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Abstract

Background: Autophagy, a highly conserved lysosomal degradation pathway, is associated with the prognosis of
melanoma. However, prognostic prediction models based on autophagy related genes (ARGs) have never been
recognized in melanoma. In the present study, we aimed to establish a novel nomogram to predict the prognosis
of melanoma based on ARGs signature and clinical parameters.

Methods: Data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases were
extracted to identify the differentially expressed ARGs. Univariate, least absolute shrinkage and selection operator
(LASSO) and multivariate analysis were used to select the prognostic ARGs. ARGs signature, age and stage were
then enrolled to establish a nomogram to predict the survival probabilities of melanoma. The nomogram was
evaluated by concordance index (C-index), receiver operating characteristic (ROC) curve and calibration curve.
Decision curve analysis (DCA) was performed to assess the clinical benefits of the nomogram and TNM stage
model. The nomogram was validated in GEO cohorts.

Results: Five prognostic ARGs were selected to construct ARGs signature model and validated in the GEO cohort.
Kaplan-Meier survival analysis suggested that patients in high-risk group had significantly worse overall survival than
those in low-risk group in TCGA cohort (P = 5.859 × 10–9) and GEO cohort (P = 3.075 × 10–9). We then established
and validated a novel promising prognostic nomogram through combining ARGs signature and clinical parameters.
The C-index of the nomogram was 0.717 in TCGA training cohort and 0.738 in GEO validation cohort. TCGA/GEO-
based ROC curve and decision curve analysis (DCA) demonstrated that the nomogram was better than traditional
TNM staging system for melanoma prognosis.

Conclusion: We firstly developed and validated an ARGs signature based-nomogram for individualized prognosis
prediction in melanoma patients, which could assist with decision making for clinicians.
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Introduction
Cutaneous melanoma (thereafter as “melanoma”) is one
of the most aggressive skin malignancies, characterized
by its high potential for invasiveness and metastasis, and
limited response to treatment [1]. It is estimated that
there is almost 287,723 new melanoma cases and 60,712
related deaths globally in 2018 [2]. Despite considerable
improvement in the treatments for melanoma, there are
still several factors contributing to the poor prognosis of
melanoma, including delayed diagnosis and acquired re-
sistance to targeted therapy and immunotherapy [3].
Prognostic prediction is necessary to help clinicians
optimize therapeutic strategies. However, until now, the
prognostic prediction still relies too much on the Ameri-
can Joint Committee on Cancer’s (AJCC) staging system
for tumor-node-metastasis (TNM), which remains limi-
tations because melanoma patients at the same stage
vary widely in the survival outcomes [4, 5]. Therefore, it
is imperative to elucidate prognostic predictors for
melanoma.
Autophagy, a highly conserved lysosomal degrad-

ation pathway that supports nutrient recycling and
metabolic adaptation, has been implicated as a
double-edged sword in carcinogenesis [6]. In the pre-
malignant cells, autophagy assists in sustaining
physiological tissue homeostasis and avoids early-stage
development of cancer through eradicating damaged
organelles [7]. On the other hand, in established can-
cer, active autophagic flux provides energy and
macromolecular precursors for tumor cell survival
and growth even under harsh microenvironmental
conditions [8]. Numerous studies have reported the
involvement of autophagy in melanoma prognosis [9–
12]. For example, down-regulated ATG5 contributed
to tumorigenesis in the early-stage melanoma and
were correlated with a reduced progression-free sur-
vival [13]. Also, Atg7 deficiency could prevent melan-
oma development by BrafV600E and allelic Pten loss
and extend mouse survival [14]. These findings sub-
stantiate the close correlation between autophagy and
melanoma, suggesting that autophagy-related genes
(ARGs) are promising predictors for melanoma prog-
nosis [15]. Considering that these studies mainly fo-
cused on assessing the function of one single gene,
global expression patterns based on all the ARGs
could increase the accuracy of prognostic prediction.
To our best knowledge, no prognostic models have
been established before based on multiple ARGs ex-
pression for melanoma.
Gene expression profiling and bioinformatics analysis

have been used to explore the prognostic markers in
many cancers. In our study, using these high-throughput
expression data, we aimed to construct and validate a
novel prognostic nomogram with more accuracy than

traditional TNM staging system for melanoma patients
through combining ARGs signature and clinical
parameters.

