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Abstract

Review Article

Introduction

Digital pathology is rapidly gaining prominence with the 
development of modern imaging modalities and advancements 
in novel technologies. During histopathology assessment, 
which is the current gold standard for cancer diagnosis, 
surgical samples obtained from tumor biopsy and/or resection 
are typically prepared and stained using hematoxylin and 
eosin  (H&E) stains and/or other techniques.[1] Hematoxylin 
stains cell nuclei blue/purple in color, whereas eosin gives a 
pink color to the cytoplasm and the connective tissues. Manual 
examination of the H&E stained slides is performed by trained 
pathologists for tumor diagnosis and grading, with the aim to 
guide further treatment and to give prognostic information. The 
inception and evolution of whole‑slide imaging in the late 1990s 
has enabled complete histopathological slides to be recorded 

and digitally stored at high resolution using microscope‑based 
slide scanners or whole‑slide scanners.[2] A whole‑slide 
image  (WSI), also referred to as virtual slide, is the digital 
representation of a histopathology slide which provides visual 
information about the H&E and/or other staining techniques, 
in a range of multiple scales and different focal planes.

The increasing presence of digital pathology in contemporary 
medicine has motivated many researchers to explore the 

Digital pathology is gaining prominence among the researchers with developments in advanced imaging modalities and new technologies. 
Generative adversarial networks (GANs) are a recent development in the field of artificial intelligence and since their inception, have boosted 
considerable interest in digital pathology. GANs and their extensions have opened several ways to tackle many challenging histopathological 
image processing problems such as color normalization, virtual staining, ink removal, image enhancement, automatic feature extraction, 
segmentation of nuclei, domain adaptation and data augmentation. This paper reviews recent advances in histopathological image processing 
using GANs with special emphasis on the future perspectives related to the use of such a technique. The papers included in this review were 
retrieved by conducting a keyword search on Google Scholar and manually selecting the papers on the subject of H&E stained digital pathology 
images for histopathological image processing. In the first part, we describe recent literature that use GANs in various image preprocessing 
tasks such as stain normalization, virtual staining, image enhancement, ink removal, and data augmentation. In the second part, we describe 
literature that use GANs for image analysis, such as nuclei detection, segmentation, and feature extraction. This review illustrates the role 
of GANs in digital pathology with the objective to trigger new research on the application of generative models in future research in digital 
pathology informatics.

Keywords: Artificial intelligence, deep learning, digital pathology, generative adversarial networks, histopathology, image processing, 
whole‑slide imaging

Address for correspondence: Mrs. Laya Jose, 
Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty 

of Medicine, Health and Human Sciences, 1st Floor, 75 Talavera Road, 
Macquarie University, Sydney, Australia.  

E‑mail: laya.jose@mq.edu.au

Access this article online

Quick Response Code:
Website:  
www.jpathinformatics.org

DOI:  
10.4103/jpi.jpi_103_20

This is an open access journal, and articles are distributed under the terms of the Creative 
Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to 
remix, tweak, and build upon the work non‑commercially, as long as appropriate credit 
is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Jose L, Liu S, Russo C, Nadort A, Di Ieva A. 
Generative adversarial networks in digital pathology and histopathological 
image processing: A review. J Pathol Inform 2021;12:43.
Available FREE in open access from: http://www.jpathinformatics.org/text.
asp?2021/12/1/43/329833

Generative Adversarial Networks in Digital Pathology and 
Histopathological Image Processing: A Review

Laya Jose1,2, Sidong Liu1,3, Carlo Russo1, Annemarie Nadort2,4, Antonio Di Ieva1

 1Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia, 
2ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, Australia, 3Australian Institute of Health Innovation, Centre for Health 

Informatics, Macquarie University, Sydney, Australia, 4Department of Physics and Astronomy, Faculty of Science and Engineering,  
Macquarie University, Sydney, Australia

Submitted:  23‑Nov‑2020 Revised: 03‑Mar‑2021 Accepted: 23-Apr-2021 Published: 03-Nov-2021



