Skip to main content
. 2021 Nov 22;12:583. doi: 10.1186/s13287-021-02650-w

Fig. 5.

Fig. 5

Controlled release of small molecules, growth factors, and proteins. Control release systems can be considered an effective way to modulate stem cell behavior. a The utilization of NO-releasing hydrogels to support stem cell delivery through the control of NO generation can upregulate the expression of endothelial cell-like phenotypes, such as VEGFA, bFGF, ANG1, ANG2, and then significantly facilitate neovascularization in mouse with ischemic hindlimb [109]; b Injectable GMs were employed to deliver growth factors and as vehicles of stem cells, which can promote cell differentiation into nucleus pulposus (NP)-like gene markers of COL2, ACAN, Krt19, CD24, determining a promising approach for the in vivo treatment of rat degenerative disc disease [111]; c The PLGA and SL deliver system were designed to control the release of BMP-2, and then applied the platform to build a suitable microenvironment for stem cell culture. In this culture system, stem cell matrix mineralization abilities were detected, and osteogenic cell-related gene expression of COL-1, OCN, OPN, and RUNX2 was demonstrated, indicating the potential of the engineered platform for bone tissue regeneration [110]