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Abstract

Most decisions are associated with uncertainty. Value of information (VOI) analysis quantifies the

opportunity loss associated with choosing a suboptimal intervention based on current imperfect

information. VOI can inform the value of collecting additional information, resource allocation,

research prioritization, and future research designs. However, in practice, VOI remains underused

due to many conceptual and computational challenges associated with its application. Expected

value of sample information (EVSI) is rooted in Bayesian statistical decision theory and measures

the value of information from a finite sample. The past few years have witnessed a dramatic

growth in computationally efficient methods to calculate EVSI, including metamodeling.

However, little research has been done to simplify the experimental data collection step inherent to

all EVSI computations, especially for correlated model parameters. This article proposes a general

Gaussian approximation (GA) of the traditional Bayesian updating approach based on the original

work by Raiffa and Schlaifer to compute EVSI. The proposed approach uses a single probabilistic

sensitivity analysis (PSA) data set and involves 2 steps: 1) a linear metamodel step to compute the

EVSI on the preposterior distributions and 2) a GA step to compute the preposterior distribution of

the parameters of interest. The proposed approach is efficient and can be applied for a wide range

of data collection designs involving multiple non-Gaussian parameters and unbalanced study

designs. Our approach is particularly useful when the parameters of an economic evaluation are

correlated or interact.
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Economic evaluation is a framework to quantify the expected costs and benefits across

several strategies and determine the overall optimal strategy by simplifying real-life

complexity. However, recommendations from these analyses are rarely definitive due to

uncertain input parameters that may translate to “suboptimal” recommendations. Choosing

the optimal strategy at the time of decision making can incur a large opportunity cost

because the overall optimal strategy might be suboptimal in certain realizations of the input

parameter values. Value of information analysis (VOI) quantifies this opportunity cost and

sets the maximum limit on how much new information is potentially worth. For example,

expected value of perfect information (EVPI) measures the value of eliminating uncertainty

from all model parameters while expected value of partial perfect information (EVPPI)

measures the EVPI for a subset of parameters of interest. Eliminating uncertainty can only

be achieved with an infinitely large sample, which is not feasible in practice. Thus, expected

value of sample information (EVSI) is generally more informative than EVPPI because it

measures the value of reducing uncertainty from a finite sample of size n.

EVSI is defined as the value of information from a finite sample (n) for 1 or more

parameters in a decision-analytic model.1 EVSI is rooted in Bayesian statistical decision

theory and measures the value of information by generating potential new data before any

actual data collection is conducted.2–5

Thus, EVSI can be of important practical application in research prioritization, allocation of

scarce resources, and informing the type and size of the study design for future data

collection efforts.1,6–8 In practice, however, EVSI remains underused due to many

computational and conceptual challenges associated with its practical implementation.9

EVSI is currently an area of active methodological research. In the past 2 decades, several

new approaches have been proposed to help researchers implement EVSI. For example,

Brennan and others10 proposed a nested 2-level Monte-Carlo simulation (2MCS) to

numerically compute EVSI as an approximation to the double integrals involved in the EVSI

equation. Although their approach applies to many situations, in practice it is often

computationally expensive. In addition, it may be challenging to implement when there exist

correlations between the parameters of interest (θI) and the complementary set of the

parameters (θC), where θ = {θI, θC}. Brennan and Kharroubi5,11 have proposed a Bayesian

Laplace approximation that replaces both the Bayesian updating and the inner Monte Carlo

sampling to compute the posterior expectation of the parameters of interest. However, this

approach may still be computationally expensive and generally assumes that the

observations are independent and identically distributed (iid), where the number of study

participants represents the sample size used to estimate the mean and standard error of the

parameters. Ades and others12 have developed an analytic approach to calculate EVSI that is

generally computationally efficient. However, this technique is limited to models with

certain structural forms and certain independence assumptions on the parameters are made.

More recent developments have used a metamodeling approach to simplify the inner

expectation. For example, Jalal and others13 adopted the unit normal integral function

(UNLI) in addition to linear regression metamodeling to calculate EVSI. Their technique

assumes that the parameters of interest have a normal distribution, and it can only be used

Jalal and Alarid-Escudero Page 2

Med Decis Making. Author manuscript; available in PMC 2021 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for a single parameter at a time if there are multiple strategies. Strong and others14 have

proposed a generalized additive models (GAM) metamodeling approach to approximate the

inner expectation by defining a summary statistic. Furthermore, Menzies15 adopts an

efficient algorithm that uses importance sampling in addition to a metamodel to simplify

EVSI computations. This approach requires the user to define 2 functions: a function for

creating data sets from the prior and another function for computing the likelihood given the

data sets. Thus, significant advances have been made in increasing the computational

efficiency of EVSI.16 However, little research has been done to overcome a second challenge

of EVSI, which involves Bayesian updating for study designs that involve multiple

correlated parameters or when a study design is unbalanced involving several parameters

informed by different sample sizes.

