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Diversity and compositional 
changes in the gut microbiota 
of wild and captive vertebrates: 
a meta‑analysis
Antton Alberdi*, Garazi Martin Bideguren & Ostaizka Aizpurua*

The gut microbiota is recognised as an essential asset for the normal functioning of animal biology. 
When wild animals are moved into captivity, the modified environmental pressures are expected 
to rewire the gut microbiota, yet whether this transition follows similar patterns across vertebrates 
is still unresolved due to the absence of systematic multi-species analyses. We performed a meta-
analysis of gut microbiota profiles of 322 captive and 322 wild specimens from 24 vertebrate species. 
Our analyses yielded no overall pattern of diversity and compositional variation between wild and 
captive vertebrates, but a heterogeneous landscape of responses, which differed depending on the 
components of diversity considered. Captive populations showed enrichment patterns of human-
associated microorganisms, and the minimal host phylogenetic signal suggests that changes between 
wild and captive populations are mainly driven by case-specific captivity conditions. Finally, we 
show that microbiota differences between wild and captive populations can impact evolutionary and 
ecological inferences that rely on hierarchical clustering-based comparative analyses of gut microbial 
communities across species.

The gastrointestinal tract of most animals on Earth hosts a microbial community1, known as the gut microbiota, 
which shapes their phenotypes through modulating a range of physiological processes2. Due to the plasticity 
of the gut microbiota3, animals living in different environmental conditions often exhibit particular microbial 
signatures4. While many wild animals are reared in captivity for reasons spanning scientific research, to educa-
tion, leisure and conservation, there is growing evidence that conditions in captivity alter the microbial com-
munity associated with animals. Some studies reported that the microbial diversity dropped in captivity5–10, 
probably due to the simplification of the environment in which hosts live. However, evidence supporting the 
opposite pattern has also been reported in some other species8,11, although it has been suggested these observa-
tions might be spurious12. In consequence, whether consistent patterns of gut microbiota variation exist between 
wild and captive animals remains unresolved.

Besides, captive animals are often used to address ecological and evolutionary questions of animal-micro-
biota interactions; e.g., how the natural history of vertebrates shape their gut microbiota13. Marked differences 
between wild and captive animals could challenge the representativeness of biological results drawn from cap-
tive animals14. However, the level of distortion that the use of captive animals entails for such analyses is yet to 
be assessed.

To address these questions, we analysed the gut microbiota of comparable wild and long-term captive indi-
viduals belonging to 24 vertebrate species, including fish, amphibians, reptiles and mammals, and performed a 
meta-analysis of the diversity and compositional variation between wild and captive individuals. We analysed 
whether the observed changes across vertebrates exhibited any host phylogenetic signal, and we contrasted 
the data to five theoretical scenarios relating to how the gut microbiota may vary when comparing wild and 
captive animals. Aiming at identifying microbial taxa systematically enriched in captive or wild environments, 
we also performed a meta-analysis of taxonomic relative abundances. Finally, we assessed how ecological and 
evolutionary inferences can differ depending on the origin of the animal specimens employed to characterise 
gut microbial communities.
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Results and discussion
After screening 222 publications, we retrieved raw 16S rRNA gene amplicon data and corresponding metadata 
from 23 publications that met the criteria explained in the Methods section. To increase comparability15, (i) a 
common bioinformatic pipeline developed to deal with such heterogeneous data was used to re-generate relative 
abundance information from raw reads, and (ii) sequence data were aggregated to the genus taxonomic level 
to minimise biases introduced by the distinct 16S rRNA regions targeted16. The resulting datasets contained 
644 individuals (322 wild and 322 captive; mean of 25.8 individuals/dataset) belonging to 24 vertebrate species 
(Fig. 1a,b; Supplementary Information).

