, Solon, OH).
Cells at passage 2 to 4 were used in this study.

HBMEC Aβ treatment
Confluent HBMEC plated on collagen-coated six-well
plates were treated with human Aβ-42 peptide (10 μM),
with or without MVC (5 μM) for 48 h, and LRP1 and
RAGE levels in endothelial cells lysates quantified by im-
munoblotting. In separate experiments, HBMEC were
cultured to confluence on collagen-treated tissue culture
inserts (0.4-μm pore size; Corning, Lowell, MA) as we
previously described [2, 40]. Human Aβ-42 peptide
(10 μM) was added to the upper chamber of the trans-
well system in the presence or absence of MVC (2.5 or
5 μM) and/or high affinity antagonists for LRP1 (500
nM, Kerafast, Boston, MA) and RAGE (200 nM, Tocris,
Minneapolis, MN) (30 min pre-treatment). These inhibi-
tors concentrations were selected based on previously
published studies [41] and manufacturers’ data showing
that these antagonists concentrations blocked secretase
activity and Aβ binding to LRP1 and RAGE without
causing cellular toxicity. Controls included HBMEC
treated with DMSO (vehicle). After 24 h culture, media
in the transwell lower chamber were collected and any
cell debris removed by centrifugation (1000 x g for 10
min at 4 °C). HBMEC in the transwell upper chamber
were harvested by trypsinization, washed three times
with PBS, and lysed. Cell lysates and culture superna-
tants were used for Aβ-42 ELISA.

Amyloid-β ELISA
Levels of Aβ-42 in animals plasma samples (100 μl) were
quantified using the mouse Aβ (1–42) ELISA kit (Novus
Biologicals, Centennial, CO); Aβ-42 levels in human
MDM and HBMEC culture supernatants and cell lysates
(100 μl) were quantified using the human Aβ (1–42)
Quantikine ELISA kit (R&D Systems), according to the
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manufacturers’ protocols. Standard curves from mouse
and human Aβ (1–42) reference standards (provided
with each kit) were used respectively to quantify Aβ-42
levels in plasma, MDM, and HBMEC samples.

Immunohistochemistry
Following animal sacrifice, brain tissues (half of a brain
lobe including the frontal cortex) were rinsed with PBS,
fixed in 4% paraformaldehyde (overnight at 4 °C), kept in
70% ethanol for 24 h and paraffin-embedded using a
Shandon Citadel 1000 tissue processor (ThermoFisher
Scientific, Waltham, MA). Paraffin blocks were stored at
RT and cut into 5 μm sections using a Leica RM2235
microtome (Leica Biosystems, Buffalo Grove, IL). Tissue
sections were incubated for 20 to 30 s in a water bath
(38 °C), mounted on Superfrost Plus microscope slides
(Fisher Scientific) and dried at RT overnight. For antigen
retrieval, slides were dried for 1 h at 60 °C in a standard
incubator (Lab-Line 403, ThermoFisher), cooled at RT
for 10 min, placed in a tray containing 300 ml of Trilogy
solution (Cell Marque, Rocklin, CA) and incubated for
15 min under high pressure using a pressure cooker
(Cuisinart CPC-600) containing 700ml water as well as
a 2nd tray containing 300 ml Trilogy. Following the 15
min high-pressure incubation, slides were transferred to
the 2nd Trilogy tray inside the cooker, gently agitated,
incubated for 5 min, and washed 5 times with deionized
water, with each wash consisting of 3 min incubation in
deionized water at RT. Slides were then transferred to a
tray containing 300 ml PBS with 0.1% Tween-20 (PBST),
incubated for 5 min at RT and for 30 min (RT) in PBST
containing 10% normal goat serum (Vector, Burlingame,
CA) to block non-specific sites. Slides were then incu-
bated overnight (4 °C) with primary antibodies in PBST
at the following dilutions: HLA-DR (1:100), claudin-5 (1:
250), NeuN (1:100), MAP 2 (1:3500), Aβ1–42 (1:500),
Tau (1:500), and phospho-Tau (1:100). Control anti-
bodies included isotope-matched IgG.
Following incubation with primary antibodies, slides

were washed 3 times with PBST at RT (5 min for each
wash), incubated for 1 h at RT with polymer-based
horseradish peroxidase (HRP)-conjugated EnVision
mouse or rabbit secondary antibodies (Dako, Carpin-
teria, CA) and washed 3 times with PBST. Slides were
developed with 3,3′-diaminobenzidine (DAB; Dako),
counter-stained with hematoxylin (for 30 s), washed
three times with deionized water, dipped for 10 s in am-
monia (0.037 mol/l) and rinsed three times with deion-
ized water. Slides were dehydrated by sequential
incubation (5 min, RT) in ethanol: in 80% (once), 95%
(once), and 100% (twice) ethanol. Dehydrated slides were
washed (5 min, RT) twice in xylene, air dried for 2 min,
and mounted using Cytoseal-60 (ThermoFisher). A

coverslip was then placed over each tissue, avoiding the
formation of air bubbles.
Images were captured using a Nikon Eclipse E800

microscope, Infinity-1(IFN 1-5C) camera (Luminera, On-
tario, Canada) and the Infinity Analyze software. Quanti-
tative analysis of HLA-DR+ cells was performed using the
computer-assisted image analysis of the MetaMorph soft-
ware (Molecular Devices, San Jose, CA). For each mouse,
ten fields-of-view (FOV) were analyzed and normalized to
surface area to estimate the number of HLA-DR+ cells
per μm2 of FOV. Semi-quantitative analysis of claudin-5,
NeuN, MAP 2, Aβ, Tau, and phospho-Tau expression
(staining intensity and surface area occupied by immuno-
staining) was performed using the MetaMorph software.
For each mouse, ten FOV were analyzed, the staining in-
tensity was normalized to surface area (μm2) and averaged
to estimate the protein expression (μm2 FOV). Coronal
sections from the somatosensory regions of the cerebral
cortex were used for all histology, except for Tau and
pTau where we used coronal sections from the hippocam-
pus fimbria (Supplemental Fig. 1) because pTau were
mostly concentrated in this region.

RNAscope assay
This assay was performed using RNAscope® 2.5 Assay
kit (ACD Biotech, Newark, CA) according to the manu-
facturer’s protocol. Briefly, 5 μm paraffin-embedded
brain tissue (frontal cortex) sections were mounted onto
slides, air dried overnight, and baked for 1 h at 60 °C in a
standard incubator. Baked tissues were immediately
deparaffinized by washing (5 min incubation at RT) three
times with xylene, incubated for 1 min in 100% ethanol,
and dried at RT for 5 min. Tissues were incubated for
10 min (RT) in hydrogen peroxide, 15 min in RNAscope
target retrieval buffer heated to 99 °C, rinsed in distilled
water, and incubated for 3 min (RT) in 100% ethanol.
Slides were then air-dried and kept on an HybEZ rack
(ACD Biotech) placed in a humidified chamber. RNA-
scope protease plus solution was added to tissues and
slides incubated for 30 min at 40 °C in the HybEZ oven
(ACD Biotech), washed in distilled water, treated with
78-ZZ HIV RNA specific probe (ACD Biotech), incu-
bated again at 40 °C for 2 h, and washed three times with
the wash buffer provided with the kit. Detection of
RNA-specific probes hybridized to target viral RNA was
done by sequential hybridization with HRP-labeled
probes and chromogenic detection using the DAB sys-
tem, with hematoxylin counterstaining and ethanol de-
hydration. Dehydrated slides were washed (5 min, RT)
twice in xylene, air dried for 2 min, and mounted using
Cytoseal-60 and a coverslip. Images were captured using
a Nikon Eclipse E800 microscope, Infinity-1(IFN 1-5C)
camera (Luminera, Ontario, Canada) and the Infinity
Analyze software. Quantitative analysis of RNA copies
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was performed using a computer-assisted image analysis
of the MetaMorph software. The total number of viral
RNA in each cluster was calculated by area
normalization. For each mouse, ten FOV were analyzed
and averaged to estimate HIV RNA copy number per
μm2 of FOV.

