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BACKGROUND: Mutations in p53, identified in 90% of oesophageal squamous cell carcinoma (ESCC), are associated with
unfavourable prognosis and chemo-resistance. APR-246 induces apoptosis by restoring transcriptional ability of mutant p53, and
may be a promising therapeutic agent to overcome chemo-resistance in ESCC.
METHODS: In ESCC cell lines differing in p53 status, we performed in vitro cell viability and apoptosis assays, evaluated reactive
oxygen species (ROS) generation, and assessed signal changes by western blot after APR-246 administration with/without chemo-
agent. Antitumour effects and signal changes were evaluated in in vivo experiments using xenograft and patient-derived xenograft
(PDX) mouse models.
RESULTS: APR-246 administration induced significant apoptosis by upregulating p73 and Noxa via ROS induction in ESCC cell lines
harbouring p53 missense mutations. Moreover, APR-246 plus chemotherapy exerted combined antitumour effects in ESCC with p53
missense mutations. This effect was also mediated through enhanced ROS activity, leading to massive apoptosis via upregulation of
p73 and Noxa. These findings were confirmed by xenograft and PDX models with p53 mutant ESCC.
CONCLUSION: APR-246 strongly induced apoptosis by inducing ROS activity and p73-Noxa signalling, specifically in ESCC with p53
missense mutation. This antitumour effect was further enhanced by combination with 5-FU, which we first confirmed in ESCC
preclinical model.

British Journal of Cancer (2021) 125:1523–1532; https://doi.org/10.1038/s41416-021-01561-0

BACKGROUND
Oesophageal squamous cell carcinoma (ESCC) is among the most
aggressive cancers and carries a dismal prognosis compared to
other gastrointestinal cancers [1]. Over recent years, multi-
disciplinary treatments have been developed, and preoperative
chemotherapy has become standard treatment for advanced
cases. However, with a standard regimen of 5-fluorouracil (5-FU)
and cisplatin (CDDP), the response rate is reportedly no more than
37%, and the survival benefit is limited to responders [2].
Therefore, there is an urgent need to enhance chemotherapy
responses and thus improve survival of ESCC patients.
The mutation rate of the tumour-suppressor gene p53 accounts

for approximately 50% of all cancers [3] and over 90% of ESCCs.
Mutations in p53 largely constitute missense mutations and are
associated with treatment resistance and poor prognosis in ESCC
[4–8]. Therefore, a therapeutic strategy targeting mutant p53 or
p53 family members may be a promising means of overcoming
treatment resistance and ultimately improving ESCC prognosis.
APR-246 is a low-molecular-weight compound that was recently

identified by library screening using cells harbouring mutant p53.

It restores DNA-binding ability through sequence-specific mod-
ification of mutant p53 protein, thereby promoting its transcrip-
tional ability and inducing apoptosis [9, 10]. Recent studies in
other cancer types further reveal that APR-246 exerts antitumour
effects by increasing reactive oxygen species (ROS) activity
specifically for p53 missense mutations [11–13]. APR-246 also
exerts antitumour effects via a p53-independent pathway [14–16].
However, the mechanistic details of these antitumour effects
depend on cancer type or p53 mutation status and remain
unclear.
In a clinical setting, recent Phase I/II trials have confirmed the

safety of APR-246 administration in humans and demonstrated
promising results in terms of antitumour effects in haematological
cancer [17]. Furthermore, limited evidence supports promising
antitumour effects of APR-246 in small cell lung cancer [18] and
non-haematological cancer, including ovarian cancer, in preclinical
studies [17]. In ESCC, we previously reported that PRIMA-1 (p53 re-
activation and induction of massive apoptosis) exerted Noxa-
mediated antitumour effects on ESCC with p53 missense mutation
[19]. However, the detailed mechanism of APR-246 (also called
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PRIMA-1MET), and its effect when combined with chemotherapy
for ESCC, remain unknown. In the present study, we examined the
effect of APR-246 combined with anticancer drugs, and its
underlying mechanism, by using a panel of ESCC cell lines with
differing p53 status, a xenograft mouse model, and a patient-
derived xenograft (PDX) model of ESCC.