J Pathol Inform 2021, 1:43	 http://www.jpathinformatics.org/content/12/1/43

Journal of Pathology Informatics2

opportunities in digitally analyzing histopathological images for 
automated pathological diagnosis and decision‑making.[3,4] Several 
novel methods in image processing, including computational 
fractal‑based analysis and artificial intelligence  (AI), have 
been tested against confirmed cases in their ability to extract 
reliable information from images to extend the limits of 
human interpretation beyond viewing a microscopic slide.[5,6] 
Several studies have applied fractal dimension analysis for the 
diagnosis, staging, and prognosis of different cancer types.[7,8] 
The application of AI methodologies in digital pathology has 
enabled pathologists to maximize the knowledge extracted 
from WSIs and has facilitated the automation of tasks that are 
traditionally manual and operator dependent. Niazi et  al.[9] 
reviewed the role of AI in digital pathology by highlighting its 
applications, including education (training next generation of 
pathologists) and quality assurance (assessing interobserver and 
intraobserver variance). The synergetic integration of pathology 
with AI could lead to improvements in education and quality in 
the health care and medical field.

Deep learning is emerging as a powerful tool in machine vision 
and natural language processing and is opening new venues in AI 
with transformative impact on medicine, including neurosciences 
and digital pathology.[10,11] While traditional methods usually 
require “handcrafted” domain‑specific features, deep learning 
methods can directly and automatically detect features from 
the data without the need for labour intensive manual feature 
extraction. Deep learning methods are used in digital pathology 
in many tasks including image preprocessing,[12] segmentation 
and detection of histologic primitives,[13,14] and grading and 
prognosis.[15,16] In 2014, Goodfellow et al.[17] introduced the 
generative adversarial networks  (GANs) as a deep learning 
concept capable of learning representative distributions of data 
and generating new, synthetic data that can be used as real data 
substitutes or complements.

GANs have achieved state‑of‑the‑art performance in many 
image generation tasks,[18] including text‑to‑image synthesis,[19] 
super‑resolution images,[20] unpaired image‑to‑image 
translation,[21] and various applications in medical imaging 
such as image reconstruction,[22,23] image synthesis,[24] 
segmentation,[25] classification,[26] and other tasks.[27,28] 
Conditional GANs (cGANs), a variant of GANs, have been 
able to virtually stain  images of unstained specimens, to make 
them resemble H&E stained pathology slides.[29] This research 
using the GAN model has shown the possibility that digital 
virtual staining technology could lead to replacement of the 
laborious and expensive process of actual histological staining.

The aim of this paper is to provide an overview of the role of 
GANs in digital pathology, thereby triggering new research 
on the application of generative models in future research in 
digital pathology informatics.

Methods

Search strategy
The papers used in this review were retrieved by conducting 

a search on Google Scholar. Meanwhile, as GANs are 
relatively new, a substantial number of articles are still in the 
publication process toward different journals and conferences, 
so we have also covered pre‑prints published in arXiv. The 
search was limited to the English language and a year range 
of 2014–March 2021 using the keywords “histopathol*” 
and “generative adversarial network*”, “histopathol*” and 
“gan”, “histology” and “generative adversarial network*,” 
“histology” and “gan.”

Inclusion criteria
We included papers that made use of  H&E stained digital 
pathology images for histopathological image processing. All 
papers that (i) applied GANs to other imaging modalities such 
as ultrasound imaging, magnetic resonance imaging  (MRI), 
computed tomography, and positron emission tomography 
or  (ii) used digital slides which were stained with staining 
techniques other than hematoxylin and eosin were eliminated. 
Out of the 435 results listed from the search query, 48 articles 
were chosen for the study after applying a filter of title 
and abstract on the retrieved results to eliminate irrelevant 
papers. Figure  1 shows how the selected publications are 
distributed over different areas of image processing in digital 
histopathology.

Overview of Generative Adversarial Networks

In this section, we provide a general description of GANs 
and a few extensions such as cGANs and cycle‑consistent 
GANs (cycleGANs), which are used as the basis for further 
model development in histopathological image processing.