In this study, we propose a simplification of the data collection process via a Gaussian

approximation (GA) of the traditional Bayesian updating process. This approximation

generalizes Raiffa and Schlaifer’s original work3,4,17 for a normal prior and normal data

likelihood to a wide range of univariate and multivariate non-Gaussian distributions. The GA

approach only requires a data set of prior values and their associated prior effective sample

size n0. In addition, the GA allows complex correlation structures among the model

parameters θ. Similar to the previous approaches,13–15 our approach uses a metamodel on a

single probabilistic sensitivity analysis (PSA) data set, which is routinely obtained in

economic evaluations.18,19

Methods

EVSI

EVSI is typically expressed as10,12

EVSIθI
= 𝔼X max

d
𝔼θ[B(d, θ) ∣ X] − max

d
𝔼θ[B(d, θ)], (1)

where θ are the parameters of the decision model and consist of the parameters of interest θI

and the complementary parameters θC, X are new potential data, and B(d, θ) is the net

benefit from strategy d. Thus, EVSI is the difference between the expected maximum benefit

given new potential data X and the maximum benefit with current information. Alternatively,

EVSI can be expressed as a function of the opportunity loss from choosing a suboptimal

decision rather than difference between 2 benefits, such that

EVSIθI
= 𝔼Xmax

d
𝔼θ[L(d, θ) ∣ X], (2)

where L(d, θ) = B(d, θ) – B(d*, θ) is the opportunity loss from choosing the optimal

decision d* among all possible decisions D, given a set of parameter values θ. (Appendix A

shows the steps of deriving equation (2) from equation (1).)

The inner expectation 𝔼θ[L(d, θ) X] computes the opportunity loss from choosing d instead of

d* given a set of parameter values θ and a potential candidate for X . Here, we are interested

in avoiding the maximum loss from any strategy d, and therefore we take the
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maxd𝔼θ[L(d, θ) X]. Since we do not know what the new data X may look like a priori, we take

the expectation over all possible candidates of X and compute 𝔼Xmaxd𝔼θ[L(d, θ) X]. Thus,

EVSI sets our upper limit on how much we should be willing to pay to avoid the expected

maximum opportunity loss over all strategies.

The 2 nested expectations in equations (1) and (2) could be approximated with 2 nested

Monte Carlo loops,10 which are often computationally expensive even for relatively simple

models. We simplify equation (2) using 2 approximations: 1) we approximate the

opportunity losses L as a linear relation of the parameters of interest (or a transformation of

these parameters), and 2) we propose a Gaussian approximation approach to further simplify

the Bayesian updating process to compute θ|X. Previous studies have described the first

approximation.13,14 The main contribution of this article is related to simplifying some of

the computational and conceptual burdens of conducting the Bayesian updating and the data

generation process using a Gaussian approximation approach.

Linear Metamodel Approximation

We propose a linear metamodeling approach to simplify the inner expectation in equation

(2). The linear metamodel (LM) is a second model involving regressing the model output,

such as the opportunity loss L, on the input parameters (or a transformation of these

parameters).20 LM has been used on PSA data sets to reveal the characteristics of a model21

and to simplify VOI computations.13,14,22 The LM can range from a simple linear regression

that describes a linear relation between the model inputs and outputs to spline regressions

that are more flexible and can describe a linear relation between transformations of a set of

basis functions of θ and L.23

In VOI analysis, we are generally interested in the opportunity loss L(d, θ) explained by θI;

therefore, we can define a linear metamodel as

L(d, θ) = β0 + β1θI + e, (3)

where β0 is an intercept, β1 is a regression coefficient for θI, and e is a residual term. This

residual term captures the complementary parameters, θC, and the nonlinearity in the model.

In addition, e also captures Monte Carlo noise in stochastic models, such as microsimulation

models. Thus, the expected loss is estimated using the LM given θI by

L(d, θ) θI = β0 + β1θI, (4)

where β0 and β1 can be estimated by regressing L on θI in equation (3) via ordinary least

squares (OLS) using a PSA data set. Equation (4) simplifies the inner expectation in EVPPI

because it computes the expected opportunity loss while averaging over θC. Various versions

of this equation have been used as a step in the calculation of EVPPI.13,22 This simple

equation is appealing because the regression coefficients can be easily estimated in any

standard statistical software such as using the function lm in R by defining lm1 <– lm (L

~ theta_I). Then, it is usually straightforward to compute the conditional loss using the

predict function, such that L_hat <– predict(lm1).
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In EVSI, the inner expectation measures the opportunity loss given the updated distribution

of θ after observing a potential data set X(i) from all possible candidates. This inner

expectation then needs to be reevaluated for all the possible X(i) candidates that are sampled

from the outer expectation. This nested expectation structure renders EVSI computationally

expensive via Monte Carlo simulation because it requires the model to be reevaluated many

times inside these nested expectations to compute L(d, θ) for each sample from the posterior

distribution of θI|X(i) and the prior distribution of θC.

The LM is a linear approximation of the original simulation model. This LM defines a linear

relation between L(d, θ) and θ. That is, the structure of the LM is independent on the values

of θ once the LM is defined for a particular model. Thus, we can plug in the posterior mean

of θI, 𝔼θ θI X(i)  and use the LM to compute the conditional loss given each data set X(i). The

LM simplifies the nested computation in EVSI because the inner expectation can be

simplified to a linear combination of the posterior expectation of θI. Specifically, the inner

expectation of EVSI given X(i) in equation (2), 𝔼θ L(d, θ) ∣ X(i) , can be estimated as a linear

function of the posterior mean of θI, 𝔼θ θI X(i) , such that

Ld
i = β0 + β1ϕ(i), (5)

where we denote Ld
(i) = L(d, θ) X(i), and ϕ(i) = 𝔼θ θI X(i) .