MATERIALS AND METHODS
Cell lines and culture
The human oesophageal squamous cell lines TE1, TE4, TE5, TE8, TE9, TE10,
TE11, and TE14 were obtained from Riken BioResource Center Cell Bank
(Tsukuba, Japan). The KYSE410 and KYSE960 cell lines were obtained from
the Japanese cancer research Resource Bank (Osaka, Japan).

Apoptosis analysis with annexin V staining
We assessed apoptosis using the Annexin V-FITC Apoptosis Detection Kit
(BD Biosciences). First, cells were incubated for 36–48 h with cisplatin, 5-FU,
docetaxel (DTX)], and APR-246 alone or with the combinations of APR-246
plus each anticancer drug. A 100-μL aliquot of cell suspension was mixed
with 5 μL of annexin V-FITC and 2.5 μL propidium iodide and incubated for
30min at room temperature in the dark. Then the samples were analysed
by flow cytometry using a FACSCanto II instrument (BD Biosciences, San
Jose, CA), and the annexin V-stained cells were considered apoptotic.

Small interfering RNA (siRNA) knockdown
Noxa siRNA, p73 siRNA, and control siRNA were purchased from Santa Cruz
Biotechnology (Dallas, TX, USA). Cells were transfected for 24 h using
Lipofectamine RNAiMAX transfection reagent (Invitrogen, Carlsbad, CA,
USA) following the manufacturer’s instructions. Next, the cells were treated
with anticancer drugs, APR-246 alone, or the combination for 36–48 h.

Oesophageal cancer cell xenograft and PDX mouse model
These studies were conducted in accordance with recognised ethical
guidelines (Helsinki Declaration, Japanese Human Genome/Gene Analysis
Research Ethics Guidelines, and Ethics Guidelines for Medical and Health
Research with Humans at Osaka University) and institutional ethics
guidelines (Osaka, Japan) on animal experiments. In all, 2.0 × 106 TE8/
KYSE410 cells in 100 μL of RPMI1640/Matrigel (BD Biosciences) (1:1 suspen-
sion) were injected subcutaneously on both backs of 6 week-old female
mice (BALB/c-nu/nu CLEA Japan). As a preclinical model, surgically excised
samples were cut into small pieces and implanted subcutaneously in the
abdomen of 5-week-old NOD-SCID mice (CLEA Japan). For evaluation of
the treatment effect, when the tumour reached approximately 50mm3,
mice were randomly assigned to each group of control (phosphate-
buffered saline (PBS)), 5-FU single agent, APR-246 single agent, and 5-FU
and APR-246 combined therapy and started receiving treatment. Treat-
ment agent of each group contained 5% dimethyl sulfoxide (DMSO; Wako)
and PBS was used as solution for administration. 5-FU was administered
intraperitoneally at 5 mg/kg once every 3 days while APR-246 at 25mg/kg/
day. Tumour volume [(short2 × long)/2] was measured once every 3 days
from the start of treatment until 21 days by investigator blinded to the
group allocation. All control mice received an equal volume of DMSO.

Immunohistochemistry
Subcutaneous tumours were embedded in paraffin, endogenous perox-
idase activity was blocked, and 3.5-mm-thick sections were cut and stained
with antibodies. To measure ROS activity, we performed alkaline
phosphatase immunostaining using the VECTASTAIN ABC-AP Universal
Kit (VECTOR). Apoptosis was assessed by performing a terminal dUTP nick-
end labelling (TUNEL) assay using the ApopTag Fluorescein In Situ
Apoptosis Detection Kit (Chemicon International). ROS activity was
evaluated using an In Situ Apoptosis Detection Kit (Chemicon
International).

