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The prognosis for patients with glioblastoma (GBM), the most common and malignant type of primary brain tumour, is very poor,
despite current standard treatments such as surgery, radiotherapy and chemotherapy. Moreover, the immunosuppressive tumour
microenvironment hinders the development of effective immunotherapies for GBM. Cytokines such as interleukin-10 (IL-10) play a
major role in modulating the activity of infiltrating immune cells and tumour cells in GBM, predominantly conferring an
immunosuppressive action; however, in some circumstances, IL-10 can have an immunostimulatory effect. Elucidating the function
of IL-10 in GBM is necessary to better strategise and improve the efficacy of immunotherapy. This review discusses the
immunostimulatory and immunosuppressive roles of IL-10 in the GBM tumour microenvironment while considering IL-10-targeted
treatment strategies. The molecular mechanisms that underlie the expression of IL-10 in various cell types are also outlined, and
how this resulting information might provide an avenue for the improvement of immunotherapy in GBM is explored.
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INTRODUCTION
Gliomas constitute central nervous system (CNS) tumours, thought
to arise from mutant glial cells or glial precursor cells, and account
for approximately 80% of all malignant brain tumours [1]. Half of
all gliomas are glioblastomas (GBMs; also referred to as a grade 4
astrocytoma), the most common and malignant primary brain
tumour [2, 3]. Despite standard treatment therapy, which includes
maximum safe surgical resection, radiotherapy and chemother-
apy, GBM patients are faced with a devastatingly poor prognosis
and a median survival of 15 months following diagnosis [4]. As this
prognosis has remained stagnant for over a decade [4] and in view
of the success of immunotherapy in the context of melanoma and
haematological malignancies, efforts to improve the outcome of
patients with GBM have turned to strategies that modulate the
immune response and the tumour microenvironment (TME) [5].
Unfortunately, clinical trials testing immunotherapies have shown
limited efficacy in GBM. The immunotherapy-refractory nature of
GBM is thought to be due, in part, to the functional separation of
the CNS and the systemic immune system. The CNS has long been
considered an immune-privileged organ. This concept was an
experimentally defined phenomenon, where cells/tissues grafted
into non-CNS tissue are efficiently rejected but show prolonged
survival when grafted into the CNS. The basis for this immune
privilege was interpreted as CNS isolation from the immune
system due to the blood–brain barrier (BBB) and that this is
important for protecting neurons during inflammation. It is now
increasingly recognised that immune privilege is not absolute but
is a highly regulated state, resulting from immunoregulatory
mechanisms of CNS-resident cells and their microenvironment.

Due to the brain’s immune privilege compared to other organs as
well as the nature of the brain TME, both pose a unique challenge
for the application of immunotherapy in GBM patients [5].
A major challenge in using immunotherapy for GBM is the

presence of an immunosuppressive TME [6]. The GBM TME harbours
multiple non-neural cell types including infiltrating immune cells,
pericytes, astrocytes, oligodendrocytes and endothelial cells, all
contained within a modified extracellular matrix (ECM). These cells
communicate with tumour cells and other non-tumour cells through
complex signalling networks that involve both direct cell–cell
interactions and paracrine signals mediated via soluble proteins,
among which are cytokines and chemokines [6] secreted by glioma
cells and tumour-associated macrophages (TAMs) [7, 8]. Cytokines
and chemokines, in combination with other immune checkpoint
molecules, influence the innate and adaptive immune responses by
suppressing T cell activity (by inducing T cell apoptosis, for example)
and by activating ‘anti-inflammatory’macrophages [5]. To evade the
host immune system and proliferate, tumour cells are highly
adaptive and can suppress host anti-tumour immunity through a
mechanism termed cancer immunoediting. This is a poorly under-
stood process whereby the immune response not only protects
against cancer development but also promotes the outgrowth of
tumour cells that can escape immune control. One of the major
mechanisms involved includes the expression, activation and
secretion of anti-inflammatory cytokines into the TME [9].
Many studies have reported the increased expression of anti-

inflammatory cytokines, notably transforming growth factor-β
(TGF-β) and interleukin-10 (IL-10) in GBM. Targeting TGF-β has
been proposed to promote a less immunosuppressive TME that is
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more favourable for immunotherapy and to therefore improve
survival, but clinical trials using TGF-β inhibitors have not led to
improved outcomes [10, 11]. IL-10 is an important pleiotropic
immunoregulatory cytokine that, in the context of cancer, confers
immunosuppression [12, 13] by inhibiting antigen-presenting
cells (APCs), inhibiting T cell proliferation, and inducing the activity
of regulatory T (TREG) cells [14]. However, the role of IL-10 in the
TME and the therapeutic potential of targeting this cytokine in
the context of brain cancer remain unclear. Here we review
the role of IL-10 in brain cancer, discussing its functions in
immunosuppression and tumour progression. We investigate the
molecular mechanisms that might be responsible for regulating
the expression of IL-10 in various cell types and consider how
targeting this cytokine could potentially improve immunotherapy
for patients with GBM.