Notice that if θI and θC are correlated a priori, then data collection on θI will likely inform

θC as well. Fortunately, β1 captures this correlation, and it allows the opportunity loss to also

reflect the impact of the new data X on θC.

Thus, we only need β0, β1, and ϕ to compute Ld for each strategy. In R, we can achieve this

by using the predict function again using ϕ instead, such that L_tilde <– predict

(lm1, newdata = phi). Thus, we can approximate EVSI using

EVSIθI
= 𝔼Xmax

d
Ld , (6)

where all the variables have been previously defined.

So far, we have assumed that we know ϕ, θI is a single parameter, and the relation between L
and θI is linear. In the next section, we show how to approximate ϕ using our Gaussian

approximation approach, and in the following sections, we relax the other assumptions.

Gaussian Approximation of ϕ

The posterior mean ϕ is a random variable because X is random. The distribution of ϕ is

often referred to as the “preposterior” distribution because it defines the distribution of the

posterior mean prior to actual data collection. In this section, we first show that if θI has a

Gaussian distribution and the data likelihood of X|θI is also Gaussian, then we can estimate

ϕ directly from θI by assuming that the prior is the only source of randomness in ϕ. Later,
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we apply this relation to non-Gaussian prior-likelihood pairs and compare the approximation

numerically to traditional Bayesian updating for these non-Gaussian cases.

Let’s assume that our prior knowledge of θI is based on a study of size n0, such that

θI ∼ N μ0, σ2

n0
, (7)

where μ0 and σ2 are the population mean and variance of θI, respectively.

We are interested in generating a “new” sample mean from n new participants given the

distribution of θI. This new mean X also follows a Gaussian distribution such that

X θI ∼ N θI,
σ2

n . (8)

Because the data likelihood and the prior are conjugate, we can express the posterior

distribution as

θI X ∼ N
n0μ0 + nX

n0 + n , σ2

n + n0
. (9)

The mean of this distribution is ϕ:

ϕ =
n0μ0 + nX

n0 + n . (10)

Notice that ϕ is a function of the marginalized X, and as such it is also a random variable

that has the same mean as θI, that is,

𝔼X[ϕ] = 𝔼X 𝔼θI
θI ∣ X

𝔼X[ϕ] = 𝔼θI
θI

𝔼X[ϕ] = μ0 .

(11)

It is important here to distinguish between the posterior mean, which is a random variable

denoted by ϕ, from the mean of ϕ with respect to X, which is a single value equal to μ0. The

variance of ϕ can be defined from both equation (10) and the variance of the marginalized X,

which is equal to the sum of the prior variance and the variance of the data likelihood,24

such that Var(X) = σ2/n + σ2/n0. Therefore, the variance of ϕ is expressed as
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VarX(ϕ) = n
n0 + n

2 σ2

n + σ2

n0

VarX(ϕ) = n
n0 + n

σ2

n0

VarX(ϕ) = vVar θI .

(12)

The term v is defined as the variance fraction n/(n0 + n), indicating that the variance of the

preposterior distribution is always a fraction of the prior variance as it has been shown

previously.3,12 The VarX(ϕ) tends to zero as n → 0 because with a small sample, we know

that our posterior mean will be very similar to the prior mean. Conversely, VarX(ϕ) →
Var(θI) as n → ∞ because the prior is the source of all information; thus, as n increases, our

uncertainty regarding ϕ will mimic prior uncertainty.12 In addition, the expectation of ϕ
equals μ0 regardless of n. Figure 1 illustrates the relation between the prior and the

preposterior distributions for various n in the Gaussian-Gaussian prior-likelihood case.

Equations (11) and (12) define the mean and variance of ϕ, respectively. From equation (10),

we can see that ϕ is normally distributed because X is normally distributed and the rest of

the terms are constants. As a result, we can express ϕ in terms of its mean, variance, and a

standard normal distribution Z ~ N(0, 1), such that

ϕ = μ0 + Z vσ
n0

. (13)

Adding and subtracting vμ0 results in

ϕ = μ0 + Z vσ
n0

+ vμ0 − vμ0, (14)

and rearranging the terms produces

ϕ = v μ0 + Z σ
n0

+ (1 − v)μ0 . (15)

Since X is not observed, and θI is the source of all information, we attribute all randomness

in ϕ to randomness in the prior of θI, which allows us to replace μ0 + Zσ / n0 with θI and

obtain

ϕ = vθI + (1 − v)μ0 . (16)

Again, if the proposed data collection sample relative to n0 is small, v 0 and the

estimated posterior mean will be very similar to the prior mean (i.e., ϕ → μ0). ϕ μ0). But
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if the proposed sample size is relatively large, v 1 the posterior mean converges to the

prior (i.e., ϕ → θI).

Equation (16) can be extended to the multivariate Gaussian prior Gaussian likelihood

because it can be applied to each component of the multivariate Gaussian distribution. The

resulting correlation structure of these preposterior components will then be the same as the

correlation structure among the prior components. This equation plays a key role in our

approach to compute EVSI because it simplifies Bayesian updating by computing the

posterior mean as a simple weighted average of the prior and the prior mean. This relation

allows us to apply equation (16) in other non-Gaussian prior-likelihood pairs. Later, we test

the performance of this approximation in a variety of non-Gaussian prior-likelihood

distribution pairs where the priors and the data likelihoods are conjugate or nonconjugate

and univariate or multivariate.