Statistical analysis
Data are shown as mean ± SD of the indicated number of experiments. In
xenograft mouse models, data are presented as mean ± SEM. We tested for
significant between-group differences using an unpaired Student’s t test.
Two-sided P values of <0.05 were considered significant. Statistical
analyses were performed using JMP version 14.0 (SAS Institute).

The full methods are described in the Supplementary Materials and
Methods.

RESULTS
APR-246 induced significant apoptosis with upregulation of
p73 and Noxa signalling in addition to ROS activity
specifically in ESCC with p53 missense mutation
Among a panel of ESCC cell lines that differed in p53 status—
including wild-type p53; KYSE410 and KYSE960, which have
missense mutations; TE1, TE4, TE5, TE8, and TE10, which have
frameshift mutation; TE9, which has a nonsense mutation; and
TE14—APR-246 exhibited the most significant antitumour effect in
ESCC with p53 missense mutations (Supplementary Table S1). The
IC50 values for TE1, TE4, TE5, TE8, and TE10 were 10.5, 9.9, 14.3, 7.9,
and 11.7 μmol/L, respectively. On the other hand, APR-246
showed minimal effectiveness in ESCC with other p53 mutation
types or wild-type p53, with IC50 values for TE9, TE14, KYSE410,
and KYSE960 being 34.6, 24.3, 31.6, and 20.8 μmol/L, respectively
(Fig. 1a).
Western blotting confirmed the increased levels of p73 and

Noxa, downstream of p53 family signalling along with poly ADP-
ribose polymerase (PARP) level (i.e. apoptosis) after APR-246
treatment in ESCC with p53 missense mutation while no
significant Noxa induction was detected in ESCC with wild-type
and nonsense mutant p53 (Fig. 1b). On the other hand, APR-246
administration significantly increased ROS activity, particularly in
ESCC with p53 missense mutation (Fig. 1c). These effects were
cancelled by addition of N-acetylcysteine, which specifically
suppressed ROS in ESCC with p53 missense mutation (Fig. 1c, d).
Importantly, in ESCC cell lines (KYSE410 and TE1) transfected with
p53 siRNA, APR-246 mono-treatment still enhanced ROS activity
and upregulated the expression levels of cleaved PARP, p73, and
Noxa in ESCC with p53 missense mutation (TE1) (Fig. 1e, f).
Therefore, APR-246 may have both mut-p53-dependent and mut-
p53-independent activities.

APR-246 showed synergistic antitumour effects when
combined with chemotherapy agents, particularly 5-FU, in
ESCC with p53 missense mutation
We further evaluated the antitumour effects of APR-246 when
combined with either CDDP, 5-FU, or DTX, all of which are
common preoperative chemotherapy agents for ESCC [20–23]. In
ESCC with p53 missense mutations, these treatment combinations
generally showed additive or synergic antitumour effects, most
prominently with APR-246 plus 5-FU, showing combination index
values of 0.58, 0.71, and 0.72 in TE1, TE4, and TE8, respectively. On
the other hand, in ESCC with wild-type, nonsense mutation, or
frameshift mutation p53, no additive or synergic effects were
observed with any anticancer drugs (Table 1).

Combination of APR-246 plus 5-FU enhances ROS activity,
inducing significant apoptosis via p73-Noxa upregulation in
ESCC with p53 missense mutation
In proliferation assays with wild-type p53 ESCC or nonsense
mutation p53, 5-FU, but not APR-246, exerted antitumour effects,
while no further inhibition of proliferation was observed in
combined use of APR-246 plus 5-FU. In contrast, combined use of
APR-246 plus 5-FU induced significant apoptosis in ESCC with p53
missense mutation (Fig. 2a). Apoptosis assays further revealed that
APR-246-induced apoptosis was enhanced by combined treat-
ment with APR-246 plus 5-FU in ESCC with p53 missense
mutation, but not in ESCC with wild-type or nonsense mutation
p53. The percentage of annexin V-positive cells was 3.9% in
KYSE410, 70.2% in TE1, 27.5% in TE8, and 18.1% in TE14 (Fig. 2b).
In ESCC with p53 missense mutation, APR-246-induced ROS
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activation was further enhanced by its combination with 5-FU
(Fig. 2c). Western blotting revealed a similar trend in terms of p73
level after APR-246 administration in p53 missense mutant ESCC
(Fig. 2d).
Among the downstream signals of apoptosis associated