Materials and methods
Data collection and processing
All the RNA sequencing data were extracted from The
Cancer Genome Atlas (TCGA) dataset (https://portal.
gdc.cancer.gov/), Gene Expression Omnibus (GEO)
dataset (https://www.ncbi.nlm.nih. gov/geo/) and the
Genotype-Tissue Expression (GTEx) project using the
University of California Santa Cruz (UCSC) Xena web-
site (https://xenabrowser.net/datapages/). The 222 ARGs
were extracted from the Human Autophagy Database
(HADb, http://www.autophagy.lu/project.html) [16].
TCGA data including 471 melanoma samples and 1 nor-
mal sample and GETx data including 812 normal tissue
samples were used to identify the differentially expressed
ARGs with log2 | fold-change (FC) | > 2 and adjusted P-
value < 0.05 using R package “limma”. 460 melanoma
samples in TCGA including overall survival were used
for the following univariate and multivariate Cox ana-
lysis as the TCGA training cohort. 79 melanoma sam-
ples in GSE54467 (GEO validation cohort) were used for
external validation. Before Cox analysis, the overlapped
genes in TCGA and GEO cohorts were extracted and
their expressions were normalized using “limma” and
“sva” package in R.

Functional annotation and pathway enrichment analysis
Gene ontology (GO), including biological process, cellu-
lar component and molecular function, and Kyoto
Encyclopedia of Gene and Genomes (KEGG) [17, 18]
pathway analysis were performed for these differentially
expressed ARGs using “org. Hs.eg.db”, “clusterProfiler”,
“enrichplot”, “ggplot2”, “GOplot” packages in R. Adjust
P value less than 0.05 was considered statistically signifi-
cant. GSEA (Gene Set Enrichment Analysis) was per-
formed in java GSEA (verision 3.0) based on the
Molecular Signatures Database version 6.233. With the
460 melanoma samples in TCGA dataset, KEGG and
HALLMARK pathways, associated with high-risk and
low-risk groups were identified by using hallmark gene
sets and KEGG gene sets. FDR q value < 0.05, |NES| > 1
were considered statistically significant.

Construction and evaluation of ARGs-based prognostic
signature
Univariate Cox analysis was conducted to screen these
differentially expressed ARGs related to overall survival
in TCGA melanoma training cohort. Then, least abso-
lute shrinkage and selection operator (LASSO) COX re-
gression analysis and multivariate COX regression
analysis were used to select the prognostic ARGs [19].
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The optimal prognostic ARGs were determined to con-
struct ARGs signature based on the Akaike information
criteria (AIC). ARGs signature = β1 × expression of
Gene1 + β2 × expression of Gene2 +⋯ + βn × expression
of Genen, where β is the corresponding coefficients gen-
erated by multivariate Cox analysis. The ARGs signature
of each patient from the TCGA and GEO cohorts was
calculated based on the above formula. The median sig-
nature from TCGA training cohort was regarded as the
cutoff for both TCGA and GEO cohorts. All patients
were strictly separated to high- and low-risk group with
the cutoff. The survival difference for each cohort was
evaluated by the Kaplan-Meier curve and log-rank test.
Furthermore, to determine whether the ARGs signature
could act as an independent prognostic factor, univariate
and multivariate Cox analysis were performed in TCGA
and GEO cohorts based on ARGs signature and clinico-
pathological factors including age, sex, body mass index
(BMI), ulceration, Breslow depth and TNM stage. To
further explore the predictive significance of ARGs sig-
nature in immunotherapy, GSE78220 dataset including
27 melanoma patients treated with anti-PD-1 therapy
was used to divide high- and low-risk groups based on
the same calculation formula and cutoff value described
above. Fisher’s exact test was performed for low-risk and
high-risk groups with and without responses to anti-PD-
1 treatment. R package “glment”, “survminer” and “sur-
vival” were used in these analyses.