Using equation (16), a researcher only needs a set of K PSA simulations to compute ϕ. Thus,

given an observation θI
(i), an estimate θI of μ0 and v = n/(n + n0), we can estimate ϕ(i) such

that

ϕ(i) = vθI
(i) + (1 − v)θI, (17)

for all i = 1, …, K, where θI is the prior mean and can be estimated from the same PSA

sample θI = 1
K i = 1

K θI
(i).

EVSI with Gaussian Approximation and Linear Metamodeling

After obtaining ϕ and estimating β0 and β1, we can compute Ld
i  from equation (5) and

approximate EVSI by

EVSIθI
= 1

K i = 1

K
max

d
Ld

(i) . (18)

In the previous equation, Ld is an approximation of the loss as a linear function of a single

parameter. In the next couple sections, we extend the definition of Ld to cases with more

than one parameter and where the relation between the parameters and the loss function can

be expressed with more flexible relations, such as splines.

Splines as Linear Metamodels

If the relation between L and θI is not linear, it is still possible to use a linear metamodel by

defining a linear relation between L and a transformation of θI, namely, f(θI). A common

choice for f(θI) is a spline function, such that f(θI) = α0 + bα1, f θI = α0 + bα1, where b

represents a set of basis functions of θI that form the spline, α0 is the new intercept, and α1

is a vector of regression coefficients of the set of basis functions, b.23

We now can reexpress equation (3) in terms of splines as
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L(d, θ) = α0 + bα1 + u, (19)

where u is the new residual term. Similar to the lm function above, we can use the gam

function in the R package mgcv to estimate the coefficients α0 and α1 by transforming θI

into a set of basis functions, such that lm2 <– gam(L ~ s(theta_I)).23 Then, we can

use the fitted values using lm2$fitted to obtain the loss L conditional on θI. We refer to

this conditional loss as L.

Using equation (19), we can also estimate the loss conditional on ϕ, referred to as L.

Because equations (16) and (19) are both linear, we can apply the variance reduction to the

basis functions directly by using the predict.ga function provided in the appendix to

estimate L , such that L_tilde <– predict.ga(lm2, n, n0). Finally, we can use

equation (18) to compute EVSI.

Notice that by letting n → ∞, Ld
(i) Ld

i , transforming equation (18) to the equation of

EVPPI as a function of the loss conditional on the prior θI

EVPPIθI
= 1

K i = 1

K
max

d
Ld

(i) . (20)

In Box 1 and Appendix B, we provide a step-by-step summary and examples of R code to

compute EVPPI and EVSI with Gaussian approximation and spline linear metamodeling.

EVSI for Multiple Parameters

Here we consider the case where θI = θI1, θI2 , and the loss function can be expressed as

L(d, θ) = δ0 + f 1 θI1 + f 2 θI2 + f 12 θI1θI2 + ϵ, (21)

where δ0 is the new intercept; f1, f2, and f12 represent the spline functions for θI1, θI2, and

their interaction, respectively; and ϵ is the new residual term. Equation (21) is often referred

to as a GAM and can be estimated using mgcv.23

This setup also allows one to compute EVSI for studies that collect information on multiple

parameters with different n0. In addition, this setup can be applied to unbalanced data

collection study designs that propose to collect information on more than 1 parameter from a

different number of participants. These data collection designs can be implemented by

computing different v for various parameters of interest (e.g., θI1 and θI2). Appendix B

provides further R code implementations for the Gaussian approximation when there are

multiple parameters and unbalanced data collection designs where n and n0 vary by the

parameter of interest.

Estimating n 0

The effective sample size n0 denotes the “amount” of information in the prior.25 In some

instances, n0 can be directly inferred from the prior distribution of the parameters and the
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data likelihood or elicited from experts’ judgments. Table 1 includes examples of direct

assessment of n0 from 3 different prior distributions. For example, n0 for a beta prior p ~

beta(α, β) and binomial data likelihood x|p ~ binomial(p, n) can be computed as n0 = α + β,

where n0 is simply the sum of the number of successes and failures. It is important to

emphasize that the data likelihood also determines n0. For example, in Table 1, we illustrate

the case of a gamma prior and exponential data likelihood, in which n0 = a, where a
represents the shape parameter of the gamma distribution. However, if the data likelihood

has a Poisson distribution to count the number of events, n0 = 1/b, where b represents the

scale parameter of the gamma distribution. We refer the reader to Morita and others25 for a

more detailed discussion on computing n0.

Whenever n0 is not readily available, we propose 2 alternative approaches to estimate it,

both using the Gaussian approximation. The first approach involves computing a summary

statistic, and the second approach involves estimating n0 indirectly from a Bayesian data

collection experiment. The second approach can be generalized to a wide variety of

situations, including cases in which the prior and data likelihoods are not conjugate.

Computing n0 using a summary statistic S.—This Gaussian approximation approach

to compute n0 requires a summary statistic S to describe the data collection step. In the

Gaussian prior-Gaussian likelihood case, the marginalized X represents the summary

statistic, that is, S = X. Therefore, Var(S) = σ2/n + σ2/n0. Since, we know Var(θI) = σ2/n0,

we can solve for n0

n0 = n Var(S)
Var θI

− 1 , (22)

where Var(S) and Var(θI) are the variances of the summary statistic and the prior,

respectively. We can use this equation to estimate n0 in other prior-likelihood pairs.