Immunofluorescence
OCT-embedded brain tissue sections (10 μm) were
mounted onto Superfrost Plus slides, fixed in 4% formal-
dehyde (20 min, RT), dried (10 min), washed in PBS (5
min, RT), and incubated (1 h, RT) in PBS containing 3%
bovine serum albumin and 0.1% triton X100 to block
non-specific bindings. Slides were then incubated over-
night (4 °C) with primary antibodies in blocking solution,
at the following dilutions: NFL (1:4000), ZO-1 (1:1000),
and ZO-2 (1:500). Following incubation with primary
antibodies, slides were washed (5 min, RT) three times
with PBS, incubated (1 h in the dark at RT) with second-
ary antibodies conjugated to Alexa Fluor-488 (diluted 1:
5000 in blocking solution), washed five times with PBS,
and mounted in Prolong Gold anti-fade reagent contain-
ing DAPI (Molecular Probes, Grand Island, NY). Images
were captured using an Eclipse TE20000-U fluorescent
microscope (Nikon, Melville, NY) and Infinity 3-6urfm
monochrome camera (Luminera). Semi-quantitative ana-
lysis of NFL, ZO-1, and ZO-2 expression was performed
using computer-assisted image analysis of the Meta-
Morph software. For each mouse, ten FOV were ana-
lyzed, the staining intensity was normalized to surface
area (μm2) and averaged to estimate the protein expres-
sion (μm2 FOV).

Ultraperformance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS)
MVC levels in animals’ plasma and brain tissues (cere-
brum) were quantified by UPLC-MS/MS as previously
described [42]. For plasma, 50 μl of each plasma sample
was added to 10 μl of a 1 μg/ml indinavir free base as in-
ternal standard (IS) and 1ml of ice-cold MS-grade
acetonitrile. For brain tissue, 100 mg of each tissue sam-
ple was homogenized in four volumes of MS-grade
water; 1 ml ice-cold acetonitrile containing 10 μl of IS
was then added. Both plasma and brain samples were
vortexed for 3 min and centrifuged (16,000×g for 10 min,
4 °C). One ml of supernatant was evaporated to dryness
under vacuum and dried samples reconstituted in 100 μl
of 50% MS-grade methanol in water. Samples were cen-
trifuged (16,000×g for 10 min, 4 °C) and 40 μl of super-
natant was used for analysis.
Chromatographic separation was performed using a

Waters ACQUITY UPLC (Milford, MA) system coupled
with a Sciex QTRAP 4500 triple quadrupole linear ion
trap hybrid mass spectrometer, with an electrospray

ionization source (Applied Biosystems /MDS Sciex, Fos-
ter City, CA). For separation, an ACQUITY BEH Shield
RP18 column (1.7 μm, 2.1 × 100mm) equipped with an
ACQUITY Vanguard BEH Shield precolumn (1.7 μm,
2.1 × 5mm) was employed, using a stepwise gradient of
7.5 mM ammonium acetate, pH 5 for mobile phase A
and acetonitrile for mobile phase B. The gradient was
held at 70% mobile phase A for 3 min, decreased to 40%
mobile phase A over 90 s and held for 30 s, decreased to
5% mobile phase A over 30 s and held for 30 s, increased
to 70% mobile phase A over 15 s and held for 105 s prior
to next sample injection at a flow rate of 0.25 ml/min.
The injection volume for each sample was 10 μl. Detec-
tion was achieved in the positive ionization mode using
the following transitions: m/z MVC 514/280; m/z indin-
avir 614/421. Calibration standards consisted of 0.2 to
2000 ng/ml MVC with 100 ng/ml indinavir for both
plasma and brain homogenates and the ratio of analyte
to IS peak area was used for quantitation of unknowns.

RNA isolation and real-time PCR
Total RNA was extracted from brain tissues using Trizol
reagent (Life Technologies-Ambion, Austin, TX) accord-
ing to the manufacturer’s protocol. RNA yield and qual-
ity were checked using a NanoDrop spectrophotometer
(NanoDrop Technologies, Wilmington, DE) and for all
samples, absorbance ratios of 260/280 were ≥ 2. Reverse
transcription was performed using Verso cDNA synthe-
sis kit (ThermoFisher); 1 μg RNA in 11 μl of nuclease-
free water was mixed with 4 μl of 5X cDNA synthesis
buffer, 2 μl dNTP mix, 1 μl random hexamers, 1 μl re-
verse transcriptase enhancer and 1 μl Verso enzyme mix.
Amplification conditions were: 1 cycle of 42 °C for 30
min, followed by 95 °C for 2 min.
Quantitative real-time PCR was performed using the 384-

well block of a LightCycler® 480 II (Roche) Real-Time PCR
System. For each reaction, 500 ng of cDNA in 5 μl nuclease-
free water was mixed with 3 μl PCR grade water, 10 μl of 2X
LightCycler® 480 Probe master mix, and 1 μl of 20X TaqMan
primer-probe mix. Cycling conditions were as follows: 95 °C,
5min with a ramp rate of 4.8 °C/s; followed by 45 cycles of
95 °C, 10 s, 4.8 °C/s; 60 °C, 15 s, 2.5 °C/s; and 72 °C, 1 s,
4.8 °C/s; and hold at 40 °C, 10 s, 2 °C/s. Standard curves were
generated from ACH-2 cells (an HIV-1 latent T-cell clone
containing one integrated copy of proviral DNA per cell),
and qPCR was used to quantify HIV-1 long-terminal repeat
(LTR), polymerase (pol), transactivator of transcription (tat),
and gag copy numbers in each sample. Results were further
normalized to levels of human CD45+ cells in each brain tis-
sue sample. MAP-2, NeuN, gamma-secretase activating pro-
tein (GSAP) and NFL mRNA levels were quantified using
the delta-CT method as instructed in the Lightcycle 480 soft-
ware manual and normalized to the sample’s GAPDH levels.
All primers were obtained from Applied Biosystems, and
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primers’ IDs were as follows: LTR (AIWR3QG), pol
(AIY9Z2W), tat (AIX01W0), gag (AIo1X84), CD45
(Hs04189704), MAP-2 (Mm00485231), NFL (Mm01315666_
m1), NeuN (Mm01248771_m1), GSAP (Mm00615236_m1)
and GAPDH (Mm99999915_g1).

Western blot analysis
Each brain tissue sample (5 mg) was transferred into a
tube containing 500 μl of ice-cold tissue lysis buffer (50
mM Tris-HCl, 150 mM NaCl, 0.25% SDS, 0.25% Sodium
Deoxycholate, 1 mM EDTA) and 5 μl of 100X protease
and phosphatase inhibitor cocktail, placed on ice and
homogenized using a motor and pestle. Homogenized
samples were incubated for 30 min on ice, with intermit-
tent vortex (every 5 to 6 min) for 10 s. Samples were
centrifuged for 10 min at 18000×g, 4 °C; and each super-
natant transferred into a fresh pre-chilled tube and
stored at − 80 °C until use. Total protein levels in each
sample were quantified using the bicinchoninic acid
assay (ThermoFisher), and 30 μg protein analyzed by so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis
as previously described [34, 43] using monoclonal anti-
bodies to claudin-5, ZO-1, ZO-2, MAP 2, NeuN, NFL,
LRP1, RAGE, Aβ1–42, Tau, pTau (Thr181), pTau
(Ser396), pTau (Ser199), pTau (Thr231), pTau (Thr205),
and β-actin (each at 1:1000 dilution). To confirm equal
loading, protein expression in each sample was normal-
ized to the sample’s β-actin levels, and pTau normalized
to the sample’s total Tau levels. The original Western
blot images are included in “Additional File-1”.