IL-10 and glioma
Early evidence for the expression of IL-10 in glioma was reported
by Huettner et al. [15], a study which demonstrated elevated levels
of IL10 mRNA in 87% of high-grade (grade III and IV) and 4% of
lower-grade (grade II) gliomas. Consistent with this finding,
analysis of glioma gene expression data from The Cancer Genome
Atlas (http://cancergenome.nih.gov/) and the Chinese Glioma
Genome Atlas (CGGA) (http://www.cgga.org.cn/) revealed IL10
mRNA expression to be elevated in high-grade glioma (grades III
and IV) compared to low-grade (grade II) glioma (Fig. 1). There is
limited evidence linking IL-10 expression with glioma patient
survival. One study directly investigating this link suggested that a
single-nucleotide polymorphism within the promoter region of
the IL10 gene (rs1800871 C/T genotype), which leads to decreased
IL10 mRNA expression, correlated with a modest increase in
overall and progression-free survival in low-grade but not in high-
grade glioma patients [16]. It is tempting to speculate that the
reported improved patient outcome was due to reduced IL-10
expression in glioma tissue, but the study did not investigate IL-10
expression directly, so a direct link between IL-10 expression and
glioma patient prognosis remains to be determined.
Although the cellular source of IL-10 in glioma has not been

determined, evidence suggests that a subpopulation of CD133+

stem-like glioma cells express a higher level of IL10 mRNA and
protein compared to CD133– glioma stem-like cells [17]. The
expression of IL-10 in CD133+ glioma stem cells requires
activation of the Toll-like receptor 4 (TLR4) pathway, which has
been shown to support immune evasion [18]. The secretion of IL-
10 by tumour cells is thought to activate tumour-infiltrating
immune cells such as microglia and macrophages, which are
then triggered to produce the majority of IL-10 in the tumour
tissue [7, 19, 20]. Despite not being a major source of IL-10, low-
and high-grade glioma cells express the IL-10 receptors IL10RA
and IL10RB [21, 22], suggesting that glioma cells are responsive
to IL-10 (Fig. 1). In glioma cells, the IL-10 receptors activate the
Janus kinase–signal transducer and activator of transcription-3
(JAK–STAT3) pathway, which, in turn, regulates tumour cell
proliferation, migration and invasion [23, 24].

IL-10 and tumour progression
As well as its immunomodulatory functions with both immuno-
suppressive and immunostimulatory activities, IL-10 can promote
tumour progression by increasing cancer cell proliferation. In the
B16 melanoma mouse model, IL-10 enhanced tumour growth by
stimulating angiogenesis, immunosuppression and tumour-cell
proliferation [25]. Similarly, in vitro studies have demonstrated an
IL-10-mediated dose-dependent increase in cell proliferation in
U87MG glioma cells [26]. In a mechanism that does not require
either IL10RA or IL10RB, IL-10 released from macrophages can bind
directly to JAK2 in glioma cells to induce JAK2–STAT3 signalling
and thereby promote the proliferation of glioma cells [24].
Alternatively, binding by IL-10 to the IL-10 receptor activates

JAK1 and non-receptor tyrosine protein kinase (TYK2), leading to
the activation of STAT3 to promote an anti-inflammatory response
[27]. In neurodegeneration studies, IL-10 was shown to inhibit
apoptosis via IL-10 receptor-mediated phosphatidylinositol-4,5-
bisphosphate-3-kinase (PI3K)–Akt-dependent expression of the
anti-apoptotic factors B cell lymphoma 2 and B cell lymphoma
extra-large and attenuation of the pro-apoptotic caspase-3 [28].
Although IL-10 may play a similar anti-apoptotic role in glioma, this
remains to be investigated. In contrast with these findings,
however, studies in a 9L glioma mouse model expressing IL-10
and IL-2 suggest that IL-10 promoted a reduction in tumour size
and increased T cell infiltration [29]. These conflicting results
highlight the spectrum of IL-10 effects and suggest that IL-10
regulates glioma cell apoptosis via direct and indirect mechanisms,
depending on the immune cells contexture of the TME.

