Table 3.
Performance of classification models by cross-validation.
Accuracy (%) | Specificity (%) | Sensitivity (%) | Precision (%) | AUC | |
---|---|---|---|---|---|
Support vector machine (SVM) | 94.44 ± 5.86 | 100.00 | 92.14 ± 8.33 | 100.00 | 0.983 ± 0.053 |
Decision tree | 95.56 ± 5.74 | 91.67 ± 18.00 | 96.67 ± 7.03 | 97.32 ± 5.66 | 0.550 ± 0.158 |
Naïve Bayes | 94.44 ± 7.86 | 96.67 ± 10.54 | 93.57 ± 8.33 | 98.33 ± 5.27 | 0.967 ± 0.070 |
Logistic regression | 91.22 ± 8.74 | 83.33 ± 32.39 | 93.57 ± 8.33 | 94.86 ± 8.59 | 0.961 ± 0.123 |
Ensemble vote | 95.56 ± 5.74 | 100.00 | 93.57 ± 8.33 | 100.00 | 0.792 ± 0.252 |
Ensemble AdaBoost-SVM | 94.44 ± 10.8 | 93.33 ± 21.08 | 95.24 ± 7.69 | 97.14 ± 9.04 | 0.986 ± 0.044 |
Ensemble bagging-SVM | 94.44 ± 5.86 | 100.00 | 92.14 ± 8.33 | 100.00 | 0.983 ± 0.053 |