Statistical analysis
Data were analyzed by Student’s t-test (two-tailed) or by
one- or two-way analysis of variance followed by Tukey’s
multiple-comparisons tests using GraphPad Prism 7.05
(GraphPad Software, La Jolla, CA, USA). Data are pre-
sented as mean ± standard deviation (SD) and the
threshold of significance level was 0.05.

Results
MVC reduced HIV-induced immunosuppression in
infected animals
HIV infection is known to decrease CD4+ T-cells and
increase CD8+ T-cells [44, 45]. To determine the effects
of HIV infection and MVC treatment on the animals’
immune system, we quantified blood levels of human
(hCD45+, hCD3+, hCD4+, and hCD8+) cells in animals’
blood before (pre) infection and at week-1, week-2, and
week-3 p.i. The four animal groups showed no signifi-
cant difference in mean hCD4+ cells pre-infection
(51.65 ± 13.54 (SD) to 52.85 ± 12.54%) or at week-1 p.i.
(64.5 ± 5.7 to 70 ± 16%) (Fig. 2a and b). At week-2 p.i.,
infected untreated animals (HIV) showed major im-
munosuppression compared to infected animals treated

with MVC (HIV +MVC), non-infected controls (PBS),
or non-infected animals treated with MVC (MVC). The
mean number of hCD4+ T-cells in the HIV group was
8-fold lower than in the PBS group (P < 0.0001), 6-fold
lower than in the HIV +MVC group (P < 0.0001), and 7-
fold lower than in the MVC group (P < 0.0001) (Fig. 2b).
At week-3 p.i., the mean number of hCD4+ cells in the
HIV group was 6.6-fold lower than in the PBS group
(P < 0.0001), 4-fold lower than in the HIV +MVC group
(P < 0.0001), and 6.2-fold lower than in the MVC group
(P < 0.0001) (Fig. 2b). Thus, compared to untreated HIV-
infected animals, infected animals treated with MVC
showed 6-fold higher hCD4+ T-cells at week-2 and 4-
fold higher hCD4+ T- cells at week-3 p.i.

MVC reduced HIV-induced increase in hCD8+ T-cells in
infected animals
Pre-infection mean levels of hCD8+ T-cells were not sig-
nificantly different between the 4 animal groups (28 ±
5.7 to 30.4 ± 8.66%) (Fig. 2c and d). However, HIV infec-
tion resulted in increased hCD8+ T-cells, which was pre-
vented by MVC treatment. At week-1 p.i., mean hCD8+
T-cells in infected animals were 1.8-fold higher than in
infected mice treated with MVC or PBS control (P <
0.0001), and 1.4-fold higher than hCD8+ T-cells in the
MVC control group (P = 0.0013) (Fig. 2c and d). At
week-2 p.i., mean hCD8+ T-cells in infected animals
were 1.96-fold, 3-fold, and 2.1-fold higher than the mean
hCD8+ T-cells in the HIV +MVC, PBS, and MVC
groups, respectively (P < 0.0001, Fig. 2d). At week-3 p.i.,
mean hCD8+ T-cells in the HIV group were 2-fold,
3.76-fold, and 3.56-fold higher than mean hCD8+ T-
cells in the HIV +MVC, PBS, and MVC groups, respect-
ively (P < 0.0001, Fig. 2d).

MVC increases hCD4+/hCD8+ T-cells ratios in infected
animals
Pre-infection, hCD4+/hCD8+ T-cells ratios were not sig-
nificantly different between the 4 animal groups (1.82 to
1.94). HIV infection resulted in decreased hCD4/hCD8
ratios, which was abrogated by MVC treatment. Com-
pared to infected untreated mice, infected mice treated
with MVC, or PBS control had 2-fold higher hCD4/
hCD8 ratios at week-1 p.i. (P = 0.0004, Fig. 2e and f). At
week-2 p.i., compared to infected untreated mice, hCD4/
hCD8 ratios were 12.5-fold, 25.6-fold, and 15.5-fold
higher in HIV +MVC, PBS, and MVC animal groups, re-
spectively (P < 0.0001, Fig. 2f). At week-3 p.i., compared
to infected untreated mice, hCD4/hCD8 ratios were 9.2-
fold, 25.78-fold, and 22.4-fold higher in HIV +MVC
(P = 0.0007), PBS, and MVC groups (P < 0.0001), re-
spectively (Fig. 2f).
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MVC enters the CNS and decreases systemic and brain
viremia in infected animals
We performed UPLC-MS/MS quantification of MVC in
plasma and brain tissues of mice treated with MVC (at
week-3) as detailed in the Methods section. The mean
MVC plasma levels were 117.5 ± 120.6 ng/ml (range: 7.23
to 294 ng/ml), and the mean MVC levels in brain tissues

were 216.6 ± 234 ng/g (range: 81 to 685 ng/g). There was a
positive correlation between plasma and brain MVC levels
(Pearson r = 0.638), but it did not reach statistical signifi-
cance (P = 0.09).
RNAscope quantification of HIV in brain tissues showed

high viral copy numbers in the brains of infected animals
and MVC treatment decreased the brain viral loads by

Fig. 2 MVC prevents HIV-induced immunosuppression in infected mice. Levels of human (h)CD4+ (a, b), hCD8+ (c, d) and hCD45+ T-cells in
each blood sample were quantified by FACS before (Pre) infection and at week (Wk) -1, − 2, and − 3 post-infection. Levels of hCD4+ and hCD8+
cells in each sample were normalized to the sample’s hCD45+ cells levels. e, f: hCD4+/hCD8+ T-cells ratios. The four animal groups included NSG
mice engrafted with human PBL, uninfected and untreated (PBS), uninfected and treated with MVC (MVC), infected with HIV-1ADA and untreated
(HIV), or treated with MVC (HIV + MVC). Sample size: 9 to 11 animals in each group. #P < 0.0001, ***P < 0.0007, **P = 0.0013. For all panels, error
bars represent standard deviation (SD)
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11.75-fold (Fig. 3a-c, P < 0.0001, degree of freedom (df) =
14, F = 258.6). qPCR quantification of viral genes also
showed high levels of HIV-1 gag, pol, LTR and tat in brain
tissues of infected animals, and MVC treatment signifi-
cantly decreased the levels of each of these viral genes
(Fig. 3d, P < 0.0001). Mean HIV-1 p24 antigen levels in the
plasma of infected mice were 350 ± 79 pg/ml, and MVC
treatment decreased plasma viral p24 levels by 2.5-fold
(mean p24: 141 ± 37 pg/ml) (Fig. 3e, P < 0.0001, df = 22).
Two-tailed t-tests were used for Fig. 3c-e.

MVC blocked HIV-induced leukocyte infiltration into the
brain
Quantification of human (HLA-DR+) cells in animals’
brain tissues showed significantly higher cellular infiltra-
tion in the brain of HIV-infected animals. Compared to
non-infected controls (PBS or MVC groups), mean
HLA-DR+ cells in the brain of HIV-infected animals
were 2.3 to 2.58-fold higher (Fig. 3f-h). MVC treatment
(HIV +MVC) decreased HLA-DR+ cells in the brain of
infected animals by 2.13-fold compared to infected and
non-treated animals (Fig. 3h, P < 0.0001).