Verification of the differential expression of prognostic
ARGs
Gene expression profiling interactive analysis (GEPIA)
has been used widely to explore the gene expression
(http://gepia.cancer-pku.cn/index.html) between tumors
and normal samples [20]. GSE15605 including 46 pri-
mary melanoma samples and 16 normal samples, and
GSE46517 including 31 primary melanoma samples and
7 normal samples were used to validate the differential
expression of prognostic ARGs.

Establishment and validation of nomogram
ARGs signature, age and stage were enrolled to establish
a nomogram in TCGA training cohort. The concordance
index (C-index) and area under curve (AUC) in receiver
operating characteristic (ROC) curve were generated to
evaluate the discrimination of our nomogram. Calibra-
tion curve was plotted to measure the accuracy of the
nomogram. Decision curve analysis (DCA) is widely
used to evaluate the clinical value of models by integrat-
ing the preferences of the patients into analysis [21, 22].
DCA was performed to assess the clinical benefits of the
nomogram and TNM stage model in both TCGA and
GEO cohorts. The packages of R used in the analyses
are as follows: “rms”, “foreign”, “survival”, and “stdca. R”.

Results
Screening of differentially expressed ARGs and
enrichment analysis
The overall design and workflow for the study is pre-
sented in Fig. 1. Out of all ARGs, 15 differentially
expressed ARGs were identified and visualized by vol-
cano plot analysis (Fig. 2A). Boxplot and heatmap fur-
ther demonstrated that seven ARGs have higher
expression while eight ARGs have lower expression in
melanoma than in normal skin (Fig. 2B and C). GO ana-
lysis was performed on these differentially expressed
ARGs which mainly enriched in response to xenobiotic
stimulus, ubiquitin protein ligase binding and autopha-
gosome membrane (Fig. 2D). Moreover, KEGG pathway
analysis revealed that these DE-ARGs were significantly
enriched in autophagy, PI3K-Akt signaling pathway and
HIF-1 signaling pathway (Fig. 2E).

Identification of prognostic ARGs
Through univariate Cox analysis, we identified seven
prognostic ATGs which have significant prognostic
value (P < 0.05) (Fig. 3A). To avoid collinearity, we per-
formed a LASSO logistic regression with tenfold cross-
validation and finally six candidate ATGs were selected
(Fig. 3B and C). Then, multivariable Cox analysis further
showed that APOL1 (HR = 0.86, 95% CI: 0.78–0.95),
ATG16L2 (HR = 0.72, 95% CI: 0.54–0.97), DAPK2 (HR =
0.58, 95% CI: 0.29–1.16) were considered as protective
genes, while ATG9B (HR = 1.41, 95% CI: 1.04–1.92) and
EGFR (HR = 1.24, 95% CI: 1.07–1.45) were risk genes for
melanoma overall survival (Fig. 3D). To validate the dif-
ferential expression of the above five genes, we analyze
their expression in other GEO datasets. The results

Fig. 1 A flowchart of the study
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confirmed that APOL1 have higher expression in
GSE46517 while ATG16L2, DAPK2, ATG9B and EGFR
have lower expression in GSE15605 for primary melanoma
compared with normal skin (Fig. 4A). Interestingly, these
differential expressions were independent of the status of
key melanoma mutations including BRAF, NF1, RAS muta-
tions and triple wild type using GEPIA database (Fig. 4B-F).