We conducted diversity analyses based on Hill numbers17, using three contrasting metrics that account for 
different components of diversity, and thus provide insights into the relative contribution of each of these com-
ponents to the observed changes. dR (Richness) only considers a single component of diversity, namely rich-
ness, and thus measures the number of taxa detected. dRE (Richness + Evenness) considers two components of 
diversity, namely the number of taxa detected and their relative abundances, and measures diversity in effective 
number of taxa. dRER (Richness + Evenness + Regularity), incorporates a third component, namely regularity, 
which accounts for the phylogenetic relationships among the bacteria, and thus diversity is measured in effective 
number of lineages. Further explanations of these metrics can be found in the methods section. For all three stud-
ied metrics, alpha (K-WdR: X2 = 516.715, df = 25, p-value < 0.001; K-WdRE: X2 = 476.759, df = 25, p-value < 0.001; 
K-WdRER: X2 = 337.573, df = 25, p-value < 0.001) and beta (PMVdR: R2 = 0.509, df = 24, p-value < 0.001; PMVdRE: 
R2 = 0.691, df = 24, p-value < 0.001; PMVdRER: R2 = 0.683, df = 24, p-value < 0.001) diversities of the gut microbial 
communities differed across host species. The average number of genera (dR) ranged between 3.7 ± 3.2 and 
89.4 ± 16.0 (Fig. 1c), while the effective number of genera (dRE) spanned 1.5 ± 0.9 to 28.5 ± 6.5 (Fig. 1e) and the 
effective number of lineages (dRER) ranged between 1.4 ± 0.7 and 4.1 ± 1.6 (Fig. 1g).

The overall meta-analyses of diversity differences based on the three metrics showed no systematic trend 
towards neither decreasing nor increasing diversity between wild and captive animals (Random-Effect-Models, 
REMdR: SMD = 0.326, t = 1.370, p-value = 0.184, Fig. 1d; REMdRE: SMD = 0.155, t = 0.700, p-value = 0.489, Fig. 1f; 
REMdRER: SMD = 0.414, t = 1.480, p-value = 0.151, Fig. 1h). Neither of the two monophyletic subset of host taxa 
with the highest representation (5 species) exhibited any systematic trend either (Primates: REMdR: SMD = 1.972, 
t = 2.430, p-value = 0.072; REMdRE: SMD = 0.682, t = 1.000, p-value = 0.374; REMdRER: SMD = 1.387, t = 1.900, 
p-value = 0.131; Cetartiodactylans: REMdR: SMD = 0.440, t = 0.830, p-value = 0.451; REMdRE: SMD = 0.749, 
t = 1.280, p-value = 0.270; REMdRER: SMD = 1.157, t = 1.21, p-value = 0.294). Our results therefore indicate that 
captivity neither systematically drops, nor increases, the diversity of the gut microbiota, and that increased 
diversities observed in some species in captivity are not the result of poor study design and limited sample size 
as previously suggested12, but real biological signal. Phylogenetic signal measured by means of Abouheif ’s Cmean 
index, showed that closely related host species tended to exhibit more similar responses when measuring richness 
(p-value = 0.013). This result could indicate that intrinsic features of hosts elicit similar microbiota responses to 
captivity in related vertebrates, although this pattern could also be the result of employing similar management 

Figure 1.   Diversity differences of the gut microbiota between wild and captive vertebrate populations. (a) 
Phylogenetic tree, scientific names and dataset code of the analysed host species. (b) Number of wild and 
captive individuals. (c) Mean richness (number of genera) detected. (d) Mean standardised difference between 
the richness (dR) of wild and captive populations. Positive numbers indicate that the captive population is 
richer than the wild population and vice versa. (e) Mean effective number of taxa detected considering richness 
and eveness components (dRE). (f) Mean standardised difference between diversity dRE of wild and captive 
populations. (g) Mean effective number of lineages detected considering richness, eveness and regularity 
components (dRER). (h) Mean standardised difference between phylogenetic diversity dRER of wild and captive 
populations.
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practices in related animals. In any case, no phylogenetic signal was detected when considering more components 
of diversity (dRE: p-value = 0.109; dRER: p-value = 0.208), probably because the differences among hosts are less 
pronounced when more complex diversity metrics are employed (24 × difference between most and least diverse 
host when measuring dR, and 2.9× difference when measuring dRER). The effect of captivity on the microbial 
diversity might be influenced by intrinsic features of the host, but it seems to be more heavily impacted by the 
conditions animals are exposed to, such as the diet, environment and health treatments18,19. This level of detail 
is not always reported in the literature (see Supporting Dataset), which prevented us from assessing the impact 
extrinsic factors have in microbiota profiles19.

