Table 1.
The evaluation results of the KNN-based classification models.
Method | Training rate | Accuracy | Sensitivity | Specificity | Precision | Prevalence | Error Rate | False Pos. |
---|---|---|---|---|---|---|---|---|
LBP | 50% | 0.9830 | 0.9720 | 1.0000 | 1.0000 | 0.596 | 0.017 | 0.0000 |
60% | 0.9850 | 0.9750 | 1.0000 | 1.0000 | 0.594 | 0.015 | 0.0000 | |
70% | 0.9880 | 0.9800 | 1.0000 | 1.0000 | 0.595 | 0.012 | 0.0000 | |
80% | 0.9870 | 0.9780 | 1.0000 | 1.0000 | 0.597 | 0.013 | 0.0000 | |
90% | 0.9900 | 0.9830 | 1.0000 | 1.0000 | 0.585 | 0.01 | 0.0000 | |
HOG | 50% | 0.9350 | 0.9993 | 0.8677 | 0.8879 | 0.5129 | 0.065 | 0.1323 |
60% | 0.9380 | 0.9996 | 0.8724 | 0.8932 | 0.5163 | 0.062 | 0.1276 | |
70% | 0.9447 | 0.9992 | 0.8850 | 0.9053 | 0.5239 | 0.0553 | 0.1150 | |
80% | 0.9454 | 0.9995 | 0.8844 | 0.9066 | 0.5293 | 0.0547 | 0.1156 | |
90% | 0.9498 | 0.9998 | 0.8956 | 0.9122 | 0.5200 | 0.0502 | 0.1044 | |
Haralick | 50% | 0.9522 | 0.9378 | 0.9748 | 0.9825 | 0.6053 | 0.0478 | 0.0252 |
60% | 0.9539 | 0.9392 | 0.9769 | 0.9841 | 0.6067 | 0.0462 | 0.0231 | |
70% | 0.9530 | 0.9364 | 0.9792 | 0.9858 | 0.6100 | 0.047 | 0.0208 | |
80% | 0.9577 | 0.9417 | 0.9828 | 0.9880 | 0.6060 | 0.0423 | 0.0172 | |
90% | 0.9588 | 0.9443 | 0.9806 | 0.9871 | 0.6011 | 0.0412 | 0.0194 |