Skip to main content
. 2021 Nov 23;25(4):2715–2737. doi: 10.1007/s10586-021-03439-5

Table 2.

Frame-level anomaly detection running time comparison

Method Platform CPU GPU Running time (seconds per frame)
UCSD Ped1 UCSD Ped2
MDT [6] 3.0 GHz 25
AMDN [3] MATLAB 2.1 GHz Nvidia Quadro K4000 5.2 7.5
XU et al. [61] without GPU Pytorch 2.1 GHz 2.68 6.84
Hierarchical framework [62] MATLAB 3.0 GHz 5 5
ST-CNN [63] Caffe 2.8 GHz 0.37 0.39
AED [64] N/A N/A N/A 0.073
ICN [65] Tensorflow 2.4 GHz NVIDIA Tesla K40c 0.18
XU et al. [61] with GPU Pytorch 2.1 GHz Nvidia TITAN X 0.00242 0.00265
Two-Stream R-ConvVAE [4] Tensorflow 2.6 GHz Nvidia TITAN X 0.0012
Oursa Tensorflow 2.6 GHz Nvidia V100, Nvidia TITAN Xp tpre+2.18×10-5

tpre+

3.71×10-5

aOur pre-trained model running timetpre=0.067