Regarding compositional changes, dissimilarity metrics based on Hill numbers’ beta diversity17 exhibited 
moderate values when analysing richness (dR: 0.57 ± 0.12; 0.34–0.75), but decreased considerably when consid-
ering also the evenness (dRE: 0.29 ± 0.18; 0.04–0.70) and regularity (dRER: 0.13 ± 0.10; 0.02–0.38) components 
(Fig. 2a). This drop suggests that the turnover of genera occurred mainly among bacteria with low relative 
abundances and with phylogenetically related taxa. Accordingly, in all but two species (Elaphurus davidianus 
and Peromyscus maniculatus), the dissimilarities observed between wild and captive populations were higher 
than the null expectations (p-index > 0.95) when considering only richness (dR) and richness + evenness (dRE) 
(Fig. 2a). However, in 11 of the studied species, significance disappeared when considering all three components 
of diversity (dRER), further supporting that the turnover of bacteria mostly happened among phylogenetically 
closely related taxa. This suggests that although captivity induces a change of the bacterial community composi-
tion, most of the bacteria recruited under captive conditions probably fill the niches left by closely related lost 
relatives (Fig. 1f,g).

To gain further insights into the structure of compositional changes at the genus level, each dataset was con-
trasted to five theoretical scenarios (S1-5) of gut microbiota compositional differences between wild and captive 
animals using approximate Bayesian computation (Fig. 2b). We found that the analysed host species exhibited 
microbiota variation patterns that resembled four of these scenarios. Eight species (32%) were classified under 
S4, which defines a situation in which captive animals recruit a proportional set of microorganisms that is dif-
ferent from that of wild counterparts, yet maintain a considerable overlap. The variation observed in seven other 
species (28%) was classified under S1, which depicts the gut microbiota of captive animals as a subset of that of 
wild counterparts. The rest of species were classified under S2 (24%) and S3 (16%). Interestingly, none of the spe-
cies exhibited a (almost) complete turnover of the microbial community, as described in S5. These results show 
that captivity does not trigger a complete regime shift of the gut microbial community of vertebrates, yet similar 
to diversity, compositional changes also exhibit a heterogeneous response across vertebrates (Fig. 2c,d). These 
differences could possibly be the result of the varying degree of complexity to reproduce wild conditions under 

Figure 2.   Compositional differences of the gut microbiota between wild and captive vertebrate populations. 
(a) Compositional dissimilarity values between captive and wild populations for the different diversity metrics 
analysed. Stars indicate whether dissimilarities were significant according to the null models. (b) Visual 
representation of the five scenarios of microbiota variation. “S1” depicts the gut microbiota of captive animals 
as a subset of that of wild counterparts. “S2” describes the opposite scenario in which the gut microbiota of 
wild animals is a subset of that of captive counterparts. “S3” assumes barely no difference between the gut 
microbiota of both populations. “S4” defines a a situation in which captive animals recruit a proportional set 
of microorganisms that is different from that of wild counterparts, yet maintain a considerable overlap. “S5” 
describes a scenario in which the gut microbiotas of both populations are almost totally different. (c) Principal 
components analysis showing observed microbiota variation in the studied host species (large coloured dots) 
over simulated data points (small greyscale dots). (d) Histogram of posterior probabilities of the contrasted 
scenarios for each host species, sorted according to hierarchical clustering dendrogram. Abbreviations are 
explained in Fig. 1a.
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captivity for different host species. However, the lack of phylogenetic signal in the compositional differences (dR: 
p-value = 0.163, dRE: p-value = 0.460; dRER: p-value = 0.314) does not support this hypothesis, either because 
the effects of different captivity management procedures or the variability introduced by different laboratory 
processing in the analysed studies are larger than intrinsic features of the animals.