IL-10 and tumour-cell invasion
The contribution of IL-10 to tumour-cell invasion is unclear.
Co-culturing ovarian cancer cells with immune cells such as CD8+

T cells promoted the invasion and migration of the cancer cells
through IL-8- and IL-10-mediated upregulation of matrix metallo-
proteinases (MMPs) and urokinase [30]. Similarly, IL-10-stimulated
macrophages are more effective than lipopolysaccharide-stimulated
‘pro-inflammatory’ macrophages at promoting the invasion of
gastric and colorectal cancer cells via the induction of MMP-2 and
MMP-9 [31]. In patients with glioma, the mRNA and protein levels of
IL-10 in the blood correlate with malignancy and glioma grade
[32, 33]. Furthermore, cells from higher-grade gliomas exhibit a more
invasive capacity than cells from lower-grade gliomas, and notably,
IL10 mRNA is selectively expressed in more invasive gliomas
compared to less malignant gliomas [34].
Huettner et al. [15] demonstrated that, in addition to

contributing to an immunosuppressive TME, IL-10 enhanced cell
proliferation and migration in two glioma cell lines. Considering
the role of IL-10 in ovarian and colorectal cancer cells outlined
above, it is plausible that IL-10 could also promote the expression
of invasion-associated molecules such as MMP-2 and MMP-9 in
glioma cells. MMPs play a key role in the degradation of the ECM
and facilitate the migration of cancer cells throughout the
parenchyma [35]. It has also been suggested that IL-10 indirectly
increases glioma cell invasion by upregulating the expression of
KPNA2 ((karyopherin subunit alpha 2) [26], a nuclear transport
protein whose expression correlates with histological glioma
grade and invasive activity. Treatment with IL-10 enhanced
the invasion of U87MG cells, whereas knockdown of KPNA2 in
IL-10-treated U87MG cells inhibited glioma cell invasion [26].
Alternatively, perhaps IL-10- and MMP-expressing TAMs influence
glioma cells to adopt pro-invasive properties [36]. Another study
demonstrated that IL-10-treated microglia exhibit increased
formation of podosomes [37], F-actin-rich structures that are
essential for cell migration and ECM degradation, allowing
activated microglia to infiltrate the tissue during inflammation
[38]. Glioma cells also possess F-actin-rich invadopodia on the
surface of their membrane, and these structures facilitate glioma
cell invasion into healthy brain tissue [39].

IL-10 IN THE GLIOMA TME
IL-10 and TAMs
TAMs: Tumour-associated pro- and anti-inflammatory microglia and
macrophages. TAMs, which include brain-resident microglia and
bone marrow-derived macrophages, constitute up to 50% of the
GBM tumour mass, particularly in GBM expressing wild-type
isocitrate dehydrogenese [40–44], and are a primary source of IL-
10 [7, 45]. Bone marrow-derived macrophages contribute to ~85%
of the entire TAM population and predominate in the GBM core,
whereas microglia tend to localise in the peritumoural regions
[44, 46]. Interestingly, bone marrow-derived macrophages express
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increased levels of immunosuppressive factors, including IL10, C-C
motif chemokine ligand 22 (CCL22) and CXC chemokine receptors,
compared to microglia [43]. However, microglia can also express
anti-inflammatory markers and secrete anti-inflammatory cyto-
kines, including IL-10 [47]. TAMs exist as a spectrum of various
functional forms, depending on their activation state: from pro-
inflammatory to immunosuppressive. Immunosuppressive cells
are characterised by the production of anti-inflammatory cyto-
kines, including IL-4, IL-10 and TGF-β [48, 49]. However, although
IL-10 has often been regarded as an anti-inflammatory marker, it
has been discovered that IL-10-expressing TAMs isolated from
glioma express both pro- and anti-inflammatory markers, includ-
ing TGF-β and tumour necrosis factor α (TNF-α) [50].

TAM activation. TAMs undergo activation by secreted factors
derived from glioma cells, possibly including IL-10 itself. In vitro
studies suggest that IL-10 is secreted by TAMs after incubation
with glioma-conditioned medium [20, 45, 51]. Kostianovsky et al.
[52] showed that co-culturing human monocytes and GBM
tumour cells led to both the production of IL-10 and constitutive
activation of STAT3 in both cell types, suggesting that bidirec-
tional signalling might occur via IL-10-induced STAT3 activity
between glioma cells and TAMs [52]. IL-10 production by TAMs is
also accompanied by an increase in the expression of other anti-
inflammatory cytokines and proteins, including CD206, IL-4, CCL2
and TGF-β [53]. The levels of IL-10 also correlate with other tumour
characteristics. For example, higher levels of IL-10 and other
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Fig. 1 Elevated levels of IL10, and IL-10 receptors, IL10RA and IL10RB mRNA, in glioma patient samples. Glioma patient samples from the
Chinese Glioma Genome Atlas (CCGA) and The Cancer Genome Atlas (TCGA) cohorts were analysed using the GlioVis glioma data portal
(http://gliovis.bioinfo.cnio.es/). IL10, IL10RA and IL10RB mRNA expression levels increase with glioma grade (II, III, IV). Statistical significance
(Tukey’s Honest Significant Difference) is indicated, ***p < 0.0005. Publicly available mRNA expression data were used to generate the boxplots
using the Matplotlib library, Python 3.9.1.
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anti-inflammatory cytokines were secreted by TAMs stimulated by
temozolomide-resistant GBM cells, compared to TAMs stimulated
with temozolomide-sensitive GBM cells [53].
IL-10 alone can drive TAM alternative polarisation to the anti-