However, in these cases, we need to compute the summary statistic first because the prior

and the likelihood may represent different quantities. For example, the prior in a beta-

binomial is typically a probability between zero and 1, while the binomial likelihood is

generally the distribution of the number of successes. Therefore, a summary statistic is

needed to convert the marginalized likelihood of successes to the same scale as the prior

probability. In the case of the beta-binomial, this can be easily achieved by dividing the

number of successes k by the total sample n, such that S = k/n. However, calculating a

summary statistic may not be always trivial. For such cases, we propose an indirect Markov

chain Monte Carlo (MCMC) approach that does not require computing the summary

statistic.

Computing n0 indirectly via MCMC.—The indirect method involves computing n0 for

each parameter using an analytic method or MCMC. In most cases, n0 can be estimated by

generating new data from the prior and the likelihood function using equation (12), such that

n0 = n
Var θI
VarX(ϕ) − 1 . (23)
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In Box 2, we summarize the steps involved in calculating n0 using both the summary

statistic and MCMC methods. (Appendix C provides the detailed steps for computing n0 and

its implementation in R.)

Case Study 1: Testing the Gaussian Approximation

In this section, we compare the distribution of the posterior mean estimated using the

Gaussian approximation as defined in equation (16) to the posterior distribution estimated

using traditional Bayesian updating through either conjugacy or MCMC. We tested the

Gaussian approximation on 4 different examples: 1) beta-binomial, 2) gamma-exponential,

3) normal-Weibull, and 4) Dirichlet-multinomial prior-likelihood pairs. The distributions,

their parameters, and the size of the data collection experiments are defined in Table 1.

The first experiment describes a discrete data collection exercise from a beta prior and a

binomial data likelihood. The prior is conjugate to the data likelihood; therefore, the

posterior is also beta distributed and can be computed analytically. The second experiment

describes a gamma prior that is conjugate with the exponential data likelihood. The third

experiment involves a normal prior that is not conjugate to the Weibull data likelihood. In

this case, the posterior mean is computed via MCMC using JAGS.26 The fourth example

involves a Dirichlet prior with 3 components and a conjugate multinomial data likelihood.

In all cases, the prior sample size n0 can be calculated directly using the parameters of the

distributions through a closed-form solution except for the normal-Weibull case.25

Therefore, we computed n0 numerically using the indirect MCMC approach following the

steps described in Box 2: 1) draw θI
(1), …, θI

(m) samples from the prior distribution of θI ~

Normal(μ = 1, σ2 = 0.04). 2) For each value of θI
(i), i = {1, …, m}, we took j = {1, …, n}

samples from the data likelihood, such that x(i,j) ~ Weibull(v = 1, λ = 1/θ(i)). We obtained q
samples from the posterior distribution of θ|x(i). Then, we calculated the posterior mean for

each value of θI
(i), such that ϕ(i) = 1

q k = 1
q θ k x i . Finally, we estimated n0 ≈ 25 using

equation (23).

Case Study 2: Calculating EVSI in a Markov Model

We computed the EVSI of different parameters of an economic evaluation using a Markov

model to compare the performance of the GA to the 2MCS approach. We chose a Markov

model because Markov models are commonly used in economic evaluations and generally

involve nonlinear relations among some of the model parameters and the net benefits.27

(Details of the Markov model are described in Appendix D.) In summary, the model

simulated a cohort with a hypothetical genetic disorder (syndrome X). Syndrome X is

mostly asymptomatic but may cause a sudden flare-up that may necessitate hospitalization.

There are 3 alternatives available for preventing progression to permanent disability: A, B,

and C, where C is standard care. If treatment fails, permanent disability occurs and quality

of life (QoL) decreases from 1.0 to 0.8. For ease of calculations, we assumed that patients

face a constant annual mortality rate of 0.044. In addition, syndrome X is assumed to be

associated with a 0.5% increase in absolute mortality. Furthermore, if disabled, mortality

rate is assumed to increase by an additional 1%. Given that all transition probabilities are

Jalal and Alarid-Escudero Page 11

Med Decis Making. Author manuscript; available in PMC 2021 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



time invariant, we used a fundamental matrix solution28 of the Markov model to speed up

the computation time.

Four parameters in the model are uncertain. The parameters representing the mean number

of visits for interventions A and B have a linear relation with the net monitory benefit

(NMB). However, the probability of failing A and B has a nonlinear relation with their

respective interventions. This is because Markov models are typically linear in state payoffs

but nonlinear in the state transition probabilities.

The n0 is 10 for all parameters, which can be easily confirmed from the distribution

characteristics of these parameters and their corresponding data likelihoods. For example,

we assumed that the mean number of hospital visits for intervention A is distributed as

gamma(a = 10, b = 0.1). Because, the likelihood follows a Poisson distribution, this prior

contains information equivalent to n0 = 1/b = 10. In addition, the probability of failing A is

distributed as beta(α = 2, β = 8) and the n0 = α + β = 2 + 8 = 10 because the data likelihood

follows a binomial distribution.