We further investigated the taxonomic differences between wild and captive populations across the analysed 
host species using Generalized Additive Models for Location, Scale and Shape (GAMLSS) models. We identi-
fied 55 microbial genera with a host species-level prevalence over 33% (at least present in 9 datasets out of 25) 
(Fig. 3a). Among these, we observed that more bacteria exhibited enrichment trends towards captivity than 
wild environments (Fig. 3b). However, statistically significant (p-value < 0.05) or near-significant (p-value < 0.1) 
log-fold changes were only detected in four bacteria, all belonging to the phylum Firmicutes, and exhibiting 
somewhat low relative abundances in the gut microbiota of most hosts (Fig. 3c). Oribacterium, Sarcina and 
Subdoligranulum, which were enriched in captive environments, are common dwellers of the human gastroin-
testinal tract20–22. The same happens with many other taxa that, although beyond significance thresholds, showed 
enrichment patterns in captive environments (e.g., Alistipes, Turicibacter, Lactobacillus). In contrast, Rumini‑
clostridium, which is a strictly anaerobic taxon that is found in the intestinal tract of ruminants and termites, 
was the only taxon significantly enriched in wild conditions. All these observations suggest that contact with 
humans, or exposure to a more anthropised environment, might have contributed to increase the prevalence 
of human-associated taxa in captive animals. These bacteria do not become dominant taxa in captive animals 
(Fig. 3c), yet they seem to be important drivers of the microbiota turnover between wild and captive populations.

Finally, we assessed the impact of such compositional differences in commonly employed procedures used 
to compare animal-associated microbiotas when addressing ecological and evolutionary questions. Overall, we 
detected a strong significant correlation between the gut microbiota dissimilarity across species computed based 
on captive and wild populations (dR: r = 0.877, t = 31.538, df = 298, p-value < 0.001; dRE: r = 0.922, t = 41.097, 
df = 298, p-value < 0.001; dRER: r = 0.880, t = 31.937, df = 298, p-value < 0.001, Fig. 4c). However, in 30% of the 
cases, the microbiota of a population from a different species exhibited a more similar composition than the 
wild or captive counterpart of a particular species (Fig. 4a,b). Our results show that such differences between 
captive and wild vertebrates yield diverging topologies in hierarchical clustering analyses (Fig. 4d), which result 
in significantly different phylosymbiosis effect sizes (dR: t = 4.358, df = 193.27, p-value < 0.001; dRE: t = 3.779, 
df = 194.79, p-value < 0.001; dRER: t = 4.648, df = 195.46, p-value < 0.001), and thus potentially impact inferences 

Figure 3.   Differential abundance of the microbial taxa with highest prevalence. The listed microbial taxa were 
detected in more than a 33% (9) of the studies. (a) Log-fold changes of the most prevalent taxa in each host 
species. Purple tones indicate enrichment towards captive conditions, while pink tones indicate enrichment 
towards wild conditions. (b) Log-fold change estimates and their standard errors derived from the random 
effects meta-analysis of microbial abundances. Two stars indicate p-values under 0.05, while a single star 
indicate p-values under 0.1. (c) Cumulative relative abundances of taxa across the analysed datasets. Each 
coloured box indicates the mean relative abundance value of the microbial taxa in each study. Numbers indicate 
number of host species in which each taxon was detected. Abbreviations are explained in Fig. 1a.
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on animal-microbiota eco-evolutionary patterns23. This is particularly relevant when analysing species with 
shared dietary features and similar hindgut microbial communities, such as primates and artiodactylans (Fig. 4b).