with the p53 family, we found that Noxa activation played an
important role in APR-246-induced apoptosis, which was further
enhanced by the combined use of APR-246 and 5-FU, along with
p73 level (Fig. 2d). In terms of p73 induction, APR-246 alone
specifically increased TAp73 mRNA expression but not ΔNp73, as
assessed by reverse transcriptase polymerase chain reaction
(PCR), in p53 missense mutant ESCC, but not in ESCC with wild-
type or nonsense mutation p53. Similarly, this induction of TAp73
mRNA was further enhanced by the combination of APR-246
and 5-FU (Fig. 2e). When N-acetylcysteine was co-administered
with the combined use of APR-246 and 5-FU, the ROS
activation was attenuated and apoptosis induction via p73-Noxa
upregulation was cancelled in ESCC with p53 missense mutation
(Fig. 2f, g).

Knockdown of Noxa or p73 by siRNA cancelled induction of
apoptotic signals caused by combined use of APR-246 and
5-FU in ESCC with p53 missense mutation
In ESCC with p53 missense mutation (TE1 and TE8), Noxa
knockdown using siRNA, as opposed to siControl, cancelled the
effects of combined treatment with APR-246 and 5-FU—e.g.
decreased cell viability and apoptosis induction (upregulation of
cleaved PARP expression on western blot) (Fig. 3a, b). Similarly,
p73 knock-down by siRNA cancelled the combined antitumour
effect of APR-246 and 5-FU in ESCC with p53 missense mutation
(TE1) (Fig. 3c). Western blot analysis revealed that the increased
expression levels of Noxa and cleaved PARP caused by the
combination of APR-246 and 5-FU were also cancelled by p73
knockdown (si p73) compared to si Control, indicating reversal of
Noxa-induced apoptosis by si p73 (Fig. 3d). Overall, these results
showed that APR-246 induced significant apoptosis by enhancing
ROS activity and the p73-Noxa pathway in ESCC with p53
missense mutation, while limited antitumour effects were exerted
through the common p53 apoptotic pathway potentially
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Fig. 1 APR-246 alone induces massive apoptosis via ROS induction leading to upregulation of p73-Noxa in ESCC with p53 missense
mutation. a APR-246 dose–response curve of ESCC cell lines after 48-h treatment with APR-246 as assessed by MTT cell viability assay. Error
bars indicate standard deviation. b Western blot to assess relevant protein levels (cleaved PARP, p53, p63, p73, p21, Noxa, PUMA, and BAX)
following treatment with APR-246 alone in ESCC cell lines (KYSE410, TE1, TE8, and TE14). c Flow cytometric data comparing ROS activities
following administration of control, APR-246 alone, or APR-246 and N-acetylcysteine in ESCC cell lines (KYSE410, TE1, TE8, and TE14). d
Comparison of relevant protein levels (cleaved PARP, p53, p73, and Noxa) under the same conditions as in c. e Comparison of ROS activities
following administration of control or APR-246 alone in ESCC cell lines (KYSE410 and TE1) transfected with negative control or p53 siRNA. f
Comparison of protein expressions under the same conditions as in e. P < 0.05. Wt wild type, Mut missense mutation, Null frameshift or
nonsense mutation.
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reactivated by APR-246. This also appeared to be the mechanism
underlying the synergistic antitumour effect with combined use of
APR-246 and anticancer drugs (Fig. 3e).