Construction and evaluation for ARGs signature model
ARGs signature model was established based on the re-
gression coefficients of gene expression in multivariable
Cox analysis with following formula: ARGs signature =
(− 0.146 × expression of APOL1) + (0.344 × expression of
ATG9B) + (− 0.329 × expression of ATG16L2) + (−
0.546 × expression of DAPK2) + (0.217 × expression of
EGFR). The ARGs signature of each patient was calcu-
lated and all the patients were divided into high-risk

(n = 230) and low-risk (n = 230) groups with the median
risk score as the cutoff (− 1.270) in the TCGA training
cohort. The patients’ survival time, life status, and ARGs
expressions were shown in Fig. 5A. K-M survival analysis
demonstrated that patients in high-risk group had sig-
nificantly poorer overall survival than those in low-risk
group (P = 5.859 × 10− 9) (Fig. 5B). Interestingly, disease
free survival was also much shorter in the high-risk
group (Fig. S1A-B). To verify the robustness of the
ARGs signature model, the same formula and cutoff ob-
tained from TCGA cohort was applied to GEO valid-
ation cohort. In line with our TCGA training cohort,
patients in high-risk group (n = 38) had more death pa-
tients, poorer overall survival, increased risk gene ex-
pression and decreased protective gene expression than
those in low-risk group (n = 41) in GEO cohort (Fig. 5C
and D).

Fig. 2 Screening of differentially expressed autophagy-related genes (ARGs) and enrichment analysis. (A-C) Volcano plot (A), boxplot (B) and
heatmap (C) of differentially expressed ARGs between melanoma and normal samples in TCGA cohort with log2 | fold-change (FC) | > 2 and
adjusted P-value < 0.05. (D-E) GO (D) and KEGG (www.kegg.jp/kegg/kegg1.html) pathway analysis (E)
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Determination of ARGs signature as an independent
prognostic factor
To evaluate whether the prognostic value of the ARGs
signature was independent of clinical parameters, ARGs
signature, age, sex, BMI, Breslow depth, ulceration and
TNM stage were analyzed with univariate Cox analysis

in TCGA cohort. The results demonstrated that ARGs
signature (HR = 2.968, 95% CI: 2.181–4.040), age (HR =
1.023 95% CI: 1.013–1.032), Breslow depth (HR = 1.027,
95% CI: 1.014–1.041), ulceration (HR = 2.084, 95% CI:
1.498–2.899) and TNM stage (HR = 1.390, 95% CI:
1.185–1.630) were significantly associated with overall

Fig. 3 Identification of prognostic ARGs. (A) Univariate Cox analysis of 15 differentially expressed ARGs in TCGA cohort. (B) Selection of the
optimal parameter (λ) in the LASSO model via 10-fold cross-validation in TCGA cohort. (C) LASSO coefficients produced by the regression analysis.
(D) Multivariate Cox analysis of the candidate ARGs obtained from LASSO regression. P < 0.05 was regarded as statistically significant. *P < 0.05,
**P < 0.01, ***P < 0.001
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survival (Fig. 5E). In GSE validation cohort, only age,
stage, sex and ARGs signature were available, in which
ARGs signature (HR = 6.498, 95% CI: 2.571–16.421), age
(HR = 1.031, 95% CI: 1.010–1.051) and TNM stage
(HR = 1.655, 95% CI: 1.119–2.446) were also significantly
associated with overall survival (Fig. 5F). Through multi-
variate Cox regression analysis, we found that the ARGs
signature (HR = 3.174, 95% CI = 1.874–5.376), TNM
stage (HR = 1.790, 95% CI = 1.192–2.690) and age (HR =
1.023, 95% CI = 1.004–1.043, P = 0.020) were independ-
ent prognostic predictors in TCGA cohort (Fig. 6A).
These results were consistent in GEO cohort (Fig. 6B).
To compare the predictive ability of our ARGs signature