Generative adversarial network
GANs are a special type of neural network model consisting 
of two networks: a generator network and a discriminator 
network which are trained simultaneously when competing 
with each other.[17] The generative network function G  (x) 
generates new data and the discriminative network function 
D (y) learns to distinguish between the real and the generated 
data. Both networks always compete to optimize themselves; the 
discriminator D tries to maximize its objective function and the 

Figure 1: The distribution of papers selected for this review between the 
different areas in histopathological image processing that use generative 
adversarial networks, dated between 2014 and March 2021. Others 
here refer to tasks such as domain adaptation, image synthesis, image 
enhancement, and virtual staining
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generator G tries to minimize its objective function. Equation 1 
mathematically expresses the objectives of D and G as:
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where D (x) is the discriminator, G (z) is the generator, x is the 
real data, and pz (z) is the input noise. Both networks train each 
other through multiple cycles of generation and discrimination 
when simultaneously trying to outwit each other. This is 
treated as a two‑player minimax game which converges at a 
state known as the Nash equilibrium.[17,30] Figure 2a shows a 
graphical representation of the GAN model.

GANs have gained attention in many areas due to their 
effectiveness in generating new synthetic images which 
can complement or even replace real data.[32‑34] GANs can 
be potentially utilized in several steps of digital pathology, 
including synthesizing images for augmenting the training 
data and processing of histopathology images. State‑of‑the‑art 
GANs, such as a medical imaging GAN developed for retinal 
images, have recently shown impressive results in generating 
synthetic images and their segmented masks which can be 
used for the application of supervised analysis of medical 
images.[32] Moreover, GAN models have been proposed as 
useful tools to learn complex representations of cancer tissues 
in histopathology images.[28,35]

Conditional generative adversarial networks
cGAN are an extension of the GAN architecture, in which both 
the generator and discriminator are conditioned on auxiliary 
information such as a label associated with an image or a more 

detailed tag.[31] The condition information c is fed into both the 
generator and the discriminator as an additional input to direct 
the data generation process. The generator learns to generate a 
sample with this specific condition or characteristics rather than 
a generic sample from unknown noise distribution. Equation 
2 mathematically represents the loss function of cGAN as:
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where D  (xǀc) and G  (zǀc) demonstrate discriminating and 
generating an image given a condition c, x is again the real 
data, and pz (z) is the input noise. Figure 2b shows a graphical 
representation of the cGAN model.

Cycle‑consistent generative adversarial network
A CycleGAN is another GANs’ variant, capable of translating 
images from one domain to another, for example, translating 
images of zebras to images of horses.[21] Image‑to‑image 
translation is traditionally performed by mapping between an 
input image and an output image using a training set of aligned 
image pairs. However, for many tasks, paired training data will 
not be available. The cycleGAN is capable of capturing special 
characteristics of one image domain and translating the image 
into another domain, without having paired images. The model 
of cycleGAN includes two generator networks G and F with 
mapping G : X → Y, F : Y → X and two discriminator networks 
D (x) and D (y). While D (x) aims to distinguish between images 
in domain X and translated images  {F  (y)}, D  (y) aims to 
discriminate between images in domain Y and {G (x)}. Figure 2c 
shows a graphical representation of the cycleGAN model.

Generative Adversarial Networks in 
Histopathological Image Preprocessing

Histopathological WSIs are large‑sized images that provide 
a great source of information. Nevertheless, the information 
contained in the histopathological WSIs is affected by many 
factors such as the type and quality of the microscope or 
scanner used for imaging, the size and magnification of 
the image, vibrations caused by external factors, physical 
color variation due to staining and tissue section preparation 
process, contamination in the sample, noise and defocusing, 
and artifacts. Consequently, preprocessing of histopathological 
WSIs is essential to improve the quality of the images 
prior to applying AI learning algorithms. The importance 
of preprocessing is illustrated by a recent study where 
various preprocessing techniques have been applied to 
histopathological WSIs before feeding them to a convolutional 
neural network (CNN) architecture for classification.[36] The 
results showed an improved classification performance with 
traditional preprocessing techniques such as background noise 
reduction and cell enhancement, as compared to the original 
images. Excessive additional preprocessing, however, for 
example, thresholding or the application of morphological 
operations applied on the already preprocessed images, resulted 

Figure  2: Graphical representation of  (a) the generative adversarial 
network model, (b) the conditional generative adversarial network model, 
and (c) the cycle‑consistent generative adversarial network model. For 
more details please see references 17, 21 and 31.
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in removal of the important image features and subsequent 
performance reduction of the CNN.