inflammatory state in vitro [45, 54]. However, some studies
suggested that TAM polarisation might occur following stimula-
tion with other cytokines released by glioma cells, such as IL-4 and
macrophage colony-stimulating factor (M-CSF or CSF-1), whose
cognate receptors are highly expressed in undifferentiated TAMs
(Fig. 2) [55–57]. IL-10 and IL-4 can also synergise to activate TAMs.
In this scenario, IL-10 is involved in upregulating the expression of
the IL-4 receptor in TAMs [55]. The synergy between IL-10 and IL-4
is also supported by another study demonstrating that a
combination of IL-10 and IL-4 enhances the expression of anti-
inflammatory markers in bone marrow-derived macrophages
in vitro compared to those treated with a single cytokine [58].
Collectively, these studies suggest that the ability of TAMs to
produce IL-10 is dependent on signals from both tumour cells and
the TME.

The anti-inflammatory phenotype and reduced antigen presentation.
Once activated, IL-10-stimulated TAMs adopt anti-inflammatory
characteristics and reduce their antigen-presentation capacity
(Fig. 2). Antigen-presenting molecules such as major histocompat-
ibility class (MHC) class II and co-stimulatory molecules such as
CD86 are downregulated in TAMs as a consequence of the
upregulation of the membrane-associated E3 ubiquitin ligase
MARCH1 following IL-10 activation. This downregulation of
antigen-presenting molecules subsequently impairs CD4+ T cell
activation [59] and is consistent with studies showing that TAMs
with this anti-inflammatory phenotype express lower levels
of MHC class II in comparison with pro-inflammatory TAMs and
naive TAMs [57]. The expression of human leucocyte antigen class

I (or MHC class I) as well as CD80, CD86 and intercellular adhesion
molecule 1 was also attenuated in human monocytes when
cultured in the presence of IL-10 [14]. Other than reducing their
antigen-presenting capacity, TAMs also upregulate immune
checkpoint proteins such as programmed death-ligand 1 and
B7-H4 following IL-10 stimulation, which leads to T cell apoptosis
and impaired effector function [45, 60].

IL-10 and tumour-associated T cell function
As a result of tumour-mediated angiogenesis and/or MMP
secretion, the BBB is disrupted in patients with GBM, enabling
peripheral lymphocytes to enter the CNS and infiltrate the tumour
[61–63]. Both CD4+ and CD8+ T cells migrate into the brain, where
they encounter an immunosuppressive microenvironment.
Tumour-infiltrating T cells often accumulate in the perivascular
areas; only a small proportion can infiltrate deeper into the
tumour core. In the perivascular areas, T cells typically express
markers of immune exhaustion [64–66]. Notably, however, T cells
can be sequestered in the bone marrow through the tumour-
mediated loss of sphingosine-1-phosphate receptor 1; this
receptor normally promotes T cell exit from the bone marrow,
suggesting that GBM-derived immunosuppression could poten-
tially have a systemic or humoral influence [67]. In general,
therefore, the number of infiltrating CD4+ and CD8+ T cells in
glioma is relatively low in comparison with other immune cells,
especially macrophages [66, 68]. Tumour-infiltrating T cells are
likely involved in IL-10 paracrine signalling within the GBM TME, as
evidenced by the expression of IL10RA and IL10RB on patient-
derived leucocytes, potentially T cells [69], thereby inhibiting
cytotoxic T cell function.