model, we plotted ROC curve. The ARGs signature
model showed satisfactory predictive ability for 3- and
5-year overall survival rates, with AUC value of 0.715
and 0.731 respectively in TCGA cohort (Fig. 6C). In
GEO cohort, the ARGs signature model also demon-
strated a satisfactory predictive ability for the 3- and 5-
year overall survival rates, with AUC value of 0.655 and
0.730 respectively (Fig. 6D).
To further explore the underlying mechanism of the

prognostic ARGs signature, GSEA was conducted and
suggested that 36 pathways in KEGG analysis were iden-
tified to be associated with low-risk group, mainly in-
cluding apoptosis and immune activation-related

Fig. 4 Verification of the differential expressions of prognostic ARGs. (A) The expression of APOL1 in GSE46517, and the expression of ATG16L2,
DAPK2, ATG9B, and EGFR in GSE15605. N (T) = 31 and N (N) = 7 in GSE46517; N (T) = 46 and N (N) = 16 in GSE15605. *, P < 0.05; ***, P < 0.001. (B-F)
The expression of APOL1 (B), ATG16L2 (C), DAPK2 (D), ATG9B (E) and EGFR (F) in three mutational signatures (BRAF, NF1 and RAS) and wild types
(WT) of melanoma. The number of sorts: N (T) = 147 and N (N) = 558 in BRAF mutation; N (T) = 27 and N (N) = 558 in NF1 mutation; N (T) = 91and
N (N) = 558 in RAS mutation; N (T) = 47and N (N) = 558 in WT. T = tumor, N = normal skin

Deng et al. BMC Cancer         (2021) 21:1258 Page 6 of 12



pathways (Fig. S2A-C). Moreover, 11 pathways in hall-
mark gene sets were enriched in low-risk group includ-
ing apoptosis, interferon alpha response, and interferon
gamma response (Fig. S2D-F). The detailed results were
shown in Table S2.

Development and validation of a prognostic nomogram
A prognostic nomogram based on the independent
prognostic predictors including ARGs signature, age and
TNM stage in TCGA training cohort were constructed
to predict the overall survival of melanoma patients at 3
and 5 years (Fig. 7A). The C-index of the nomogram was
0.717 for predicting melanoma overall survival. The
nomogram showed a better predictive ability for the 3-

and 5-year overall survival rates with AUC values of
0.790 and 0.760 than ARGs signature (0.715 and 0.731),
TNM stage system (0.672 and 0.592), or age (0.607 and
0.613) alone (Fig. 7B and C). Moreover, calibration plots
showed excellent agreement between the prediction of
our nomogram and actual prognosis for 3- and 5-year
overall survival rates (Fig. 7D and E). Interestingly, the
nomogram has more favorable predictive ability for the
5-year disease-free survival rates (Fig. S3A), with the C-
index of 0.73 and AUC of 0.777. Besides, prediction and
observation curve were consistent, and more clinic net
benefit is added when using our nomogram (Fig. S3B
and C). In addition, in GEO validation cohort, the C-
index for the nomogram was 0.738. For the 5-year

Fig. 5 Construction and evaluation for ARGs signature model. (A-D) The risk score distribution, survival status and gene expression profiles in
TCGA cohort (A) and GEO validation cohort (C). K-M survival curve of the ARGs signature for patients’ overall survival in the TCGA cohort (B) and
GEO validation cohort (D). (E-F) Univariate Cox analysis of ARGs signature and clinical parameters in TCGA cohort (E) and GEO validation
cohort (F)
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overall survival rates, the ROC curve demonstrated that
the nomogram (AUC = 0.844) has more favorable pre-
dictive ability than other models (Fig. 7F); moreover, the
calibration plot showed excellent agreement between
prediction and observation curve (Fig. 7G). Furthermore,
the DCA, for clinical usefulness evaluation, showed that
the nomogram achieved the better net benefit than trad-
itional TNM stage system in predicting the survival for
melanoma patients for 3- and 5-year overall survival
rates in TCGA and GEO validation cohort (Fig. 7H-J).