We compared the estimated EVSI and EVPPI using 2 approaches: GA with splines as the

linear metamodel (GA) and Bayesian updating with 2-level Monte Carlo simulations

(2MCS). Each EVSI estimation with 2MCS using the fundamental matrix solution of the

Markov model took about 6 hours on 16 parallel cores.

Results

Results of Case Study 1: Testing the Performance of the Gaussian Approximation

Figure 2 compares the empirical cumulative density function (ECDF) of the preposterior

distribution for the 3 univariate experiments in Table 1 computed with traditional Bayesian

updating and GA using equation (16). GA asymptotically approximates the preposterior

distribution obtained with classic Bayesian updating. The step function for the preposterior

distribution in the beta-binomial case through Bayesian updating is explained by the discrete

nature of the binomial distribution. Numerically, the Kolmogorov-Smirnov (KS) statistic

was close to zero for most experiments, indicating that the preposterior distributions

computed with both Bayesian updating and GA were similar. In addition, the similarity

between the preposterior distributions increased as n increased because with higher n, the

Gaussian assumption becomes more appropriate.

Figure 3 compares the GA to Bayesian updating for the Dirichlet-multinomial experiment.

This figure presents both the marginal and joint preposterior distributions for pairs of

components of the Dirichlet distribution. The GA provides a good approximation of these

distributions compared to the Bayesian updating. In addition, the correlation coefficients for

pairs of components were also very similar.

Results of the Case Study 2: Calculating EVSI in a Markov Model

Base case analysis.—In the base case analysis, intervention B is the optimal strategy

with the highest expected NMB at a willingness to pay (WTP) threshold of $50,000/quality-

adjusted life year (QALY) (Appendix D). However, intervention B is optimal in less than
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50% of the PSA scenarios, indicating that based on current information, the decision maker

faces a 54% chance of some opportunity loss.

VOI.—The EVPI was $5480, which sets the upper limit on future research involving all the

parameters in the decision model with current information. In addition, the EVPPI for the

individual parameters and their corresponding standard errors (SEs) for GA and 2MCS are

shown in Table 2. The SEs of the GA were calculated following a Monte Carlo approach29

by evaluating equation (18) on n sets of coefficients αd(i)
, where i = 1, …, n is sampled from

a multivariate Normal distribution with mean αd and covariance Σd. αd and Σd are the

estimated parameters and their corresponding covariance matrix obtained from the mgcv

package. This approach has been previously used in the context of VOI by Strong and

others.14 The SEs for the 2MCS were computed following Ades and others.12 The estimated

EVPPI using the GA closely resembles that obtained with the 2MCS approach but with

higher SEs, which is the result of the additional errors from the metamodel approximation.

A single EVSI evaluation using the GA technique took 0.02 seconds on a single core while

the 2MCS approach took 10 minutes on 16 parallel cores. Despite the efficiency of using the

fundamental matrix solution, conjugate priors, and 16 parallel processing cores to compute

EVSI using the 2MCS, it was still many folds slower compared to the GA technique.

Figure 4 compares the EVSI computed using GA and 2MCS for different sample sizes (n =

{0, 5, 10, 50, 100, 1000, 10000}) and the associated CIs. When the sample size was greater

than 10, the GA performed similar to the 2MCS for all parameters. Both approaches show

that as the sample size increase, EVSI approaches EVPPI.

The GA approach generally produces smoother EVSI curves, especially for small n. This is

mainly because the data likelihood used in the Bayesian updating samples integers from

discrete distributions, causing larger variation in the posterior mean for smaller n.

Correlation.—In VOI, all evidence must be used to accurately define prior uncertainties.

Such evidence often translates into correlated parameters. To illustrate the importance of

correlation, we tested how VOI varies at different levels of correlations between different

pairs of parameters of interest. The level of correlation was induced using a previously

described algorithm.30,31 Briefly, this correlation induction involves taking a large number

of samples from the independent prior distributions of the parameters and then sorting them

in a way that induces the desired correlation structure. Because this algorithm only involves

sorting the parameters, it preserves their marginal distributions. The algorithm can be

extended to multiple correlated parameters.32 In case study 1, we illustrated the performance

of the GA in approximating the joint preposterior distribution in the case of a Dirichlet prior

and multinomial data likelihood. Furthermore, the GA can be easily extended to models that

involve multiple correlated parameters that are not jointly sampled from the same

multivariate distribution.

In Figure 5, we examine the effect of correlations (ρ) on the EVSI for all possible pairs of

parameters. Correlations among parameters of interest have a drastic impact on the EVSI in

all cases. The maximum effect can be seen between the mean number of hospital visits for
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intervention A and the probability of failing intervention A. The extremes of ρ in this figure

may not be realistic but illustrate the importance that correlation has on EVPPI and EVSI.

Discussion

We propose a general approach to compute EVSI that consists of 2 components: 1) a linear

metamodel between θI and the opportunity loss L and 2) a Gaussian approximation of the

posterior mean of the data collection experiments involving a set of parameters of interest θI.

In a first case study, we illustrated the GA performance in terms of accuracy in 4 numerical

exercises involving conjugate, nonconjugate, univariate, and multivariate priors. The second

case study compared the accuracy and efficiency of the GA to the traditional Bayesian

updating via the 2MCS approach in estimating EVPPI and EVSI of an economic evaluation

using a Markov model with nonlinear relations between the net benefits and the non-

Gaussian prior parameters.