Conclusions
Our study revealed that long-term captivity does not induce systematic directional changes of the diversity 
and composition of the gut microbiota in vertebrates. Instead, host taxa exhibit a heterogeneous landscape of 
responses, that vary depending on the components of diversity employed to characterise them. This heterogeneity 
seems to be mainly driven by extrinsic features of captivity conditions, which unfortunately we were unable to 
associate with microbiota variation due to the lack of metadata on the features and conditions of wild and captive 
populations. The lack of general patterns suggest that captive populations of different species need to be managed 
on a case-by-case basis. A relevant aspect to ensure optimal captivity management will be to ascertain whether the 
observed microbiota changes have a significant physiological impact on their hosts. Faecal microbiota transplants 
coupled with physiological tests could be used to test this, while shotgun sequencing-based microbiota analyses 
would contribute to find mechanistic explanations that link microbiota variation with animal health. Another 
unresolved aspect of the gut microbiota of captive vertebrates is the impact of the human-associated microbial 
reservoir in the rewiring of their microbial communities. Whether human-associated microbes enriched in 

Figure 4.   Compositional differences of the gut microbiota between wild and captive animals. (a) NMDS plot 
of the gut microbiota composition between wild and captive animals coloured by host species. Triangles and 
circles linked by solid lines indicate the centroids of the gut microbiota composition in wild and captive animals, 
respectively, as defined by the individual data (outer edges of the thin lines) of each species. (b) Zoomed image 
of the NMDS plot to improve the visualisation of compositionally similar primates and artiodactylans. (c) 
Correlation plot between pairwise compositional differences of the gut microbiota between host species as 
calculated based on wild (Y axis) and captive (X axis) specimens. Colours of the dots indicate the evolutionary 
distance (in millions of years) between compared hosts. (d) Topological differences of the hierarchical clustering 
of species-level gut microbiota based on captive and wild animals. Common subtrees between captive and wild 
cladograms are highlighted by pink connecting lines. Abbreviations are explained in Fig. 1a.
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captive environments actively oust their wild counterparts, or instead passively fill the niches that lost wild 
microbes leave, will need to be studied through longitudinal analyses in which temporal dynamics of the gut 
microbiotas of wild vertebrates moved into captivity are analysed in detail.

Finally, our study also reflects the data and knowledge bias towards mammal-associated microbial com-
munities, which hinders implementation of robust phylogenetic analyses to address evolutionary aspects of the 
studied topic. More data from non-mammal hosts and an effort to standardise metadata would therefore be 
desirable to better understand the impact of captivity in the gut microbiota of wild animals. In the meanwhile, 
as microbiota differences between wild and captive populations can introduce biases in multi-species compara-
tive analyses, data from captive animals should be used with caution when addressing evolutionary questions 
concerning wild organisms.

Methods
Literature search and data retrieval.  We performed a systematic literature search on the internet 
(Google Scholar, Web of Science) using the following keywords: [gut microbiota], [animal microbiome], [gut 
microbiome 16S] and [captive AND wild AND microbiota]. This search yielded 222 articles on animal microbi-
omes published between 2014 and 2020. The materials and methods of these articles were analysed to ascertain 
whether the study met the following criteria: (i) all wild and captive samples were processed using identical pro-
cedures, (ii) compared wild and captive animals were phylogenetically closely related (members of the same spe-
cies or species complex), (iii) captive individuals were born in captivity, or no information was provided about 
the origin of the captive animals; i.e., wild animals brought into captivity and sampled some time later were 
excluded, (iv) captive animals that underwent a deliberate selection process (e.g. inbred mice or domestic ani-
mals) were also excluded for considering them genetically not comparable to the wild counterparts, and (v) only 
datasets with sample sizes over 12 individuals were considered for analysis. Raw data were extracted from the 
databases and repositories indicated in the articles (accession numbers listed in the “Bioinformatic resources”).