TREG cells. TREG cells, which are characterised by the expression of
forkhead box protein 3 (FOXP3), represent a low proportion of
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tumour-infiltrating T cells in glioma patients [66, 70, 71]. TREG cell
infiltration occurs to a greater extent in astrocytic gliomas
compared with non-astrocytic tumours, suggesting greater TREG-
driven immunosuppression in the higher-grade astrocytic cancers
[71, 72]. Although most studies suggest that TREG cells are not
present in GBM, some studies show that when TREG cells are
present, they are a source of IL-10 and TGF-β [73, 74]. The role of
TREG cells in modulating tumour immunosuppression was
demonstrated by the occurrence of tumour rejection and
improved survival, in response to the depletion of TREG cells in a
murine glioma model [71]. IL-10, as well as modulating the TME, is
crucial for the function of TREG cells. FOXP3-expressing naive
T cells require IL-10 and TGF-β to differentiate into TREG cells [75].
Moreover, IL-10 produced by glioma-stimulated dendritic cells
facilitates an immunosuppressive response in CD4+ T cells in vitro,
as evidenced by high IL-10 and low TNF-α secretion [76]. This TREG
cell suppressor function relies on the activation of IL-10R, which
further activates the STAT pathway [77].

CD4+ and CD8+ T cells. IL-10 inhibits the function of T cell
subtypes, including CD4+ type 1 T helper (Th1), type 2 T helper
(Th2) and type 17 T helper (Th17) cells [77–79]. This inhibitory role
is mediated by APCs, as demonstrated by the dysfunction of CD4+

Th1 and Th2 effector cells following incubation with IL-10-
stimulated APCs [78]. Furthermore, TREG cells are also involved in
the IL-10-mediated negative regulation of Th1 and Th17 CD4+

T cells [77, 79], as shown in a B16/F10 mouse model in which
depletion of IL-10 downregulates TREG cell differentiation and
enhances Th1 and Th17 immunity [79].
The indirect inhibitory roles of IL-10 have also been reported in

CD8+ T cells, as shown by their unresponsiveness to antigens and
inability to proliferate after activation by monocytes in the
presence of IL-10 [14]. Moreover, IL-10-stimulated TREG cells are
also involved in inhibiting CD8+ T cell-mediated anti-tumour
immunity by increasing the expression of immune checkpoint
factors such as programmed cell death protein 1 (PD-1), T cell
immunoreceptor with Ig and ITIM domains and lymphocyte
activation gene 3 mediated by the transcription factor B
lymphocyte-induced maturation protein 1 (Blimp-1) [73]. Finally,
the inhibitory roles of tumour-derived IL-10 have been demon-
strated in splenic dendritic cells, which lose their ability to
stimulate tumour-specific cytotoxic T lymphocytes, and an
interferon-γ (IFN-γ) response in CD4+ and CD8+ T cells in MB49
tumour-bearing mice [80]. Together, this evidence indicates that
IL-10 negatively regulates CD4+ and CD8+ T cell function and anti-
tumour immunity, with the involvement of APCs or TREG cells.

An immunostimulatory role for IL-10?. Although IL-10 is largely
involved in immunosuppression, several studies have reported
contradictory functions, particularly in regulating the behaviour of
CD8+ cytotoxic T cells. Groux et al. [14] demonstrated that IL-10
can stimulate the proliferation of CD8+ T cells in the absence of
APCs in vitro. Furthermore, IL-10 has been shown to be necessary
for inducing T cell cytotoxicity against tumour cells and for the
expression of anti-tumour cytokines, such as IFN-γ, as well as the
expression of granzymes and perforin, and the release of
molecules necessary for antigen presentation [81]. This immunos-
timulatory function of IL-10 has been observed in different types
of cancer, including cancer of the small intestine [82] and gastric
cancer [83]. Emmerich et al. [84] have shown that IL-10 stimulates
tumour-resident CD8+ T cells in mice through the activation of the
STAT3 and STAT1 pathways, which activate T cells to release IFN-γ
[84]. These specific intratumoural CD8+ T cells were reported to
express increased levels of IL-10R in comparison to the CD8+

T cells in the nearest draining lymph nodes, suggesting that direct
interaction with IL-10 is necessary for the cytolytic activity of the
T cells in the tumour [84]. Although this phenomenon has not
been reported in glioma or other cancers of the CNS, the

stimulatory role of IL-10 in glioma-infiltrating CD8+ T cells requires
further investigation.
In addition to CD8+ T cells, in vitro experiments have

demonstrated that Th1 CD4+ T cells require IL-10 to adopt anti-
tumour functions [85]. After stimulation with dendritic cells loaded
with GBM lysate, these Th1 CD4+ T cells release IL-10, as well as
IFN-γ, suggesting that IL-10 has a role in T cell antigen uptake and
processing. This study also showed that lower levels of IL-10
(~40% of control dendritic cell stimulation) were sufficient for
triggering CD4+ T cell-mediated anti-tumour activity. Although
the level of IL-10 released by these T cells was relatively low, it was
reported that the induction of IL-10 was sustained and correlated
with tumour suppression.
It is important to note that the stimulatory role of IL-10 could