The GA extends our previous efforts13 to calculate EVSI to a wide range of prior and

likelihood combinations, multiple correlated parameters, and multiple strategies. The GA is

an alternative to the traditional Bayesian updating process that can be extended to other non-

Gaussian prior-likelihood pairs because it only requires the prior distribution. The GA does

not impose any distributional form on the prior or the likelihood directly, and it works by

generating a preposterior distribution that is the result of shrinking the prior toward its mean

similar to updating a Gaussian prior using a Gaussian data likelihood. In addition, the GA

generally offers additional computational gains over previous methods. For example, for

each set of parameters, the analyst can use the same metamodel for various sample sizes n
unlike previous approaches that may require refitting the metamodel for different n.14

Similar to Jalal and others,13 Strong and others,14 and Menzies,15 this study also adopts a

regression metamodeling approach to facilitate the computation in EVSI. The linear

regression metamodel approach is generally fast and simple to implement because it only

requires the PSA data set and there is no need to rerun the simulation model after the PSA

data set has been created, similar to previous approaches.13–15 In addition, when n → ∞,

our EVSI equation translates to an EVPPI equation that is similar to Strong and others33 and

Madan and others34 using splines.

The GA approach simplifies the Bayesian updating process, which, in combination with the

linear regression metamodeling, allows the posterior mean of the opportunity loss to be

expressed as a function of the posterior mean values of the individual parameters. The GA

approach can be used with various forms of regression metamodeling (e.g, simple linear or

spline metamodels). In this article, we chose splines as a linear metamodel because splines

are generally more flexible metamodels than simple linear metamodels and are easily

implemented with mathematical and statistical software, such as R.14,15 The mgcv package

contains algorithms to choose an appropriate number of basis functions. However, splines

can fail if the number of basis functions in the spline exceeds the number of PSA samples,

especially if multiple interactions of a large number of parameters are desired.14 In such

cases, researchers can choose to explicitly define a simpler linear metamodel or a

polynomial metamodel with fewer terms than the PSA samples. The choice of an
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appropriate metamodeling technique may improve the accuracy of VOI computations, but

researchers must always balance increased accuracy v. overfitting and should choose a

metamodel that neither oversmooths nor overfits the data. This is an important step in all

methods that use metamodels to compute either EVPPI13,33,34 or EVSI.13–15 Fortunately,

many techniques (e.g., cross-validation) can be used to reduce model overfitting if

overfitting is particularly important.

Since the prior is the source of all information in VOI, the GA assumes that all the

randomness in ϕ is attributable to randomness in θI, resulting in ϕ and θI to be perfectly

correlated. This assumption allowed us to express ϕ as a function of θI and extend the GA

approach to cases in which the prior parameters are correlated as we illustrated above. This

approach is different from traditional Bayesian updating because in traditional Bayesian

updating, we assume that X is observed. Thus, the variability in the preposterior becomes a

function of the variability in the prior and the data likelihood, which are often sampled from

independent random distributions.

Theoretically, n0 and n must be sufficiently large for the GA to perform well in

approximating the preposterior distributions in non-Gaussian prior-likelihood cases. We

tested the performance of this approximation numerically on various conjugate,

nonconjugate, univariate, and multivariate non-Gaussian distributions when n and n0 were as

small as 10. In all cases, the GA approach performed well in approximating the Bayesian

updating process. In addition, Pratt and others35 have shown that when the sample size is

large enough and its variance is known and finite, the Bayesian updating can be

approximated by a Gaussian-Gaussian Bayesian update regardless of the nature of the

functional form of the likelihood due to the central limit theorem.35

However, if the sample sizes are particularly small or if the priors are highly skewed, the GA

approach may not perform well. In these cases, researchers may conduct a full Bayesian

updating or adopt other techniques such as transforming the parameters to be less skewed.

For example, a log transformation can be used for rates or a logit transformation can be used

for probabilities, but care must be given in all cases to compute n0 accordingly.

A potential speed-limiting task in our approach is computing n0 for complex study designs

that require MCMC. Fortunately, n0 needs to be computed only once for each parameter of

interest, and then it can be reused as long as the prior distributions and the data likelihoods

are not altered. As we have shown above, there are closed-form solutions for n0 for some

commonly used priors and data likelihood experiments. We illustrated the case of beta-

binomial, gamma-exponential, gamma-Poisson, and Dirichlet-multinomial. We also

proposed 2 novel approaches to calculate the value of n0 from the prior and data likelihood

using a GA through either a summary statistic or MCMC methods. In addition, numerical

techniques have been proposed to calculate n0 via Monte Carlo simulations.25

In summary, the GA technique has several advantages: 1) it requires only the prior and the

prior sample size n0, which can be estimated in various ways; 2) it can be used with different

types of linear metamodels; 3) it is simple and efficient to compute compared to the

Jalal and Alarid-Escudero Page 15

Med Decis Making. Author manuscript; available in PMC 2021 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



traditional Bayesian updating; and 4) it can be applied when the model parameters are

correlated or interact.