Bioinformatic sequencing data processing.  Datafiles from the different studies were (i) stored at the 
University of Copenhagen’s Electronic Research Data Repository (ERDA), (ii) assigned a unique study identi-
fier and (iii) re-processed in the Danish National Supercomputer for Life Sciences ‘Computerome2’ using a new 
bioinformatic pipeline we developed for processing data with different characteristics, including sequencing 
mode, read length and 16S rRNA gene fragment. The entire code can be found in the “Bioinformatic resources’’. 
In short, for each individual dataset, we quality-filtered (mean phred score of q = 25) and (if necessary) trimmed 
and merged the paired-end reads based on the sequence overlap using AdapterRemoval224. Primers (if present) 
were trimmed using Cutadapt25, and reads were dereplicated with USEARCH Derep26 using a relative minimum 
copy number threshold of 0.01% of the total sequencing depth. Reads were then converted into zero-ratio OTUs 
using the denoising algorithm UNOISE327, and USEARCH was used to map the reads back to the OTUs and 
create an OTU table. HS-Blast28 was used to assign taxonomy against the non-redundant Silva 132 database29, 
and taxonomic assignments were filtered using different identity thresholds for each taxonomic level: 97% for 
genus-level taxonomy, 95% for family-level taxonomy, 92% for order-level taxonomy and 90% for higher taxo-
nomic levels30. To minimise the impact of incorrectly assigned taxa, taxonomic annotations below these identity 
thresholds were converted into unclassified, and not considered in downstream analyses. This pipeline yielded 
relative read abundances assigned to different taxa for each individual dataset analysed.

Data quality filtering.  Individual data files generated by the aforementioned pipeline were aggregated by 
study and host species into genus-level abundance tables. The two datasets of Sarcophilus harrisii retrieved from 
two different studies were processed independently. Taxonomic resolution was limited to the genus level to 
maximise taxonomic annotation rate and minimise biases introduced by the different 16S rRNA gene markers 
employed in the analysed studies. On the one hand, wild animals’ microbial communities often contain taxa 
that do not map to any catalogued species with enough molecular similarity to assign species-level annotation. 
On the other hand, the analysed datasets were generated based on the V4, V3–V4 and V1–V3 regions of the 
16S rRNA gene (Supplementary Dataset), which hindered comparability at the ASV or zOTU level. We then 
proceeded to quality-filter the genus-level abundance tables of each species through filtering individuals by 
minimum sequencing depth, minimum diversity coverage and taxonomic annotation. Only individual datasets 
with more than 1000 reads and diversity coverage values over 99% were retained, and final genus-level abun-
dance tables that contained at least five animals in each contrasting group were considered for analysis. Since 
the studied datasets contained traces of dietary items and host DNA, read counts assigned to taxonomic groups 
not assigned to Bacteria genera, or not present in the LTPs132_SSU release of the SILVA Living Tree (https://​
www.​arb-​silva.​de/​proje​cts/​living-​tree) used for measuring the phylogenetic relationships among bacteria, were 
removed to ensure accurate measurements of phylogenetic diversities. In the cases where one group (either wild 
or captive) outnumbered the other, samples were randomly selected to ensure even sample sizes.

Diversity and compositional analyses.  Diversity and compositional analyses were carried out in the R 
statistical environment v.3.6.331 and Python 3.8 based on the Hill numbers framework. The operations explained 
below were conducted using the R packages ape32, dendextend33, dmetar34, hilldiv35, meta36, metamicrobiomeR37, 
phylosignal38, phytools39, treedist40, vegan41, and the python package qdiv42. Hereafter functions and their respec-
tive packages are displayed as ‘package::function’. Statistical significance level was set at a FDR-adjusted p-value 
of 0.05. All charts and figures in the manuscript were originally generated either in R (full code of all original 
figures is included in “Bioinformatic resources”) and subsequently modified in Adobe Illustrator to achieve the 
desired layout without distorting the dimensions of the quantitative elements.

https://www.arb-silva.de/projects/living-tree
https://www.arb-silva.de/projects/living-tree
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Hill numbers.  The Hill numbers framework encompasses the group of diversity measures that quantify diver-
sity in units of equivalent numbers of equally abundant taxa43,44—in our context bacteria genera. Hill numbers 
provide a general statistical framework that is sufficiently robust and flexible to address a wide range of scientific 
questions that molecular ecologists regularly try to answer through measurement, estimation, partitioning and 
comparison of diversities45. To obtain a complete vision of the gut microbiome differences between wild and cap-
tive animals, we conducted all our diversity and compositional analyses based on three contrasting Hill numbers 
based metrics: the so-called dR, which only accounts for richness (i.e., order of diversity 0, whether bacteria taxa 
were present or not), dRE which considered Richness + Evenness of order of diversity 1 (i.e., the relative abun-
dances of bacteria are proportionally weighed) and dRER, which considered Richness, + Evenness + Regularity 
(i.e., the phylogenetic relationships among bacteria are accounted for). Detailed explanations of these metrics 
can be found elsewhere17,46,47.