In a xenograft mouse model of ESCC with p53 missense
mutation, combined use of APR-246 and 5-FU exerted
synergic antitumour effects through activation of ROS and the
p73-Noxa pathway without significant adverse events
In a xenograft mouse model generated using p53 missense
mutant ESCC (TE8) (Fig. 4a), we observed synergic antitumour
effect of 5-FU plus APR-246 compared with each single treatment.
On the other hand, in the xenograft tumour model with wild-type
p53 ESCC (KYSE410), antitumour effects were observed only with
5-FU treatment but not APR-246, while no synergic antitumour
effect of 5-FU plus APR-246 was observed (Fig. 4b). In KYSE410, the
tumour volume was 607 ± 26mm3 with PBS, 416 ± 74mm3 with 5-
FU, 592 ± 38mm3 with APR-246, and 332 ± 30mm3 with combina-
tion treatment. In TE8, the corresponding tumour volumes were
533 ± 68, 358 ± 37, 330 ± 74, and 99 ± 20mm3, respectively.
Importantly, neither model exhibited significant body weight loss
or adverse effect from treatment.
In the tumour tissue of group with combination treatment, we

observed strongly induced apoptosis as assessed by TUNEL assay
and cleaved caspase-3 staining in addition to ROS activity (i.e.
8OH-dG immunostaining; Fig. 4c, d). Furthermore, ki-67 staining
revealed strong inhibition of tumour growth after combined
treatment in this model (Fig. 4d). Western blot analysis revealed
that both p73 and Noxa expression levels were further induced in
tumour tissues with combination treatment compared with each
single treatment in the xenograft mouse model with TE8 (Fig. 4e).
PCR analysis revealed that TAp73 expression was synergistically
increased in the combination group (Fig. 4f). On the other hand, in
the xenograft mouse model with wild-type p53 ESCC, we detected
no further upregulation of TAp73, p73, or Noxa expression levels
after combination treatment (Fig. 4e, f).

APR-246 plus 5-FU exerted a synergic antitumour effect
through the ROS-TAp73-Noxa signalling pathway in a PDX
mouse model of ESCC with p53 missense mutation
In a PDX model of ESCC bearing p53 missense mutation
(confirmed by Sanger sequencing; Fig. 5a and Supplementary
Table S2), we observed synergic antitumour effects following
combination treatment compared to control and each mono-
treatment group, with a tumour volume of 597 ± 66mm3 with
PBS, 358 ± 76mm3 with 5-FU, 274 ± 53mm3 with APR-246, and
104 ± 38mm3 with combination treatment (Fig. 5b, c). Compared
to single treatments, the combined treatment also yielded more

significant induction of apoptosis based on TUNEL assay (Fig. 5d)
and cleaved caspase-3 immunostaining (Fig. 5e), stronger
suppression of cell proliferation as assessed by ki-67 immunos-
taining (Fig. 5e), and increased ROS activity and expression of p73
(particularly TAp73) and Noxa (Fig. 5e, f). Notably, haematoxylin
and eosin staining of essential organs, including the heart,
kidneys, and liver, revealed no apparent damage in any treatment
group (Fig. 5g).

DISCUSSION
Our present results showed that APR-246 yielded significant
antitumour effects by inducing ROS-p73-Noxa-mediated apoptosis
in ESCC cell lines bearing p53 missense mutation. In contrast, the
antitumour effect of APR-246 was limited in ESCC with wild-type
or nonsense/frameshift mutant p53. Moreover, in p53 missense
mutant ESCC, the antitumour effect was further enhanced by the
combined use of APR-246 plus anticancer drugs, particularly 5-FU,
through increased ROS activity and upregulation of p73-Noxa
signalling. These results were confirmed in both xenograft and
PDX mouse models of ESCC, in which we observed antitumour
effects of combined treatment with APR-246 plus 5-FU via the
same underlying mechanism and without any adverse effects. To
our knowledge, this is the first demonstration of the detailed
mechanism of APR-246, and its antitumour effect in combination
with chemotherapy, in a clinical model of ESCC.
We previously revealed that Noxa plays a key role in apoptosis