Conclusion

EVSI is one of the most powerful concepts in medical decision making because it can

inform future research, resource allocation, and data collection study designs. We propose a

general GA approach to estimate EVSI that addresses some of the challenges associated

with traditional EVSI calculations, especially when complex Bayesian updating of the prior

uncertainties is required and when the prior evidence suggests that these uncertainties are

correlated. The GA approach relies on defining the prior sample size n0, and it extends our

prior efforts13 to multiple strategies and various distributional forms. We hope that this

approach along with the other recent developments in computing EVSI can provide a useful

set of tools for analysts to effectively conduct VOI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Summary of the Steps and R Code for Computing

EVSI Using Gaussian Approximation from a PSA

Data Set for a Parameter of Interest θI from a New

Sample n
1. Conduct probabilistic sensitivity analysis (PSA) and load the PSA data set.

 library(mgcv); library(matrixStats)

 psa <– read.csv(“example_psa_dataset.csv”)

 n.sim <– nrow(psa) # number of simulations in psa

 theta_I <– psa[, 1] # parameter of interest is column 1

 nmb <– psa[, 5:7] # the strategies’ net monetary
benefits are columns 5 through 7

2. Determine the optimal strategy d*.

 d.star <– which.max(colMeans (nmb))

3. Compute the opportunity loss L(d, θ).

 loss <– nmb – nmb[, d.star]

4. Estimate a linear metamodel for the opportunity loss of each d strategy, Ld, by regressing them on the
spline basis functions of θI.

 lmm1 <– gam(loss[, 1] ~ s(theta_I)

 lmm2 <– gam(loss[, 2] ~ s(theta_I)

 lmm3 <– gam(loss[, 3] ~ s(theta_I)

5. Compute EVPPI using the estimated losses for each d strategy, Ld, and applying equation (20).

 Lhat <– cbind(lmm1$fitted, lmm2$fitted, lmm3$fitted) #
estimated losses

 evppi <– mean(rowMaxs(Lhat)) # evppi equation

6. Load the predict.ga function.

 source(GA_functions.R)

7.
Compute the predicted loss for each d strategy, Ld, given the prior sample size (n0) and new sample

size (n).

 Ltilde1 <– predict.ga(lmm1, n = n, n0 = n0)

 Ltilde2 <– predict.ga(lmm2, n = n, n0 = n0)

 Ltilde3 <– predict.ga(lmm3, n = n, n0 = n0)

 loss.predicted <– cbind(Ltilde1, Ltilde2, Ltilde3)

8. Compute EVSI using equation (18)

 evsi <– mean(rowMaxs(loss.predicted)) # evsi equation

Appendix B provides example R codes for implementing this approach when there are multiple parameters and

unbalanced data collection study designs.
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Box 2

Summary of Steps for Computing n0 from the Prior

with Gaussian Approximation Using Summary

Statistic and Markov Chain Monte Carlo (MCMC)

Approaches
A. Summary statistic

1.  Take i = 1, …, m samples from the prior distribution of θI.

2.  Take n samples from the likelihood distribution of x θI
(i)

.

3.  Compute a summary statistic S from the n samples of x θI
(i)

.

4.  Finally, estimate n0 using equation (22).

B. MCMC

1.  Take i = 1, …, m samples from the prior distribution of θI.

2.  Take n samples from the likelihood distribution of x θI
(i)

.

3.  Obtain the posterior θI|x using a specialized package such as JAGS.

4.  Compute the posterior mean ϕ.

5.  Finally, estimate n0 using equation (23).

Appendix C provides examples in R for implementing these approaches.
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Figure 1.
Gaussian preposterior and Gaussian prior distribution for different sample sizes n. The

preposterior mean is the same for different ns. As n increases, the preposterior variance

increases until it approximates that of the prior.
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Figure 2.
Comparison of the empirical cumulative distribution function (ECDF) of the Gaussian

approximation (GA) to the traditional Bayesian updating (Bayesian updating) for 3

univariate data collection experiments: beta-binomial, gamma-exponential, and normal-

Weibull prior-likelihood pairs. The posterior mean (ϕ) is shown on the x-axis and the ECDF

(F (x)) at each value of ϕ is shown on the y-axis. The Kolmogorov-Smirnov (K-S) statistic

quantifies a distance between the empirical distribution functions of 2 samples, where a

smaller value provides stronger evidence that both samples come from the same distribution.
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Figure 3.
Joint preposterior distribution for pairs of parameters in the fourth experiment involving a

Dirichlet-multinomial prior-likelihood computed using the Gaussian approximation (GA)

and traditional Bayesian updating. The marginal preposterior distributions are shown in the

upper and right-hand side margins. ρBU and ρGA are the correlation coefficients between the

prior component pairs using Bayesian updating and GA, respectively. The Kolmogorov-

Smirnov (K-S) statistic quantifies a distance between the empirical distribution functions of

2 samples, where a smaller value provides stronger evidence that both samples come from

the same distribution.
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Figure 4.
Expected value of sample information (EVSI) of each parameter for various sample sizes

using Gaussian approximation (GA) with splines and traditional Bayesian updating with 2-

level Monte Carlo simulations (2MCS) with their corresponding confidence intervals. The

expected value of partial perfect information (EVPPI) using GA and Bayesian updating

(BU) are also shown with the horizontal lines.

Jalal and Alarid-Escudero Page 24

Med Decis Making. Author manuscript; available in PMC 2021 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5.
Impact of correlation on expected value of sample information (EVSI). This figure shows

the change in EVSI for various sample sizes n for each pair of parameters in case study 2

over different levels of correlation between the parameters. The dotted vertical line

represents the case where the parameters are independent. EVPPI, expected value of partial

perfect information.
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