Phylogenetic trees.  The dRER metric required a Bacterial phylogenetic tree to compute the relatedness among 
bacterial taxa. As our datasets contained different fragments of the 16S rRNA gene, and thus we were unable 
to generate a phylogenetic tree directly from our DNA sequence data, we relied on the SILVA Living Tree, and 
used the LTPs132_SSU release as the reference phylogenetic tree. In addition, the time-calibrated host phylogeny 
required by the host phylogenetic signal and phylosymbiosis analyses was generated using Timetree48.

Diversity metrics and meta‑analysis.  We computed individual-based diversity metrics using the function 
hilldiv::hill_div, and obtained average alpha diversity metrics per species, as well as wild and captive populations 
per species. We used a Kruskal–Wallis (KW) test as implemented in the function hilldiv::div_test to ascertain 
whether the mean diversity values varied across analysed host species, and a PERMANOVA (PMV) test using 
vegan::adonis function based on the pairwise dissimilarity matrix to test whether host species were composition-
ally distinct.

Average alpha diversity metrics of wild and captive populations per species were used to conduct a ran-
dom-effects-model (REM) meta-analysis with raw effect sizes using the function meta::metacont. We used the 
Sidik–Jonkman estimator for the between-study variance and the Knapp–Hartung–Sidik–Jonkman adjustment 
method. The overall effect was calculated using Hedge’s g (SMD) and its 95% confidence interval and p-value. 
An identical analysis was performed for the entire dataset and two representative subsets of five species, con-
taining only datasets derived from primates and cetartiodactylans. Higgin’s and Thompson’s I2 test, Tau-squared 
T2 and Cochran’s Q were used for quantifying the heterogeneity between the included species. Due to the high 
heterogeneity found in the study, we evaluated whether the between-study heterogeneity was caused by outli-
ers with extreme effect sizes, which could be distorting our overall effect. We defined an outlier if the species’s 
confidence interval did not overlap with the confidence interval of the pooled effect using dmetar::find.outliers 
function.The function detected three outliers in dR metric (GOGO, PEMA and TUTR), four in dRE (GOGO, 
PEMA, MOCH, EQKI) and seven in dRER (RHBR, PYNE, PEMA, TUTR, MOCH, CENI and AIME). Even 
when these outliers were excluded from the analysis the I2 heterogeneity value was substantial for dR (I2 from 
79.3 to 70.3%) and moderate for dRE (I2 from 80.1 to 60.0%) and dRER (I2 from 86.9 to 54.2%) and significant 
for both (Cochran’s Q, p-value < 0.001). We performed a sensitivity analysis removing the outliers from the 
meta-analysis, yet the results of the random effects model did not change (dR: SMD = 0.345, p-value = 0.075; 
dRE: SMD = 0.021, p-value = 0.901; dRER: SMD = 0.015, p-value = 0.928). We also performed Graphical Display 
of Study Heterogeneity (GOSH) plots to explore the patterns of effect sizes and heterogeneity in our data. We 
used three supervised machine learning (k-means, DBSCAN and the Gaussian Mixture Model) algorithms to 
detect clusters in the GOSH plot data and determine which studies contribute the most to them automatically 
using dmetar::gosh.diagnostics function.

Host phylogenetic signal of wild‑captive microbiota differences.  We tested whether the diversity and composi-
tional changes were more similar among related host species than species drawn at random through Abouheif ’s 
Cmean index49, as implemented in the function phylosignal::phylosignal. This index was selected for being one of 
the phylogenetic indices that fulfill most of the criteria for good index and test performance50.