depend on the balance of pro- and anti-inflammatory cytokines in
the TME. This was demonstrated in an in vivo study where a more
robust anti-tumour effect was observed in mice transplanted with
glioma cells expressing IL-10 and IL-2 compared with those
transplanted with tumour cells producing only IL-10 or IL-2 [29].
Enhanced T cell infiltration into the tumour was also seen in the
IL-10 IL-2 mice, supporting the notion that IL-10 has a role in T cell
anti-tumour activity in the TME, one that must be balanced with
the action of pro-inflammatory cytokines. This finding, together
with the report from De Vleeschouwer et al. [85], provides
evidence that IL-10 might be crucial for CD4+ and CD8+ T cell
anti-tumour activity in brain cancer.
Collectively, most studies investigating the impact of IL-10 on T

cell function indicate an indirect inhibitory effect of IL-10 on
effector T cells mediated by regulatory immune cells including
TAMs, dendritic cells or TREG cells. On the other hand, immunos-
timulatory roles of IL-10 are achieved when IL-10 directly interacts
with effector T cells to activate their anti-tumour functions (Fig. 3).

IL-10 and systemic immunosuppression in glioma patients
An increased level of IL-10 is seen in the sera from glioma patients
compared with the sera from healthy individuals [86, 87].
Unsurprisingly, the IL-10 serum level is also higher in patients
with high-grade glioma compared with low-grade glioma
[9, 15, 88]. This evidence indicates that tumour immunomodula-
tion takes place systemically and might be correlated with the
characteristics of the immune cells outside the CNS, which exhibit
an immunosuppressive phenotype. For example, an elevated
number of CD163+ peripheral macrophages were detected in
pretreated, newly diagnosed glioma patients compared with
healthy individuals. Additionally, the expression of exhaustion
markers such as PD-1 on peripheral CD4+ T cells was higher in
those patients [89].

Targeting IL-10
Considering the important role of IL-10 in glioma progression and
its involvement in the TME, an improvement in the effectiveness
of current immunotherapies for GBM could potentially be
achieved by targeting the IL-10 axis. However, there is limited
research on IL-10-targeted therapies for GBM. To develop effective
IL-10-based therapeutic strategies for GBM, it is necessary to not
only adopt strategies used in other cancers but to also consider
how efficiently systemically delivered therapeutics penetrate the
BBB. Broadly, there are two aspects of IL-10-targeted therapy with
respect to its biological roles. As IL-10 can impede anti-tumour
immunity, its inhibition might be considered for glioma therapy.
Alternatively, enhancing IL-10 signalling could be used as an anti-
tumour immunity booster.

Inhibiting IL-10 signalling
The rationale for blocking IL-10 in cancer is based on its tumour
immunosuppressive role. Neutralising the signalling pathway
could therefore reverse immunosuppression, increase anti-
tumour T cell-mediated cytotoxicity and improve the efficacy of
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other immunotherapies, including immune-checkpoint inhibition
and anti-tumour vaccination. Blocking IL-10 signalling could be
achieved by using IL-10 inhibitors or neutralising antibodies that
target the IL-10 receptor. Several agents have demonstrated IL-10
inhibition in human and mouse monocytes and macrophages
[90–92]. Compounds such as oleanolic acid were also shown to
inhibit IL-10 secretion, attenuate macrophage anti-inflammatory
activity and reduce tumour cell proliferation [93]. Inhibiting the IL-
10 signalling pathway can also be achieved by using an anti-IL-10
antibody, although such antibodies are most effective when
combined with other immunotherapies. For example, concomitant
IL-10 and PD-1 inhibition increased the proliferation of patient-
derived CD8+ T cells in vitro [94]. Conversely, CD8+ T cells became
more sensitive to IL-10 treatment following treatment with PD-1
inhibitors, leading to diminished CD8+ T cell proliferation. These
results implicate IL-10 in an immune resistance mechanism in
response to PD-1 inhibition. The synergistic effect of PD-1
inhibition and IL-10 blockade was also reported in ovarian
cancer-bearing mice [95]. Interestingly, this study reported a
systemic increase in IL-10 in the mice following treatment with a
PD-1 inhibitor, which might be attributable to a dendritic cell
response. The combination of IL-10 blockade and PD-1 inhibition

resulted in slower tumour growth, increased immune-cell infiltra-
tion, a decrease in myeloid-derived suppressor cell infiltration and
prolonged mouse survival, compared to treatment with either
agent alone. IL-10 blockade also improved the efficacy of a human
papillomavirus (HPV)-derived vaccine (HPV16E7 vaccine/MPLA) in
a cervical cancer mouse model. Interestingly, this combined
approach increased the number of IL-10-producing T cells, but not
FOXP3+ CD4+ TREG cells, in the spleen and draining lymph nodes
[96, 97]. These studies suggest that IL-10 might be necessary for
splenic CD4+ T cell maturation en route to eliciting an anti-tumour
response.