MVC prevented HIV-induced BBB alterations
To assess the effects of HIV and MVC treatment on the
BBB in vivo, we analyzed the expression of endothelial
tight junction (TJ) proteins claudin-5 (Fig. 4a-d), ZO-1
(Fig. 4e-h), and ZO-2 (Fig. 4i-l) in animals’ brain tissues.
Immunohistochemistry and immunofluorescence ana-
lyses showed a decreased expression of claudin-5 (Fig.
4a and b), ZO-1 (Fig. 4e and f), and ZO-2 (Fig. 4i and j)
in brain tissues of infected animals, and MVC prevented
HIV-induced downregulation of these TJ proteins. Meta-
morph quantification of TJ proteins expression in all an-
imals (9 to 11 mice in each group) showed that HIV-1
infection decreased claudin-5 expression by 5.2-fold (Fig.
4b, P < 0.0001) and decreased ZO-1 (Fig. 4f) and ZO-2
(Fig. 4j) expression by 3-fold (P < 0.0001) compared to
PBS control. Compared to infected and non-treated ani-
mals, expression of claudin-5, ZO-1, and ZO-2 in the
HIV +MVC group were increased, respectively, by 4-
fold (Fig. 4b), 2.7-fold (Fig. 4f), and 2.88-fold (Fig. 4j)
(P < 0.0001). These results were confirmed by Western
blot analyses (Fig. 4c, g and k) and densitometry quanti-
fication (Fig. 4d, h and l). Data normalized to samples’
actin levels showed that compared to the control PBS
group, HIV-1 infection decreased the expression of
claudin-5, ZO-1, and ZO-2, respectively, by 3.8-fold (Fig.
4d, P = 0.03), 6.7-fold (Fig. 4h, P = 0.0005) and 4.85-fold
(Fig. 4l, P = 0.006). Compared to the HIV group, expres-
sion of claudin-5, ZO-1, and ZO-2 in the HIV +MVC
group was increased, respectively, by 3.6-fold (Fig. 4d,
P = 0.04), 6.8-fold (Fig. 4h, P = 0.0004) and 4.56-fold
(Fig. 4l, P = 0.03).

MVC reduced HIV-induced neuronal injury in infected
animals
To determine the effect of HIV infection and MVC on
neuronal processes and phenotypes, we analyzed the ex-
pression of neuronal cytoskeletal (MAP 2), nuclei
(NeuN), and axonal (NF-L) markers in brain tissues.
HIV infection decreased MAP 2 (Fig. 5a-e) and NeuN
(Fig. 5f-j) expression, effects that were blocked by MVC
treatment. Immunohistochemistry and metamorph
quantification of MAP 2 and NeuN expression in brain
tissues showed that compared to control animals (PBS
or MVC groups), HIV-1 infection decreased MAP 2
(Fig. 5a and b) and NeuN (Fig. 5f and g) expression by
3.16-fold and 4.35-fold, respectively, and MVC treatment
blocked HIV-induced downregulation of MAP 2 and
NeuN. In the HIV +MVC group, MAP 2 (Fig. 5a and b)
and NeuN (Fig. 5f and g) expression increased by 2.8
and 3.53-fold (P < 0.0001). Western blot analyses of
brain tissues confirmed these findings. Compared to
control animals, HIV-1 infection decreased MAP 2 (Fig.
5c and d) and NeuN (Fig. 5h and i) expression by 3.8
and 15-fold, respectively; whereas in the HIV +MVC
group, MAP 2 and NeuN expression increased by 3.2-
fold (Fig. 5c and d, P < 0.01) and 10.6-fold (Fig. 5h and i,
P < 0.001), respectively, compared to animals in the HIV
group. qPCR also showed that HIV infection decreased
MAP 2 mRNA levels by 90.7-fold (Fig. 5e, P = 0.011)
and decreased NeuN mRNA by 28.7-fold (Fig. 5j, P =
0.004). In infected animals treated with MVC, MAP 2
and NeuN mRNA levels were increased by 46.8-fold
(Fig. 5e P = 0.003) and 25-fold (Fig. 5j, P = 0.015), re-
spectively, compared to levels in infected untreated
animals.
Immunofluorescence and metamorph quantification

showed that compared to control (PBS and MVC)
groups, HIV infection decreased NFL expression by
4.75-fold (Fig. 6a and b; P < 0.0001); and NFL levels in
the HIV +MVC group were increased by 5-fold com-
pared to the HIV group (Fig. 6a and b, P < 0.0001).
Western blot analyses also showed that HIV infection
decreased NFL expression by 9.35-fold (Fig. 6c and d,
P < 0.0001), and MVC treatment increased NFL expres-
sion in infected animals by 4-fold compared to infected
and untreated animals (Fig. 6c and d, P = 0.003). HIV in-
fection also decreased NFL mRNA levels in brain tissues
by 29.5-fold (Fig. 6e, P = 0.001), and NFL mRNA levels
in the HIV +MVC group were 11-fold higher than levels
in infected untreated animals (Fig. 6).

HIV-1 infection increased CNS and plasma Aβ and
increased CNS GSAP
HAND is associated with AD-like pathology character-
ized by increased CNS Aβ and Tau hyperphosphoryla-
tion [17–20]. Immunohistochemistry (Fig. 7a-c) and
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Western blot (Fig. 7d, e) analyses of brain tissues showed
no Aβ-42 in control animals, but brain tissues from
HIV-infected animals showed increased formation and
accumulation of Aβ-42 (Fig. 7a-e). qPCR analyses of
GSAP also showed that HIV-1 infection increased GSAP

mRNA in brain tissues by 13 to 15-fold compared to
control animal groups (Fig. 7f, P < 0.0001). ELISA quan-
tification of Aβ-42 in animals’ plasma at week-3 p.i.
showed that HIV infection increased plasma Aβ-42
levels by 3-fold. Plasma Aβ-42 levels in HIV-infected

Fig. 3 MVC decreased viremia and abrogated HIV-induced cellular infiltration in the brain of infected animals. Brain HIV RNA copy (yellow arrows) numbers
were quantified by RNAscope and, for each experimental group, representative images from the somatosensory cortex (a) and meningeal / somatosensory
area layer 1 (b) are shown. c: Metamorph software was used to quantify HIV RNA copies numbers in all samples. For each animal brain sample, 10 random
fields-of-view (FOV) were analyzed (5 FOV from the somatosensory cortex and 5 FOV from the meningeal / somatosensory area layer 1). d: Levels of HIV-1 gag,
pol, LTR, and tat genes in brain tissues were quantified by qPCR and normalized to samples’ hCD45+ cells levels. e: HIV-1 p24 antigen levels in plasma samples
were quantified by ELISA. f, g: HLA-DR expression in brain tissues was analyzed by immunohistochemistry and, for each experimental group, representative
images from the somatosensory cortex (f) and meningeal / somatosensory area layer 1 (g) are shown. h: Metamorph was used to quantify HLA-DR+ cells in all
brain samples and for each sample, 10 random FOV (5 FOV from the somatosensory cortex and 5 FOV from the meningeal / somatosensory area layer 1) were
analyzed. For panels a, b, f, and g, images were at 40X. The four animal groups included PBS, HIV, HIV +MVC, and MVC; 9 to 12 animals in each group. #P <
0.0001. Error bars represent SD
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animals were 137 ± 52 pg/ml compared to 45.7 ± 13.5 pg/
ml in control PBS animals (P = 0.0005, Fig. 7g).