Wild‑captive compositional differences.  We first quantified compositional differences between wild and cap-
tive animals within each species for the three diversity metrics by means of Jaccard-type overlap-complement 
derived from the beta diversity values between wild and captive populations using the function hilldiv::beta_dis. 
To test whether the observed differences could be expected by chance or not, we used the Raup-Crick null 
model extended to the whole continuum of Hill-based regular and phylogenetic dissimilarity indices (qRC), as 
implemented in the qdiv::null.rcq function. For dR we used the arguments divType = ‘Jaccard’ and q = 0, for dRE 
divType = ‘Jaccard’ and q = 1, while for dRER we employed divType = ‘phyl’ and q = 1. Randomisation was per-
formed using the ‘frequency’ procedure, and a significance threshold of 0.05 was established.

Classification of compositional differences into predefined scenarios.  We used Approximate Bayesian Computa-
tion (ABC) to identify which of five predefined scenarios best fit the observed microbiota variation between 
wild and captive populations in the studied species. Each scenario was characterised as a combination of normal 
distributions around mean percentages of taxa detected only in wild individuals, shared by both populations and 
found only in captive individuals. Priors were generated using singular normal distributions and singular value 
decomposition using a covariance matrix with equal variances of 40%. Scenarios are described in Fig. 2b and 
details can be found in the “Bioinformatic resources”. Subsequently, we used the function abc::postpr to estimate 
posterior model probabilities and perform model selection based on a multinomial logistic regression as imple-
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mented in the function nnet::multinom. The scenario with the highest posterior probability was selected as the 
most representative for each dataset.

Compositional similarities among populations within and between host species.  We split the abundance table 
of each species into two subtables only containing either wild or captive individuals, and these subtables were 
converted into incidence data, which yielded one incidence-based microbiota profile representing each origin 
(wild and captive) per dataset. Pairwise dissimilarities of all dataset*origin combinations were computed using 
hilldiv::pair_dis. For each of these 50 datasets, we identified the closest match and calculated the percentage of 
cases in which the closest match was not the wild or captive counterpart of each species.

Taxonomic enrichment analysis and meta‑analysis.  We analysed taxonomic relative abundance differences 
between wild and captive populations per host species using Generalized Additive Models for Location, Scale 
and Shape (GAMLSS) as implemented in metamicrobiomeR::taxa.compare. Subsequently, random effects meta-
analysis models were applied, using metamicrobiomeR::meta.taxa, to the pool of estimates and their standard 
errors to evaluate the overall effects and heterogeneity across the host species. The minimum prevalence for 
considering microbial taxa in the meta-analysis was set in 33% of the analysed datasets.

Correlation and topological differences between wild‑ and captive‑data derived host comparisons.  We computed 
two sets of pairwise dissimilarities of the microbiota profiles among species, by separately considering only 
wild and captive individuals. The correlation between the two dissimilarity matrices was computed in terms 
of Pearson Product-Moment Correlation test using the function stats::cor.test. For each pairwise comparison, 
we also extracted the evolutionary distance in terms of millions of years of divergence time from the host spe-
cies phylogeny using ape::cophenetic.phylo function. Pairwise dissimilarity matrices derived from wild and cap-
tive individuals were subsequently used to generate compositional cladograms based on hierarchical clustering 
(UPGMA method). These trees were contrasted with the host phylogenetic tree to compute phylosymbiosis in 
terms of generalised Robinson–Foulds distances, as implemented in the TreeDist::JaccardRobinsonFoulds func-
tion. To test whether wild and captive datasets yield different phylosymbiosis effect sizes, we performed a t-test 
on phylosymbiosis metrics iteratively computed from wild and captive data of 100 randomly selected subsets of 
ten host species.

Data availability
All raw DNA sequences are available in NCBI SRA. Bioinformatic procedures and relevant metadata are included 
in the Supplementary Information. The studies included in the meta-analysis are listed in the Supplementary 
Dataset. Bioinformatic resources, including accession numbers, scripts, data files and raw figures have been 
archived in Zenodo under the https://​doi.​org/​10.​5281/​zenodo.​55947​40. Bioinformatic Code A (613 lines) con-
tains the pipeline used for the re-generation of gut microbiota profiles from raw DNA sequence data. Bioinfor-
matic Code B (1695 lines) contains the pipeline employed for the diversity analyses.
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