induction by APR-246 treatment for ESCC [19]. Noxa is a down-
stream signal of the p53 family, and an important pro-apoptotic
factor, and a therapeutic strategy involving Noxa activation to
induce apoptosis has recently been reported [24–26]. However,
Noxa is not necessarily induced only by the p53 pathway [27–30].
In fact, with p53 knockdown, we still observed apoptosis induction
mediated by p73 and Noxa after APR-246 administration. In
contrast, p73 knockdown suppressed Noxa expression and
abrogated apoptotic induction. Therefore, we speculated that the
p73-Noxa pathway was significantly more active than the p53-
Noxa pathway in terms of inducing significant apoptosis through
APR-246 in ESCC with p53 missense mutation, indicating that p73
is a main target of APR-246, as shown for other drugs, including
NSC176327, RETRA, etc. [31, 32]. Additionally, ROS induction was
identified as being associated with p73-Noxa upregulation in APR-
246 treatment for ESCC with p53 missense mutation. This is
supported by previous reports of other cancer types [9, 15, 33–35],
revealing that APR-246-mediated ROS induction is an important
mechanism that specifically occurs in p53 missense mutants [13].
Based on a previous article [13], in the absence of mut-p53

Table 1. Combination index calculated by the isobologram method to evaluate antitumour effect of APR-246 in combination with CDDP, 5-FU,
or DTX.

TP53 status Combination index

CDDP+APR-246 5-FU+APR-246 DTX+APR-246

KYSE410 Wild type 1.52 1.36 1.25

KYSE960 Wild type 1.72 1.48 1.36

TE1 Missense mutation (p.V272M) 1.06a 0.58b 0.95a

TE4 Missense mutation (p.G245C) 0.73b 0.71b 0.95a

TE5 Missense mutation (p.V272L) 1.14a 1.16a 1.22

TE8 Missense mutation (p.M237I) 1.13a 0.72b 0.48b

TE10 Missense mutation (p.C242Y) 1.05a 1.11a 1.11a

TE9 Frameshift mutation (p.R273fs) 1.35 1.68 1.52

TE14 Nonsense mutation (p.R213X) 1.91 1.78 1.25
aAdditive effect.
bSynergistic effect.
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accumulation, NRF2 can transcriptionally regulate cellular redox
balance by binding to antioxidant responsive elements on
antioxidative stress (AOS) genes. One crucial component of
NRF2-mediated redox regulation is the transactivation of SLC7A11
[a key component of the glutamate (Glu)/cysteine (Cys) antiporter
system xc−_ (Sxc−_)], resulting in the maintenance of intracellular
glutathione (GSH) reserves. Cells without mut-p53 accumulation
have sufficient GSH reserves and can thereby mount a normal
NRF2-mediated defence against oxidative stress, such as that
induced by APR-246. In contrast, in cancer cells with mut-p53
accumulation, mut-p53 entraps NRF2 and impairs its canonical
transcriptional activity, resulting in suppressed expression of
SLC7A11 and other AOS genes. This reduces GSH reserves and
increases resting levels of ROS, rendering mutant-p53 tumours
susceptible to oxidative damage [13]. Accordingly, in the present
study, APR-246 treatment of p53 wild-type KYSE410 cells was

unlikely to lead to significant ROS induction due to the absence of
mut-p53 accumulation. On the other hand, in p53-mutated TE1 or
TE8 cells, where p73 might play a compensatory role instead of
p53 (Fig. 1F), APR-246 administration should lead to ROS-induced
apoptosis through the upregulation of p73-Noxa. Although
previous reports have shown both p53-dependent [36] and p53-
independent [14] p73 induction by APR-246 administration [35],
our present results demonstrated that APR-246 induced significant
apoptosis via the ROS-p73-Noxa pathway in a p53 status-
dependent manner in ESCC.
In contrast to p53, p73 rarely exhibits mutations [37, 38] in