The introduction of GANs has triggered a novel approach 
for histopathological image preprocessing. CycleGANs 
have been effectively applied to color normalization of 
breast histopathological images eliminating the requirement 
of having a reference template slide.[37] Super‑resolution 
GANs  (SRGANs) are a variant of GANs that are capable 
of inferring photorealistic natural images. SRGAN has 
been employed to increase image resolution and eliminate 
image noise from breast histopathological images.[38] The 
SRGAN‑based method produced high‑resolution images that 
are cleaner than images preprocessed by classical interpolation 
methods for increasing resolution. The following subsections 
describe various preprocessing tasks using generative 
models: color normalization, virtual staining of histological 
tissue, image enhancement, removal of ink marks from 
histopathological images, and data augmentation.[27,39‑41,51,66,67]

Color normalization
Color variations in digital slides hinder the successful performance 
of deep learning algorithms in digital pathology across 
laboratories and settings. Physical color variations can be a result 
of the biochemical staining process (difference in stain batches, 
variability in staining amount, time, thickness of sections, and 
staining protocol), while color variations can also be due to the 
imaging and digitizing parameters (variations in illumination, (de) 
focusing, imaging resolution and magnification, microscope or 
scanner model, and spectral sensitivity of the detector).[42,43] 
Normalization of the color represented by digital slides is 
thus an important preprocessing task in digital pathology. An 
example of observed color variations in the sample images is 
shown in Figure 3.

Traditional image processing approaches such as histogram 
techniques[45,46] and color models[47,48] have been used for 
color normalization for a long time. The progress in artificial 
neural networks such as convolutional neural networks 
and the generative models has opened innovative paths for 
color normalization. Some of these GAN‑based techniques 
and approaches for color normalization in digital pathology 
are highlighted in Table  1. The listed color normalization 
approaches are based on a style transfer method in which the 
style of the input image is modified based on the style image, 
when preserving the content of the input image.[37,39,50,51,53‑55] 

The methods based on cycleGAN explore the capability 
of unpaired image‑to‑image translation which makes 
it a flexible architecture for stain normalization. Other 
approaches discussed here use alternative formulations such 
as self‑attention models,[56] cGAN,[31] and encoder–decoder 
architecture.[57] The stain normalization stage can be integrated 
into a classification approach to eliminate bias introduced in 
these types of architectures.[50,58]

Virtual staining of histological tissue
GANs have gained significant attention in many other medical 
image processing tasks, including virtual staining of tissues 
slides.[27,29,51,59,60] Histological staining is commonly used in 
pathological diagnosis to highlight the important features of 
tissue. These staining processes are usually lengthy, relatively 
costly, and laborious due to time‑sensitive steps.

Virtual staining can be achieved starting from unstained slides 
imaged using different imaging modalities. In one study, lung 
tissue slides were imaged using a hyperspectral microscope 
where the tissue structure is imaged at many different 
wavelength bands (colors) of the light spectrum.[29] The most 
important information from this multidimensional image cube 
was captured by principal component analysis to reduce the 
cube to a three‑component image which was subsequently fed 
to a cGAN to train the staining network model. The trained 
network was able to transform images from the hyperspectral 
domain to the H&E domain by highly nonlinear mappings, 
resulting in their virtually stained versions.

Virtual staining can also be achieved using conventional 
broadband light illumination, by training a cGAN using 
RGB‑colored WSI pairs before and after H&E staining.[51] In 
addition, a “destaining” model was developed that learned the 
reversed mapping between an RGB image pair of an H&E 
stained WSI and a non‑stained WSI of the same biopsy. The 
authors could examine their models qualitatively by comparing 
the original H&E stained section to their virtually destained 
and restained counterparts; however, further suitability of the 
generated images for tumor diagnosis was not pursued and 
further clinical validation is necessary.

