Skip to main content
letter
. 2021 Nov 22;31:105045. doi: 10.1016/j.rinp.2021.105045

Table 2.

The evaluation results of the SVM-based classification models

Method Training rate Accuracy Sensitivity Specificity Precision Prevalence Error Rate False Pos.
LBP 50% 0.9350 0.9993 0.8677 0.8879 0.5129 0.0650 0.1323
60% 0.9380 0.9996 0.8724 0.8932 0.5163 0.0620 0.1276
70% 0.9447 0.9992 0.8850 0.9053 0.5239 0.0553 0.1150
80% 0.9454 0.9995 0.8844 0.9066 0.5293 0.0547 0.1156
90% 0.9498 0.9998 0.8956 0.9122 0.5200 0.0502 0.1044
HOG 50% 0.8513 0.9536 0.8086 0.8189 0.5176 0.1487 0.1914
60% 0.8857 0.9803 0.8204 0.8330 0.4979 0.1143 0.1796
70% 0.9011 0.9968 0.8163 0.8342 0.4863 0.0989 0.1837
80% 0.9074 0.9999 0.8200 0.8402 0.4881 0.0926 0.1800
90% 0.9147 0.9996 0.8324 0.8529 0.4935 0.0853 0.1676
Haralick 50% 0.9364 0.9995 0.8684 0.8914 0.5205 0.0636 0.1316
60% 0.9436 0.9995 0.8819 0.9033 0.5250 0.0565 0.1181
70% 0.9515 0.9994 0.8978 0.9167 0.5309 0.0485 0.1022
80% 0.9538 0.9998 0.9024 0.9199 0.5291 0.0463 0.0976
90% 0.9586 0.9997 0.9112 0.9288 0.5382 0.0414 0.0888