Skip to main content
letter
. 2021 Nov 22;31:105045. doi: 10.1016/j.rinp.2021.105045

Table 1.

The evaluation results of the KNN-based classification models.

Method Training rate Accuracy Sensitivity Specificity Precision Prevalence Error Rate False Pos.
LBP 50% 0.9830 0.9720 1.0000 1.0000 0.596 0.017 0.0000
60% 0.9850 0.9750 1.0000 1.0000 0.594 0.015 0.0000
70% 0.9880 0.9800 1.0000 1.0000 0.595 0.012 0.0000
80% 0.9870 0.9780 1.0000 1.0000 0.597 0.013 0.0000
90% 0.9900 0.9830 1.0000 1.0000 0.585 0.01 0.0000
HOG 50% 0.9350 0.9993 0.8677 0.8879 0.5129 0.065 0.1323
60% 0.9380 0.9996 0.8724 0.8932 0.5163 0.062 0.1276
70% 0.9447 0.9992 0.8850 0.9053 0.5239 0.0553 0.1150
80% 0.9454 0.9995 0.8844 0.9066 0.5293 0.0547 0.1156
90% 0.9498 0.9998 0.8956 0.9122 0.5200 0.0502 0.1044
Haralick 50% 0.9522 0.9378 0.9748 0.9825 0.6053 0.0478 0.0252
60% 0.9539 0.9392 0.9769 0.9841 0.6067 0.0462 0.0231
70% 0.9530 0.9364 0.9792 0.9858 0.6100 0.047 0.0208
80% 0.9577 0.9417 0.9828 0.9880 0.6060 0.0423 0.0172
90% 0.9588 0.9443 0.9806 0.9871 0.6011 0.0412 0.0194