MVC reduced HIV-induced GSAP and CNS Aβ formation,
but increased plasma Aβ levels
qPCR showed that MVC treatment of infected animals
reduced GSAP mRNA levels in brain tissues by 3-fold
compared to animals in the HIV group (Fig. 7f, P =
0.0008). Immunohistochemistry analyses showed that
compared to infected (HIV group) animals, MVC treat-
ment (HIV +MVC group) reduced Aβ-42 levels by 4.26-

fold [Fig. 7a-c, P < 0.0001; df = 14; F = 2.57]. Western
blot analyses confirmed these findings and showed that
MVC treatment of infected animals reduced Aβ-42
levels by 3-fold (Fig. 7d and e, P = 0.0009; df = 4, F =
21.49) compared to animals in the HIV group. Two-
tailed t-tests were used for Fig. 7c and e. For animals in
the PBS and MVC groups, immunohistochemistry (Fig.
7a-c) and Western blot (Fig. 7d, e) analyses showed no
detectable Aβ-42 in brain tissues. Surprisingly, plasma
Aβ-42 levels in HIV-infected and MVC-treated animals
were 1.67-fold higher (228.6 ± 74.3 pg/ml) than in

Fig. 4 MVC abrogated HIV-induced BBB alterations. Expression of brain endothelial tight junction proteins claudin-5 (a-d), ZO-1 (e-h), and ZO-2 (i-
l) were analyzed by immunohistochemistry (a, b) or immunofluorescence (e, f, i, j) with DAPI (blue) for nuclear counterstaining. Metamorph
software was used to quantify claudin-5 (b), ZO-1 (f), and ZO-2 (j) levels in all samples; for each sample, 10 random FOV (from the somatosensory
cortex) were analyzed. Western blot analyses (c, g, k) and densitometry quantification normalized to sample’s β-actin levels (d, h, l) were also
used to quantify claudin-5 (c, d), ZO-1 (g, h), and ZO-2 (k, l) levels in samples. For panels a, e, and i, images were at 40X. The four animal groups
included PBS, HIV, HIV + MVC, and MVC; 9 to 11 animals in each group. #P < 0.0001, ***P < 0.0005, **P < 0.006, *P < 0.05. Error bars represent SD
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infected non-treated animals (Fig. 7g, P = 0.0005), 5-fold
higher than in control PBS group, and 5.7-fold higher
than in the control MVC group (40 ± 11.6 pg/ml) (Fig.
7g, P < 0.0001).

HIV-1 infection increased CNS tau phosphorylation
Immunohistochemistry (Fig. 8a-d) and Western blot (Fig.
8e-k) analyses of brain tissues showed similar levels of
total Tau protein in all animal groups. Analyses of pTau
normalized to total Tau showed that HIV-1 infection in-
creased Tau phosphorylation at Thr181 by 8.5 to 11-fold
(Fig. 8e and f; P = 0.002), at Ser396 by 18 to 22-fold (Fig.
8g and h, P < 0.0001), at Ser199 by 3.5 to 4-fold (Fig. 8g
and i, P < 0.0001), and at Thr231 by 1.6 to 2-fold (Fig. 8g
and j, P = 0.002). HIV infection had no significant effect
on Tau phosphorylation at Thr205 (Fig. 8g and k).

MVC reduced HIV-induced CNS tau phosphorylation
Immunohistochemistry analysis showed that compared
to infected (HIV group) animals, MVC treatment (HIV +
MVC group) reduced pTau (Thr181) levels by 4.6-fold
(Fig. 8a, c; P < 0.0001, df = 14, F = 5.94). Western blot
analysis confirmed these findings and showed that

compared to animals in the HIV group, MVC treatment
of infected animals reduced pTau (Thr181), pTau
(Ser396), pTau (Ser199), and pTau (Thr231) levels re-
spectively by 3-fold (Fig. 8e and f, P = 0.011); 17.8-fold
(Fig. 8g and h, P < 0.0001); 4.6-fold (Fig. 8g and i, P <
0.0001); and 1.5-fold (Fig. 8g and k, P = 0.048). MVC
treatment had no significant effect on pTau (Thr205)
levels (Fig. 8g and k). Two-tailed t-tests were used for
Fig. 8c.

MVC reduced Aβ retention and increased Aβ release in
human MDM
Aβ produced in the CNS are cleared through phagocyt-
osis by cells of the monocyte lineage such as macro-
phages and microglia [46–49]. To determine whether
HIV infection and/or CCR5 inhibitors may affect this
process, we quantified the uptake, retention, and release
of Aβ-42 in HIV-infected and non-infected MDM, in
the presence and absence of MVC. Compared to Aβ
levels in non-infected MDM (526 ± 10 pg/ml), HIV-1 in-
fection increased macrophage Aβ retention by 1.5-fold
(796.5 ± 15 pg/ml) (P < 0.0001, Suppl Fig. 2a). MVC re-
duced Aβ retention by 3.4 to 4.74-fold in both infected

Fig. 5 MVC prevented HIV-induced downregulation of the neuronal markers MAP 2 and NeuN. a: Immunohistochemistry analyses of MAP 2 expression in
brain tissues (somatosensory cortex). b: Metamorph quantification of MAP 2 expression in all samples. MAP 2 levels in brain tissues were also quantified by
Western blot (c) followed by densitometry quantification normalized to sample’s β-actin levels (d). f: immunohistochemistry analyses of NeuN expression in
brain tissues (somatosensory cortex). g: Metamorph quantification of NeuN in all samples. NeuN levels in brain tissues were also quantified by Western blot (h)
followed by densitometry quantification normalized to sample’s β-actin levels (i). MAP 2 (e) and NeuN (j) mRNA levels in brain tissues were quantified by real-
time PCR. For panels a and f, images were at 40X. For panels b and g, 10 random FOV analyzed for each sample. The four animal groups included PBS, HIV,
HIV +MVC, and MVC; 9 to 11 animals in each group. #P < 0.0001, ***P <0.0003, **P <0.004, *P <0.015. Error bars represent SD
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and non-infected MDM. Aβ levels in non-infected and
HIV-infected MDM exposed to MVC were 134 to 153
pg/ml and 168 to 185 pg/ml, respectively (P < 0.0001,
Suppl Fig. 2a).
Increased Aβ retention in infected (796.5 ± 15 pg/ml)

and non-infected (526 ± 10 pg/ml) MDM (Suppl Fig. 2a)
correlated with minimal Aβ release in the culture media
of infected (83 ± 19.6 pg/ml) and non-infected (116.6 ±
12 pg/ml) MDM (Suppl Fig. 2b). MVC increased Aβ re-
lease from non-infected and HIV-infected MDM by 5-
fold and 4-fold, respectively (P < 0.0001, Suppl Fig. 2b).
Levels of Aβ released in culture supernatants of MVC-
treated non-infected and HIV-infected MDM were 575
to 608.6 pg/ml and 334 to 365 pg/ml, respectively (P <
0.0001, Suppl Fig. 2b).

MVC increased LRP1 and decreased RAGE expression in
HBMEC
Two major endothelial receptors regulate Aβ transport
across the BBB: RAGE, an influx receptor that binds and
transport circulating plasma Aβ into the CNS [27–30];
and LRP1, an efflux-clearance receptor that binds and
transport brain-derived Aβ into the blood [31–33]. We
confirmed the expression of RAGE and LRP1 in primary
HBMEC (Suppl Fig. 3). Compared to controls [HBMEC

treated with DMSO (vehicle)], exposure of HBMEC to
Aβ-42 did not alter LRP1 or RAGE expression (Suppl
Fig. 3a-c), but MVC treatment decreased RAGE expres-
sion by 2.1-fold (P = 0.0006, Suppl Fig. 3a and b) and in-
creased LRP1 expression in HBMEC by 2.7-fold (P =
0.0002, Suppl Fig. 3a and c). In HBMEC exposed to Aβ-
42, MVC also increased LRP1 (P = 0.03, Suppl Fig. 3a
and c) and decreased RAGE expression (Suppl Fig. 3a
and b) (P = 0.04).