tumours and is reportedly associated with chemo-sensitivity
[36, 39]. The p73 isoform TAp73 is an activator that induces
transcription of various apoptosis-related genes [40, 41], and
TAp73β more strongly induces apoptosis compared with TAp73α
[16, 42, 43]. Notably, our present study demonstrated that APR-
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246 administration induced TAp73β at both the transcriptional
and protein levels in ESCC with p53 missense mutation.
Interaction between p53 and other p53 family members has
been reported. A subset of tumour-derived p53 mutants physically
interact with the p53 family members p63 and p73 and negatively
regulate their pro-apoptotic function [44], although this process
remains largely unclear. In head and neck squamous cell
carcinoma, p63 reportedly suppresses p73-induced apoptosis,
thus facilitating cancer survival [45]. In contrast, our study
identified no significant change of p63 expression after APR246
administration in ESCC cell lines harbouring p53 missense
mutations as shown in Fig. 1b, implying that p63 does not affect
the APR246-induced apoptosis in ESCC. Overall, stabilising p73 or
recovering its innate function in cancer tissue might be a pathway
to establishing novel cancer treatments. This supports the
rationale of APR-246 therapy for ESCC, which induced significant

upregulation of the p73-Noxa signal, leading to induction of
massive apoptosis in the present study.
With regards to the combined use of APR-246 plus chemo-

agents, prior studies have reported enhanced antitumour effects
with APR-246 plus CDDP in ovarian cancer, with the estimated
mechanism being that APR-246 binds to GSH, suppressing its
activity, and enhances CDDP-induced ROS activity. Other chemo-
agents used in combination therapy with APR-246 include
doxorubicin, taxane, and platinum products [14, 34, 46–49]. Few
reports describe combination with 5-FU [35]. Here we found that
5-FU plus APR-246 showed additive or synergistic antitumour
effects in ESCC. Previous studies have reported that combination
therapy including 5-FU increases ROS activity in other cancer
types [50, 51] and that the combination of APR-246 with
sulfasalazine or elastin amplifies ROS activity in ESCC [13]. Since
5-FU suppresses signal transcription through RNA dysfunction,
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5-FU could induce ROS by downregulating relevant factors that
suppress ROS activity, e.g. catalase, glutathione, glutathione
peroxidase, etc. Further studies are needed to clarify the detailed
mechanism through which the combination of APR-246 and 5-FU
increases ROS activity in ESCC.

LIMITATIONS OF THIS STUDY
This study has several limitations. First, further investigations are
needed to elucidate the mechanism by which combined
treatment with APR-246 and other chemo-agents (DTX/CDDP)
worked for ESCC. Second, in experiments in the PDX model, we
could not evaluate the efficacy of APR-246 plus chemotherapy in
ESCC with wild-type p53 because there were too few cases with
wild-type p53 ESCC available to generate a PDX model. Third, p73
knockdown using si p73 was found to be lethal in ESCC cell lines

and thus could not be used to examine cell lines other than those
shown in the present study. Finally, further studies are needed to
examine exactly what type of p53 missense mutations influence
the combined effect or mechanism of APR-246 (plus chemother-
apy) in ESCC.

CONCLUSION
Our present results demonstrated that APR-246 treatment
activated p73-Noxa signalling following ROS induction in a
manner dependent on p53 mutation status, leading to significant
apoptosis in ESCC with p53 missense mutation. These antitumour
effects and signal changes became more pronounced when APR-
246 was used in combination with an anticancer drug, particularly
5-FU. These results were observed both in vitro and in vivo in a
preclinical model, implying that APR-246 may be a promising
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Fig. 4 Combination treatment with APR-246 and 5-FU yields synergic anticancer effect in a xenograft mouse model of ESCC with p53
missense mutation. a Schematic of the xenograft mouse model using ESCC cell lines with differing p53 status (KYSE410 versus TE8) treated
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means of enhancing chemo-sensitivity in ESCC bearing p53
missense mutation.
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