Skip to main content
. 2021 Nov 22;11:22677. doi: 10.1038/s41598-021-02116-2

Table 2.

The difference between linear regression and non-linear neural network for predicting the power loss.

Linear regression of sEMG-based parameters Actual versus predicted Non-linear neural network Linear versus non-linear
Slope Intercept
Muscle groups R2 Regression equation SNR r r SNR F P F P
PFs MG 11.02 Power% = 0.176 × IMNF% + 0.064 × MNF% + 32.473 8.590 0.218 0.353 9.040 38.89 0.000 0.08 0.780
LG 5.52 Power% = 0.134 × IMNF% + 0.068 × MDF% + 33.891 7.199 0.221 0.231 8.720 15.30 0.000 0.01 0.911
KEs VM 8.24 Power% = 0.340 × IMNF% − 0.151 × MAV% + 29.999 7.668 0.353 0.361 8.244 30.54 0.000 0.05 0.816
RF 21.07 Power% = 0.679 × IMDF% + 0.073 × MDF% − 0.212 × MAV% + 15.220 7.669 0.459 0.491 8.916 19.18 0.000 0.00 0.957
VL 9.67 Power% = 0.421 × IMNF% − 0.050 × RMS% + 20.875 8.527 0.313 0.383 10.103 21.60 0.000 0.00 0.959
HEs GM 13.76 Power% = 0.626 × IMDF% + 9.881 5.555 0.355 0.437 6.692 23.20 0.000 0.00 0.996
BF 23.72 Power% = 0.290 × IMDF% + 0.414 × MDF% + 5.833 5.761 0.475 0.482 11.652 23.21 0.000 0.59 0.441

PFs plantar flexors, KEs knee extensors, HEs hip extensors. MG medial gastrocnemius, LG lateral gastrocnemius, VM vastus medialis, RF rectus femoris, VL vastus lateralis, GM gluteus maximus, BF biceps femoris. r pearson's correlation coefficients, R2 coefficient of determination, SNR signal-to-noise ratio. RMS root mean square, MAV mean absolute value, MNF mean frequency, MDF median frequency, IMNF instantaneous mean frequency, IMDF instantaneous median frequency. Changes in percentage of power output (power%) was the dependent variable and changes in percentage of sEMG-based parameters such as RMS%, MAV%, MNF%, MDF%, IMNF%, and IMDF% were the predictor variables in these stepwise multiple regressions.