In the presence of MVC, LRP1 antagonist (but not RAGE
antagonist) reduced endothelial Aβ uptake and retention
Quantification of Aβ-42 levels in trypsinized HBMEC
(upper chamber of the transwell system) showed that in
the absence of MVC, both LRP1 and RAGE inhibitors
reduced endothelial Aβ uptake and retention by 2 to
2.3-fold (Suppl Fig. 3d). Compared to Aβ levels in con-
trol HBMEC (185.5 ± 20 pg/ml), Aβ levels in HBMEC
treated with LRP1 and RAGE inhibitors were 79.6 ± 12
pg/ml and 84.2 ± 0.8 pg/ml, respectively (P = 0.0002,
Suppl Fig. 3d). MVC alone had no significant effect on
endothelial Aβ uptake [Aβ levels in MVC-treated
HBMEC were 214.3 to 238 ± 28 pg/ml compared to
185.5 ± 20 pg/ml in non-MVC treated cells (Suppl
Fig. 3d)]. In MVC-treated cells, RAGE inhibitors did not

Fig. 6 MVC prevented HIV-induced downregulation of the neurofilament-L (NFL). a: immunofluorescence analyses of NFL expression in brain
tissues. b: densitometry quantification of NFL expression in all samples (somatosensory cortex, 10 random FOV analyzed for each sample). NFL
levels in animals’ brain tissues were also quantified by Western blot analyses (c) followed by densitometry quantification normalized to sample’s
β-actin levels (d). e: Real-time PCR quantification of NFL mRNA in brain tissues. For panel a, images were at 40X. The four animal groups included
PBS, HIV, HIV + MVC and MVC; 9 to 11 animals in each group. #P < 0.0001, ***P < 0.0002, **P < 0.003. Error bars represent SD
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alter Aβ uptake and retention [Aβ levels in HBMEC
treated with both MVC and RAGE inhibitors were 202
to 271.6 ± 25 pg/ml], but LRP1 inhibitors reduced Aβ
uptake and retention 2 to 2.6-fold [Aβ levels in HBMEC
treated with both MVC and LRP1 inhibitors were 82 to
139 ± 2.5 pg/ml, P < 0.0001, Suppl Fig. 3d].

MVC increased transendothelial Aβ transport and LRP1
antagonist (but not RAGE antagonist) blocked MVC-
induced transendothelial Aβ transport
Quantification of Aβ-42 levels in the lower chamber cul-
ture media (Aβ transported from the upper to the lower
chamber of the transwell) showed that in the absence of
MVC, both LRP1 and RAGE inhibitors reduced endothe-
lial Aβ transport by 1.3 to 1.7-fold (Suppl Fig. 3e). Com-
pared to Aβ levels in the lower chamber media of control
HBMEC (105.4 ± 6.6 pg/ml), Aβ levels in lower chamber
media of cells treated with LRP1 and RAGE inhibitors
were respectively 59.8 ± 5.1 pg/ml (P < 0.0001, Suppl
Fig. 3e) and 79 ± 11.3 pg/ml (P = 0.003, Suppl Fig. 3e).
MVC increased Aβ transport across in vitro BBB model

by 3.2 to 3.4-fold (P < 0.0001, Suppl Fig. 3e). Compared to
Aβ levels in control HBMEC lower chamber media
(105.4 ± 6.6 pg/ml), Aβ-42 levels in the lower chamber
media of MVC-treated HBMEC were 341 to 359 ± 4 pg/
ml (P < 0.0001, Suppl Fig. 3e)]. In the presence of MVC,
the RAGE inhibitor had no effect on MVC-induced Aβ
transendothelial transport [Aβ levels in the lower chamber
media of HBMEC treated with both MVC and RAGE in-
hibitor were 322 to 325.5 pg/ml, compared to 341 to 359
pg/ml in MVC-treated HBMEC]. The LRP1 inhibitor re-
duced MVC-induced Aβ transendothelial transport by 4
to 6.24-fold [Aβ levels in the lower chamber media of
HBMEC treated with both MVC and LRP1 inhibitor were
54.6 to 63 ± 3 pg/ml, compared to 341 to 359 pg/ml in
MVC-treated HBMEC, P < 0.0001, Suppl Fig. 3e].

Discussion
There is evidence of AD-like pathologies in HIV-infected
individuals, including increased production of neurotoxic
Aβ, Tau hyperphosphorylation, formation of amyloid pla-
ques and NFTs-like structures in the CNS [17–20]. We

Fig. 7 MVC abrogated HIV-induced increased formation and accumulation of CNS GSAP and amyloid-β (Aβ), but increased plasma Aβ levels. Aβ formation in
the somatosensory cortex (a) and hypothalamus region (b) were quantified by immunohistochemistry using antibodies to Aβ1–42, followed by densitometry
quantification of Aβ levels in all samples: 10 random FOV (5 FOV from the somatosensory cortex and 5 FOV from the hypothalamus region) analyzed for each
sample (c). Aβ levels in brain tissues were also analyzed by Western blot (d) and densitometry quantification normalized to sample’s β-actin levels (e). Both
immunohistochemistry and Western blot showed no Aβ in brain tissues of animals in the PBS or MVC groups. mRNA levels of GSAP (the enzyme that catalyzes
Aβ formation) in brain tissues were quantified by real-time PCR (f). Plasma Aβ1–42 were quantified by ELISA (g). For panels a, and b, images were at 40X . The
four animal groups analyzed included PBS, HIV, HIV +MVC, and MVC; 9 to 11 animals in each group. #P < 0.0001, ***[(e) P =0.0009, (f) P =0.0008, (g) P = 0.0005].
Error bars represent SD
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have reproduced these findings in hu-PBL-NSG mice, a
well-characterized and validated animal model that
mimics HIV/AIDS clinical conditions [50–56]. We dem-
onstrate that HIV-1 infection significantly increased CNS
Aβ-42 and phosphorylation of Tau at Thr181, Ser396,
Ser199, and Thr231 in these animals. Brain tissues from
patients with AD and other dementia also showed in-
creased accumulation of pTau in neurons, glial cells, and
NFTs, including Tau hyperphosphorylation at Thr181,

Thr231, Ser396, and Ser199 [57–60]. In AD mice models,
brain damage is associated with increased pTau (Ser199)
in the cerebral cortex and hippocampus, and reduced au-
tophagy [61]. Our results suggest that HIV and/or viral-
induced factors are directly involved in the development
of AD-like pathologies in HIV-infected individuals, which
agrees with previous findings. In fact, in vitro, ex vivo, and
in vivo studies showed that HIV and viral proteins in-
duced the production and aggregation of the toxic forms