A related domain transfer approach in virtual staining 
techniques is the transfer from H&E stained specimens to 
their immunohistochemistry (IHC)‑stained equivalents. IHC 
stains target specific proteins on cells on the tissue slide and 

Figure 3: Original H&E stained glioblastoma pathology slides obtained from The Cancer Genome Atlas database[44] showing diverse color variations 
in the sample images
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display different colors. A conditional cycleGAN was trained 
to achieve unpaired image‑to‑image translation for multiclass 
virtual IHC staining.[27] Optimized structure and authenticity 
preservation was achieved by including additional loss 
functions for structural and photorealistic properties of the 
created virtual slide.[61,62] To evaluate the results, computer 
vision researchers were asked to score the image quality of 
real and fake images, and professional pathologists were asked 
to score the staining quality of the virtually stained patches. 
Although the conditional cycleGAN had a higher authenticity 
score as compared to the cycleGAN, both models suffered 
considerably from incorrect staining. The authors suggest 
to improve this domain transfer issue by increasing and 
optimizing the training dataset. 

The ability of virtually staining is also demonstrated in 
many other image modalities such as autofluorescence 
image captured by a standard fluorescence microscope,[60] 
quantitative phase images,[59] confocal microscopy images,[63] 
and holographic virtual staining of individual biological 
cells.[64] Virtual staining of histological tissues has the potential 
to bypass the disadvantages of manual histological staining, 
provided it is clinically validated and approved. In addition, 
virtual staining preserves the unlabeled and unaltered tissue 
sections for further analysis.

Image enhancement
Image enhancement acts as a preprocessing step that improves 
the quality of the images in terms of color, brightness, and 
contrast. Researchers in this field have explored several image 
enhancement techniques using AI methods.[65] Deep neural 
networks are employed for image quality enhancement but 
need a large quantity of paired training data of low‑quality 
images and their corresponding high‑quality images. To 

alleviate this barrier, SRGANs can generate high‑resolution 
images, and for such a reason, they have attracted attention 
among the researchers in this area. For instance, SRGANs 
have been employed to generate super‑resolution images and 
to eliminate noise from breast histopathological images.[38] 
Another study proposed a mixed‑supervision GAN, based 
on SRGAN, that can take both high‑  and medium‑quality 
images as input for training.[66] This approach leverages 
training data from high quality to medium quality to improve 
the performance when limiting the costs of data curation.[66] 
The method uses a sequence of generators and discriminators, 
dealing with increasingly higher quality training data at each 
level, compared to the low‑quality input data. Quantitative 
evaluation of the images was done using metrics such as the 
structural similarity index and the relative root mean square 
error, while the images were not tested for further image 
analysis such as classification and segmentation tasks.

Another study employing SRGAN performed classification 
of super‑resolution, high‑resolution, and low‑resolution 
images along with the comparison of different performance 
measures.[67] This study uses a wide attention SRGAN which 
uses wide‑residual blocks and a self‑attention layer. Wider 
channels before activation in residual blocks were shown 
to improve the performance of image super‑resolution 
networks.[54] By including an in‑built self‑attention function 
that calculates the weighted mean of all pixels in an image, the 
model learns relationships between widely separated spatial 
regions and distant pixels based on patch appearance similarity. 
The classification results for high‑ and low‑resolution images 
displayed an accuracy of 99.49% and 95.82%, respectively.[67] 
These studies emphasize the role of the ability of GANs 
to increase the resolution during the reconstruction of 

Table 1: Novel generative adversarial networks approaches used for color normalization of histopathological images

Reference Tissue type Dataset Architecture Method
Cho et al., 2017[49] Lymph node samples CAMELYON16 cGAN Stain style transfer approach
Bentaieb and 
Hamarneh, 2018[50]

Breast histology images, colon 
adenocarcinoma tissue images, 
ovarian carcinoma images

MITOS‑ATYPIA14 
challenge, MICCAI16 
GlaS challenge, 
nonpublic dataset

GAN Stain style transfer approach using 
encoder‑decoder architecture and skip connections

Zanjani et al., 2018[39] Lymph node samples Nonpublic dataset GAN Unsupervised GAN based model for stain color 
normalization

Rana et al., 2018[51] Prostate core biopsy tissue 
samples

Nonpublic dataset cGAN Staining and de‑staining models used for learning 
hierarchical non‑linear mappings between 
non‑stained and stained WSIs