Enhancing IL-10 signalling
As outlined above, some studies suggest that IL-10 can enhance
anti-tumour immunity. Pegylated IL-10 has been shown to elicit
the proliferation of tumour-reactive CD8+ T cells, as well as an
increased production of granzyme B via activation of the STAT3
pathway [98]. The same study also reported that a combination of
pegylated IL-10 and a PD-1 inhibitor, pembrolizumab, enhanced
CD8+ T cell expansion and tumour rejection in patients with
advanced solid tumours, such as melanoma, non-small cell lung
cancer or renal cell carcinoma. This treatment regime is currently

Indirect effects of IL-10 on T cells in glioma
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being investigated in a Phase Ib trial (Table 1, NCT02009449) [99].
The toxicity profile of this combinatorial treatment demonstrates
safety and early anti-tumour activity.
Pegylated IL-10 was also investigated in a Phase III trial

alongside chemotherapy (FOLFOX) as a second-line treatment to
treat patients with metastatic pancreatic ductal adenocarcinoma,
but the addition of pegylated IL-10 did not appear to improve the
efficacy of chemotherapy alone (Table 1, NCT02923921) [100].
Although clinical studies have reported tolerable toxicity,
systemic adverse effects of IL-10 have been reported in some
patients [101]. Consequently, a fusion of IL-10 and an anti-
epidermal growth factor receptor (EGFR) antibody, cetuximab,
was developed to facilitate the specific delivery of IL-10 to
tumours to reduce the adverse effects of IL-10 [102]. This
recombinant IL-10–EGFR fusion demonstrated superior efficacy
compared with recombinant IL-10 alone, in a syngeneic B16
melanoma mouse tumour model. The study also reported an
increased proliferation of CD8+ T cells due to the inhibition of
dendritic-cell-induced T cell apoptosis [102]. Despite the promis-
ing results in some primary solid cancers, the suitability of IL-10
for brain cancer remains to be investigated.

IL-10 as a potential target in brain cancer
Neutralising the IL-10 signalling pathway or using IL-10 as an
immune stimulator results in T cell activation. Although it is
difficult to define the context in which IL-10 is immunosuppressive
or immunostimulatory, it is tempting to speculate that IL-10
becomes immunosuppressive when T cells are activated by anti-
inflammatory TAMs that have previously been stimulated by IL-10,
whereas IL-10 may be stimulatory when it directly engages the IL-
10 receptor on T cells. Considering that TAMs are the major source
of IL-10 in the GBM TME, selectively targeting these cells might
significantly reduce the level of IL-10, thus leaving a sufficient level
of IL-10 produced by other cells in the TME to elicit an anti-tumour
response. For this reason, it is critical to elucidate not only all the
cellular sources but also the associated transcriptional regulation
of IL-10 in the GBM TME.

Transcriptional regulation of IL-10
The IL10 gene and its promoter have been extensively studied in
immune cells [103], with the regulation of expression varying in
different cell types. In macrophages and dendritic cells, for
example, the levels of IL10 mRNA are coregulated by TLR4 and the
mitogen-activated protein kinase (MAPK) pathway [104]. More
specifically, the expression of IL-10 relies on specific transcription
factors, including the cAMP response element-binding protein
(CREB), nuclear factor-κB and CCAAT/enhancer-binding protein β
(Table 2). In CD4+ T cells, IL10 transcription is regulated by SMAD
family member 4, E4 promoter-binding protein 4, interferon
regulatory factor 4 and BLIMP-1. As IL-10 expression is modulated
differently in these immune cells, it can be reasoned that it might

be possible to modulate IL-10 secretion by targeting transcription
factors that regulate IL-10 expression in TAMs.

Targeting CREB
Targeting CREB in GBM might attenuate both GBM cell survival
and the TAM-mediated release of IL-10. CREB requires phosphor-
ylation on serine 133 to initiate IL10 transcription in TAMs [104],
but CREB is also phosphorylated (Ser133) in glioma tumour cells
and this phosphorylation correlates with a higher grade of glioma
[105]. In GBM tumour cells, phosphorylated CREB sits at the hub of
the PI3K and MAPK signalling pathways and is involved in the
regulation of various cellular functions, including proliferation,
survival and the expression of TGF-β2 [105, 106]. Previous findings
showed that CREB deletion attenuates tumour growth in a PI3K-

Table 1. Ongoing IL-10-based therapy in clinical trials (2021).