Fig. 8 MVC abrogated HIV-induced increased Tau phosphorylation. Levels of pTau (Thr181) (a, c, e, f) and total Tau (b, d, e) proteins in the hippocampus
fimbria of each brain sample were analyzed by immunohistochemistry (a, b) followed by densitometry quantification (c, d), as well as by Western blot (e)
followed by densitometry quantification normalized to sample’s total Tau levels (f). Levels of pTau (Ser396) (g, h), pTau (Ser199) (g, i), pTau (Thr231) (g, j), and
pTau (Thr205) (g, k) were also quantified by Western blot (g) followed by densitometry quantification normalized to sample’s total Tau levels (h-k). For panels a
and b, images were at 40X. The four animal groups analyzed included PBS, HIV, HIV +MVC, and MVC; 9 to 11 animals in each group. #P < 0.0001, **P =0.002,
*[(f) P =0.011, (j) P =0.048]. Error bars represent SD
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of Aβ (Aβ-40 and Aβ-42), the formation of amyloid pla-
ques, and Tau hyperphosphorylation [62–68], and that Aβ
peptides can further enhance HIV replication [69]. The
direct role of HIV in the development of amyloidogenesis
and pTau pathology is further supported by autopsy stud-
ies showing that the presence of Aβ deposits and pTau
pathology in brain tissues of HIV-infected humans are
often associated with high viral loads and neurocognitive
impairments, including impairments in speed of informa-
tion processing, attention, and working memory [21, 22];
and impairment in prospective memory [70, 71]. Studies
of HIV-1 transgenic rats also showed marked increase in
pTau (Thr181, Thr231, and Ser396) in the hippocampus
[66]; and HIV-1 matrix protein p17 injected into mouse
hippocampus co-localizes with pTau fibrils and amyloid
plaques to further increase Aβ expression and induce neu-
rocognitive impairment [67].
The current study is, to our knowledge, the first to

show that HIV-induced Aβ and pTau is associated with
transcriptional upregulation of GSAP, an enzyme that
modulates Aβ formation [23]. In AD amyloidogenic
pathway, the APP is sequentially cleaved by β and γ-
secretases to generate neurotoxic Aβ fragments that
oligomerize, form amyloid fibrils, and aggregate into
amyloid plaques [72–74]. GSAP selectively and specific-
ally regulates γ-secretase interaction with APP to in-
crease Aβ production [23–26], and has been associated
with AD and disease progression. Compared to age-
matched controls, GSAP levels are significantly higher in
brain tissues of AD patients [75–77], patients with other
neurodegenerative diseases such as Down syndrome
[78], and in AD mice models [75, 77, 79]. Silencing
GSAP expression significantly reduced cellular γ-
secretase activity and Aβ production in vitro [23, 80, 81];
reduced CNS Aβ levels, amyloid plaque formation and
pTau in AD mouse models, without altering other γ-
secretase function such as Notch-dependent pathways
[23, 75, 77, 79–81].
Although it is well established that increased CNS and

cerebrospinal fluid (CSF) Aβ-42 is a hallmark of AD
pathology, there have been contradictory findings on the
role of plasma Aβ-42 in AD and associated brain path-
ologies. Amyloidogenesis, pTau pathology, cognitive de-
cline and AD have been associated with low/decreasing
plasma Aβ-42 [82–87] and increased plasma Aβ-42
levels [88–98], whereas other studies found no signifi-
cant difference in plasma Aβ of AD patients and age-
matched controls [99–102], and no association between
plasma and brain or CSF Aβ levels [101, 103, 104]. In
our current study, HIV infection increased plasma Aβ-
42 by 3-fold, compared to control groups. There have
been reports of lower serum Aβ-42 in people living with
HIV (PLWH) compared to gender and age matched
seronegative controls [105], but HIV-infected subjects

with HAND were more likely to have higher plasma Aβ-
42 compared to healthy controls and PLWH without
HAND [106]. This suggests that our findings of higher
plasma Aβ-42 in the HIV group may be associated with
higher CNS impairment. However, plasma and brain Aβ
levels don’t always correlate because blood Aβ is also de-
rived from non-CNS cells and has increased propensity
to bind to other plasma proteins such as albumin, lipo-
proteins, and complement factors [107–110].
HIV Tat interacts with APP in vitro and in vivo to in-

crease Aβ-42 levels and amyloid plaques [111]. Consid-
ering the direct role of HIV and viral protein in Aβ-42
production and Tau hyperphosphorylation, it would be
expected that reduced viral load with ART would be as-
sociated with reduced CNS Aβ-42 and pTau; however,
autopsy studies showed increased amyloidogenesis and
pTau pathology in HIV-infected individuals who had
been on long-term ART [19–21]. It is not known
whether this is associated with specific ART regimens.
Some studies showed that saquinavir and atazanavir sig-
nificantly increased APP, β-secretase-1, Aβ-40, and Aβ-
42 in neuronal cultures and in simian immunodeficiency
virus (SIV)-infected macaques [112], and inhibited mac-
rophages Aβ phagocytosis [113]. Other studies showed
that lopinavir, nelfinavir, ritonavir, and saquinavir de-
creased Aβ, β-secretase-1 and γ-secretase activities in
neuronal cultures but had no effect on Aβ production in
APP transgenic mice [113]. The effect of CCR5 inhibi-
tors on HIV-associated amyloidogenesis and pTau have
not been investigated.
CCR5 is a major HIV co-receptor [114, 115], is

expressed in many cell types [2], and the CCR5 antagon-
ist MVC is currently used for the treatment of subjects
infected with CCR5-tropic HIV [9, 10]. In our current
study, MVC decreased viral loads in the blood and brain
tissues and blocked HIV-induced immunosuppression.
Most importantly, MVC significantly reduced HIV-
induced CNS Aβ production and Tau phosphorylation,
and significantly decreased HIV-induced transcriptional
upregulation of GSAP, an endoprotease that catalyzes
APP cleavage and Aβ formation [23]. Previous studies
also showed that CCR5 was involved in neuroinflamma-
tion and cellular chemotaxis in both HAND [116–118]
and AD [119–121]. CCR5 is involved in glial injury, im-
mune dysregulation, and microglia activation in Parkin-
son’s disease [122] and AD [119]. MVC monotherapy
reduced CNS viral loads and inflammation in SIV-
infected macaques, decreased the activation of CNS leu-
kocytes, and reduced axonal APP levels [123].
The protective effects of MVC on brain cells could be

associated with its ability to cross the BBB and enter the
CNS. CSF studies suggest that MVC has a high CNS
penetration effectiveness score [124], with MVC levels in
human CSF above the protein-adjusted inhibitory
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concentration (IC90) of 0.57 ng/ml [125–127]. These
data would suggest that MVC readily enters the CNS.
Our current study in hu-PBL-NSG mice using human
equivalent doses and similar treatment schedules as in
human studies showed high levels of MVC in brain tis-
sues at 3 weeks of treatment (81–685 ng/g), and a posi-
tive correlation between plasma and brain MVC levels.
The fact that there was no difference in the weight of
MVC-treated and untreated animals shows that MVC
did not cause overt toxicities in these animals.
Remarkably, although animals in the HIV +MVC

group showed significantly reduced CNS Aβ-42 levels,
they had higher plasma Aβ-42 levels (1.67-fold higher
than in the HIV group and 5.7-fold higher than in the
MVC group). These results suggest that in the context
of HIV infection, MVC increase the transport of Aβ-42
from the brain into the peripheral blood. This hypothesis
is further supported by our data showing that MVC de-
crease RAGE while significantly increasing LRP1 expres-
sion in BBB cells. RAGE, an influx transporter largely
expressed at the BBB, binds soluble Aβ and mediate its
transendothelial transport from the blood into the CNS
[27–30]. Compared to age-matched controls, brain tis-
sues from AD patients and AD animal models showed
significantly higher expression of RAGE in the brain
endothelium, neurons, and microglia [30, 128–130], with
the highest RAGE levels correlating with higher burden
of amyloid plaques and NFTs [128], impairment in
learning and memory [29, 131]. LRP1, an efflux receptor
expressed in BBB cells, binds, and mediates Aβ transen-
dothelial transport from the brain into the peripheral
blood [31–33]. Thus, LRP1 function as a CNS Aβ clear-
ance receptor and our data showing that MVC decrease
RAGE and increase LRP1 in HBMEC, increase transen-
dothelial Aβ transport, and that LRP1 antagonist (but
not RAGE antagonist) blocked MVC-induced transen-
dothelial Aβ transport, suggest that MVC treatment can
induce/increase CNS Aβ clearance via LRP1 pathways.
Our supplemental data also showed that HIV infection
increased Aβ uptake and retention and reduce Aβ re-
lease in human MDM, whereas MVC reduced Aβ reten-
tion while increasing Aβ release from MDM. This
MVC-mediated Aβ efflux from both leukocytes and the
CNS may have contributed to the increased plasma Aβ
levels in infected MVC-treated animals.
Our data showing protective effects of MVC against