Discussion
Autophagy is a highly-conserved dynamic process that
deliver cellular proteins and damaged organelles to the
lysosome for degradation. Recent studies showed that
ARGs could regulate or be regulated by multiple signal-
ing pathways such as PI3K/AKT/mTOR, P53/DRAM,
RAS signaling pathway, which are essential for melan-
oma development and progression [23–27]. Therefore,
ARGs are promising prognostic predictors in melanoma.
In our study, we utilized high-throughput expression
profiling of autophagy related genes to generate an
ARGs signature model and a novel prognostic nomo-
gram, which could guide individualized treatment for
melanoma patients in high-risk group at the early stage.
In our study, we first screened out 15 differentially

expressed ARGs based on TCGA and GETx databases
and then confirmed five prognostic ARGs through

univariate, lasso and multivariate Cox analysis. ApoL1, a
BH3-only protein, is the major apoprotein of high-
density lipoprotein and has never been studied in melan-
oma, but APOL1 is overexpressed in a variety of cancer
cell types to induce autophagy and autophagy-associated
cell death [28–30]. Liu et al. reported that APOL1 might
be clinically relevant biomarkers for the diagnosis of
pancreatic cancer [31]. Moreover, a recent study demon-
strated that APOL1 could predict the prognosis of pan-
creatic cancer [32]. ATG16L2, a ubiquitously expressed
homologue of ATG16L1, plays pivotal roles in autoph-
agy pathway tumorigenesis by interacting with ATG5
[33]. ATG16L2 have been found to be prognostic
marker for clear-cell renal cell carcinoma and stages I-
III colon cancer [34, 35]. DAPK2 is a Ca2+-regulated
serine/threonine kinase and phosphorylates mTORC1
through direct interaction, and promotes autophagy in-
duction through suppressing mTOR activity [36]. In line
with our finding, Li et al. reported that DAPK2 is a pro-
tective gene for melanoma prognosis [37]. As for
ATG9B, which is located on chromosome 7 in humans,
have been reported to be involved in the regulation of
autophagy [38]. Studies have reported that ATG9B was
overexpressed in clear-cell renal cell carcinoma but
down-regulated in hepatocellular carcinoma and was as-
sociated with the cancer prognosis [35, 39]. Our study
showed that increasing ATG9B predicted poor progno-
sis. EGFR is well studied in melanoma and has been

Fig. 6 Prognostic performance of ARGs signature. (A-B) Multivariate Cox analysis of ARGs signature and clinical parameters in TCGA cohort (A)
and GEO validation cohort (B). (C-D) ROC curve for predicting overall survival of 3-year (red) and 5-year (purple) in the TCGA cohort (C) and GEO
validation cohort (D)
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Fig. 7 Development and validation of a prognostic nomogram based on ARGs signature. (A) Development the nomogram based on ARGs
signature and independent clinical parameters. (B-G) The ROC curves for nomogram, age, stage and ARGs signature for predicting the overall
survival at 3-year (B) and 5-year (C) in the TCGA cohort and 5-year (F) in the GEO validation cohort. The calibration curves of the nomogram for
predicting overall survival at 3-year (D) and 5-year (E) in the TCGA cohort and 5-year in the GEO validation cohort (G). (H-J) Decision curve
analysis of the nomogram and TNM stage system at 3-year (H) and 5-year (I) in the TCGA cohort and 5-year in the GEO validation cohort (J)
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found to activate autophagy and melanoma cell mobility
[40, 41]. Another interesting finding is that HER3, a
member of the EGFR family, is able to reactivate RAS-
ERK signaling, allowing tumor cells to escape from the
inhibitory effects of BRAF inhibitors [42]. That suggests
that combination of EGFR and BRAF inhibitor shows
synergistic effects in BRAF-mutant human melanoma in
preclinical model [43]. All these studies supported our
finding that EGFR is a risk gene for melanoma progno-
sis. In summary, these five genes may serve as the prog-
nostic biomarkers and targets for melanoma therapy
through modulating autophagy.
We next constructed and validated a novel AGRs sig-