Trial ID Condition Drug Outcome Publications

NCT02009449
(Phase I)

Melanoma
Prostate cancer
Ovarian cancer
Breast cancer
Renal cell carcinoma
Colorectal carcinoma
Pancreatic carcinoma
Non-small cell lung
carcinoma
Solid tumours

Pegylated IL-10 alone or in combination with
paclitaxel, docetaxel, carboplatin, cisplatin,
FOLFOX, oxaliplatin, leucovorin, 5-fluorouracil,
gemcitabine, nab-paclitaxel, capecitabine,
pazopanib, pembrolizumab or nivolumab

Combination with anti-PD-1
antibody demonstrated early
anti-tumour activity
Toxicity profile of pegylated
IL-10 was considered
manageable

[99, 101]

NCT02923921
(Phase III)

Pancreatic cancer Combination of pegylated IL-10 and FOLFOX
vs FOLFOX alone as second-line treatment

Pegylated IL-10 did not
improve the efficacy
of FOLFOX

[100]

Table 2. Transcription factors regulating IL-10 expression in
immune cells.

Immune cell Transcription factor Reference

Macrophages CREBATF1 [104, 116, 117]

C/EBPβ [116, 118]

SP1, SP3 [119, 120]

NF-κB [121]

C-MAF [122]

AP-1 [123]

Microglia MEF2D [124]

CREB [125]

Dendritic cells NF-κB [126]

Th1 cells SMAD4 [127, 128]

E4BP4 [129]

IRF4 [130]

BLIMP-1 [131]

T-BET, BHLHE40 [132]

Th2 cells GATA3 [133]

E4BP4 [129]

IRF4 [130]

ETV5 [134]

Th17 cells C-MAF [135]

TRIM33, RORγT [136]

BATF, JUN, IRF4 [137]

Tr1 cells C-MAF [138]

Regulatory T cells E4BP4 [129]

BLIMP 1 [139, 140]

IRF4 [140]
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hyperactivated GBM mouse [107], which suggests that targeting
CREB could be a potential strategy for GBM therapy.
One potentially useful experimental small-molecule CREB

inhibitor is 666–15, which disrupts the interaction between CREB
and one of its key transcriptional cofactors, the CREB-binding
protein, thus inhibiting transcription of CREB target genes. The
potential clinical utility of small-molecule CREB inhibitors is
promising. In vivo experiments demonstrate that 666–15 has no
demonstrable negative systemic effects but can inhibit tumour
growth in mice [108]. Evidence that CREB inhibition decreases
immunosuppression comes from data showing reduced IL-10 and
increased TNF-α levels in microglia, in vitro [109]. In the same
study, 666–15 was injected intraperitoneally in an ischaemic
stroke rat model and its pharmacological effects were apparent in
the brain 72 h post-injection, indicating that 666–15 crosses the
BBB [109]. Moreover, in the context of modulating the immune
TME, 666–15 has been shown to improve the tumour immune
contexture by boosting the function of infiltrating T cells [110]. In a
pancreatic cancer mouse model [111], treatment with 666–15 led
to reduced tumour growth, reduced infiltration of TAMs and TREG
cells and increased cytotoxic T cell infiltration. And in another
study, CREB inhibition downregulated myeloid-derived suppressor
cell gene expression and ameliorated CD8+ T cell activity [112].
These findings suggest that targeting CREB could be a novel

therapeutic strategy in GBM by affecting tumour cells at two levels:
inhibiting tumour cell proliferation and minimising IL-10-mediated
immunosuppression, without hindering T cell cytotoxicity. Further-
more, the strategy of targeting tumour cells and IL-10 secretion by
TAMs is not limited to inhibiting CREB, as other transcription factors
are also involved in coregulating IL-10 expression (Table 3). For
example, targeting the transcription factor SP1 with mithramycin
A reduces IL-10 expression in alveolar macrophages [113], inhibits
glioma migration by blocking the production of MMPs [114]
and reduces the astrocytic expression of CCL-2 and CXCL-1, which
are crucial for myeloid cell recruitment and tumour progression in
GBM [115].

CONCLUSION
IL-10 is expressed by a wide range of cells in the GBM TME and
plays crucial immunosuppressive roles, thereby promoting tumour
progression and immune evasion. As IL-10 has also been reported
to be required for T cell anti-tumour activities, it will be
challenging to design IL-10-targeting treatments that are specific
for GBM. Understanding the signalling and transcriptional
mechanisms that regulate IL-10 expression in different cell types
is crucial for the development of specific targeting strategies
aimed at blocking tumour immunosuppression and enhancing
anti-tumour immunity. Ultimately, developing novel combination
therapies with current immunotherapy drugs that can efficiently
cross the BBB will improve treatment efficacy for difficult-to-treat
cancers, such as GBM.
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