HIV-induced CNS Aβ production and Tau phosphoryl-
ation suggest that an ART regimen containing CCR5 an-
tagonists such as MVC could reduce the likelihood of
HIV-induced amyloidogenesis and pTau pathology in in-
fected individuals. This would likely be associated with
improved cognition, as there is evidence that MVC-
containing ART reduced leukocytes activation, reduced
TNF-α, and improved neurocognitive function in some

PLWH [132–135]. However, other studies of MVC ef-
fects on the CNS have reported conflicting results, with
one clinical trial showing no effect of MVC-based ART
on neuropsychological performance [136]; whereas an-
other clinical trial showed that MVC-based ART mar-
ginally improved neurocognitive function but
significantly improved performance in executive function
[137]. The wide variations in antiretroviral drugs used in
treatment regimens in these different studies likely
played a role in the discrepancies observed.
Our current data also showed that HIV-induced Aβ

and pTau was associated with increased neuronal injury,
as evidenced by decreased expression of markers of
axonal filaments (NFL), neuronal microtubules (MAP 2),
and markers of neuronal development and differenti-
ation (NeuN). This confirms previous evidence from
in vitro, in vivo, and ex vivo studies showing that neur-
onal injury and neurodegeneration are neuropathological
features of HAND [15, 138, 139] and AD [140–142]. Sig-
nificantly, we demonstrated that MVC preserved neur-
onal structure and integrity and reduced HIV-induced
downregulation of NFL, MAP 2, and NeuN. MVC also
decreased HIV Tat- and V3-induced neurotoxicity [118,
143], attenuated Tat-induced neuroinflammation [118],
and increased N-acetyl aspartate/creatine ratios, a
marker of neuronal integrity, in PLWH [144]. MVC
treatment also improved neural repair following stroke
and traumatic brain injury [145]. These studies show a
broad therapeutic potential of CCR5 antagonists in pre-
venting neuronal injury and abrogating neuropathology
in several CNS diseases, including HIV/AIDS.
The BBB is a complex and dynamic structure that acts

as a biological interface between the blood and the brain
and plays a critical role in maintaining CNS homeostasis
[146, 147]. Our current data showed that in addition to in-
creasing Aβ production and pTau, HIV infection of ani-
mals resulted in increased BBB alterations, as evidenced
by decreased expression of the brain endothelial TJ pro-
teins claudin-5, ZO-1, and ZO-2, all markers of BBB in-
tegrity. Claudin-5 is a transmembrane protein [148]
whereas ZO-1 and ZO-2 are intracellular adaptor proteins
[149]. Although TJ proteins such as occludin [150–152],
ZO-1 [151–155], and ZO-2 [152, 154] have been detected
in other cells of the neurovascular unit such as pericytes
[152], astrocytes [151, 153, 154], neurons [150] and oligo-
dendrocytes [155], these TJ proteins are primarily
expressed in brain endothelial cells, the major BBB com-
ponent, where they provide intercellular seals and increase
paracellular tightness [156–158]. The structure and func-
tional integrity of TJ proteins impact cellular adhesion and
regulate actin cytoskeletal rearrangement and transmigra-
tion of blood leukocytes into the CNS [146, 147]. In our
studies, these TJ proteins were mostly expressed on cere-
bral blood vessels. Our current findings are in agreement
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with previous studies, including human post-mortem
studies, showing that both HIV and viral proteins directly
induce BBB injury [11, 12, 14, 159]; and that both HAND
[12, 14, 160] and AD [159, 161, 162] are associated with
increased BBB injury as well as impairment in BBB tight-
ness and function.
In addition to HIV and viral proteins directly causing

BBB alterations, Aβ produced following HIV infection can
further increase endothelial injury and BBB dysfunction.
In fact, exposure of BBB cells to Aβ results in decreased
expression of TJ proteins and increased BBB permeability
[161, 163, 164]. CCR5 is also involved in this process; ex-
posure of human brain endothelial cells to Aβ-42 or Aβ-
40 induced a dose-dependent increase in CCR5 expres-
sion, chemotaxis, and monocytes transmigration through
the BBB [120, 121, 165]. In this study, HIV-induced BBB
alterations were associated with increased infiltration of
leukocytes into the brain and significantly, we demon-
strated that MVC protected the BBB and prevented HIV-
induced leukocytes infiltration into the CNS. These results
confirm previous in vitro findings showing that MVC and
CCR5 neutralizing antibodies protect against HIV-,
gp120- and Tat-induced endothelial inflammation and
BBB alterations [2, 9, 37, 166].

Conclusions
The current study is, to our knowledge, the first to dem-
onstrate that HIV-induced Aβ and pTau is associated
with transcriptional upregulation of GSAP, an endopro-
tease that catalyzes γ-secretase cleavage of APP and Aβ
formation [23–26], that CCR5 is involved in HIV-
induced Aβ production and Tau hyperphosphorylation
in the CNS; and that the CCR5 antagonist MVC signifi-
cantly reduced HIV-induced Aβ and pTau pathology,
abrogates HIV-induced upregulation of GSAP, decreased
RAGE and increased LRP1 expression in HBMEC, and
induced/increased the transendothelial transport of Aβ
via LRP1 pathways. We further demonstrate that MVC
reduced HIV-induced Aβ uptake and retention while in-
creasing Aβ release from MDM, increased plasma Aβ,
reduced HIV-induced neuronal damage and BBB alter-
ations in vivo. These results are significant and suggest
that therapeutically targeting CCR5 can reduce or abro-
gate HIV-induced AD-like CNS pathologies. These find-
ings have translational significance, as ART regimens
containing MVC could reduce the risk of Aβ production
and Tau hyperphosphorylation in the brain, increase
CNS Aβ efflux, reduce brain amyloid burden, reduce
HIV-induced neuronal damage and BBB alterations, and
reduce the risk of AD-like CNS pathologies in infected
individuals.
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Additional file 1: Supplemental Fig. 1. Lower magnification (4x)
images show the mice brain regions analyzed. a: somatosensory cortex
(CTX); b: hippocampus fimbria (Fba); MG: meningeal areas

Additional file 2: Supplemental Fig. 2. MVC abrogated HIV-induced
increased Aβ retention and increase Aβ release in human MDM. MDM in-
fection and Aβ treatment were performed as detailed in the Methods
section. Levels of Aβ in trypsinized MDM lysates (a) and Aβ in MDM cul-
ture supernatant (b) were quantified by ELISA. Each treatment condition
was performed in duplicate. #P < 0.0001, ***P = 0.0002. Error bars repre-
sent SD

Additional file 3: Supplemental Fig. 3. MVC reduced RAGE and
increased LRP1 expression in primary HBMEC, and increased
transendothelial Aβ transport. RAGE (a, b) and LRP1 (a, c) levels in
primary HBMEC were analyzed by Western blot (a) followed by
densitometry quantification normalized to each sample’s β-actin levels (b,
c). Levels of Aβ in trypsinized HBMEC lysates (upper chamber of the
transwell) (d) and in the lower chamber culture media (e) were quanti-
fied by ELISA. Each treatment condition was performed in duplicate. #P <
0.0001, ***[(b) P = 0.0006, (c) P = 0.0004, (d) P = 0.0003]; **[(b) P = 0.0015,
(e) P = 0.003)]; *[(b) P = 0.04, (c) P = 0.03]. For panel d, *P = 0.048 com-
pared to Aβ-exposed HBMEC not treated with MVC. “Vehicle” represents
DMSO only treatment; inh: inhibitor. Error bars represent SD
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