nature model based on the five genes to predict the
prognosis of melanoma patients. Compared with the
TNM stage system, ARGs signature model showed satis-
factory predictive ability of the 3- and 5-year overall sur-
vival rates, with higher AUC value. Patients with higher
risk score had significantly poorer overall survival than
those with lower risk score in both TCGA and GEO co-
hort. Moreover, the prognostic value of the ARGs signa-
ture was independent of clinical parameters through
univariate and multivariate Cox analysis. That means
ARGs signature is important for the prediction of mel-
anoma prognosis.
Nowadays, immunotherapy has become a first-line

therapy for metastatic melanoma patients. To further ex-
plore the potential significance of ARGs in immunother-
apy, we analyzed the mRNA data and outcomes of 27
melanoma patients who received anti-PD-1 therapy in
GSE78220 dataset. Using the same formula and cutoff, 9
and 18 patients were divided into high and low risk
group. We found that only 2 (22.2%) high-risk patients
responded to the immunotherapy, while 12 (66.7%) low-
risk patients responded, suggesting that low-risk patients
were more sensitive to the immunotherapy than the
high-risk group (Fig. S4). Though the difference is statis-
tically significant, further validation is required to draw
convincing conclusions.
Lastly, we developed a prognostic nomogram based on

the clinical parameters and ARGs signature. Nomogram
has been widely used in oncology and medicine, which is
a steady and credible tool through combining independ-
ent risk factors in a certain disease for their intuitive
presentation [44–48]. Based on individual patients’
TNM stage, age and ARGs signature, our nomogram
generates a numerical possibility for the overall survival.
More importantly, this is the first nomogram to incorp-
orate ARGs signature for the prediction of melanoma
prognosis and has a better ability to predict the 3- and
5-year overall survival rates with higher AUC values
than ARGs signature, TNM stage system or age alone.
DCA is a well-established tool to evaluate the clinical
value of models across a range of threshold probabilities

to facilitate decisions about test selection and use [21,
22]. DCA also showed that our nomogram added more
net benefit than traditional TNM stage system in melan-
oma prognosis prediction for 3- and 5-year overall sur-
vival rates. These findings suggested that our nomogram
had a better predictive function in melanoma prognosis
than TNM stage system.
Our nomogram is easy to be applied in clinic practice.

Using our nomogram, clinician could give an accurate
number for patient’s survival probability. For example, if
the age, ARGs signature and TNM stage of a melanoma
patient were 60 years old, − 2.0 and stage III, respect-
ively, the corresponding points for age, ARGs signature
and TNM stage were 32, 45 and 25 respectively. The
total points value for this patient was 102. The 3-year
and 5-year survival probability is about 36 and 20%, sug-
gesting the poor prognosis in the patient. More precise
individual treatment strategies should be taken for the
patient including more aggressive treatment and closer
follow-up.
Admittedly, our study had several limitations. First,

the clinical characteristics from TCGA and GEO data-
sets were limited. Some information such as therapy and
tumor pathological feature was not involved in our
study. Second, an external validation based on prospect-
ive, multicenter, large-scale clinical trials was necessary
to confirm the prediction ability of the nomogram. Fi-
nally, we used differentially expressed ARGs to construct
the ARGs signature model and nomogram, which could
leave out some ARGs with prognostic value but without
difference in their expression between melanoma and
normal skin.

Conclusions
We detected and validated an ARGs signature model
which could independently predict melanoma prognosis.
Furthermore, we established and validated a novel prog-
nostic nomogram with more accuracy than traditional
TNM staging system for melanoma patients through
combining both ARGs signature and clinical parameters.
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