Zhou et al., 2019[52] Breast cancer samples CAMELYON16 cycleGAN Enhanced cycleGAN based method using stain 
color matrices for translation

Shaban et al., 2019[37] Breast cancer samples MITOS‑ATYPIA14 
challenge, 
CAMELYON16

cycleGAN Structure preserving stain style transfer

Cai et al., 2019[53] Breast cancer samples MITOS‑ATYPIA14 
challenge

cycleGAN Structure preserving stain style transfer

Shrivastava et al., 
2019[54]

Duodenal biopsy samples Nonpublic dataset GAN Stain transfer approach using self‑attentive 
adversarial network

Salehi and Chalechale 
et al., 2020[55]

Breast cancer samples MITOS‑ATYPIA14 
challenge

cGAN Pix2Pix based stain to stain translation

cGAN: Conditional generative adversarial networks, GAN: Generative adversarial networks, WSIs: Whole‑slide image
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poor‑quality images, thereby tackling the cost of hardware 
and storage to employ high‑resolution images.

Ink mark removal
Histopathological glass slides are often annotated by 
pathologists using pens or other markers to indicate regions 
of interest, such as neoplastic areas or other specific features. 
Figure 4 displays some examples of ink‑marked WSIs from 
The Cancer Genome Atlas dataset.

This pragmatic approach unfortunately hinders computer‑aided 
interpretation of marked WSIs. For example, color thresholding 
or other automatic selection algorithms fail to select the correct 
areas in the presence of ink marks. State‑of‑the‑art color 
normalization methods are not sufficient in removing ink marks 
as they are designed to handle sensitive variations in unmarked 
H&E images;[68] therefore, other solutions based on generative 
models have been explored.

A fully automatic CNN‑based approach to remove ink 
from H&E stained prostate WSIs consisted of three 
separate architectures.[40] First, a sequential classical CNN 
classifies the image tiles into three categories: ink‑free 
tiles, background contaminated tiles  (tiles with ink marks, 
but not on the tissue), and foreground contaminated 
tiles  (tiles with ink marks on the tissue). Subsequently, the 
background contaminated tiles are cleaned by replacing the 
ink marks with a white background. A  fast region detector 
performs the precise localization of the ink marks on the 
foreground contaminated tiles. Finally, a cycleGAN is applied 
to these detected localized marks to restore these image tiles 
to ink‑free image tiles.

A similar study has approached the ink removal as a style 
transfer problem using a cycleGAN to remove ink marks 
from human melanoma tissues, when preserving the tissue 
structure underneath the marker region.[69] The melanoma WSIs 
were first tiled to obtain marker patches which contain full or 
partial ink marks and clean patches which do not contain any 
ink marks. The cycleGAN used, here, is composed of two 
generative and one discriminative CNN. The first generative 
CNN is trained to remove ink marks from the marker patches 
and to generate patches similar to clean tissue that cannot 
be differentiated by the discriminator model. The second 

generative CNN is trained to reconstruct the output of the first 
generative CNN to ensure the preservation of the individual 
visual information from each image patch. The application 
of cycleGAN to ink removal exploits the image‑to‑image 
translation method to produce visually coherent images and 
outperforms the state‑of‑the‑art color normalization methods 
that are not capable of removing ink marks from the WSIs.

Data augmentation
The availability of large training sets is essential to achieve 
good performance in deep learning. However, due to privacy 
concerns, high cost, and complexity of data collection and 
labeling, medical datasets, especially pathological datasets, 
are relatively small. Data augmentation is a method to 
significantly increase the amount and variety of data available 
for training models, without collecting new data. Verified 
data augmentation methods can be used in the development 
of automated medical image analysis to mitigate the effects 
of data imbalance and improve overall performance of the 
training model.[70,71] Traditional data augmentation methods 
include image transformations (rotation, flipping, reflection, 
zooming, etc.) and color transformations (histogram matching). 
The success of data augmentation methods has stimulated an 
interest in researching advanced approaches to generate new 
images for training. After the initial development of GANs, 
generative models that synthesize completely new images 
have become a popular method for generating augmented data.

GAN‑based data augmentation methods were able to generate 
new skin melanoma photographs, histopathological images, and 
breast MRI scans.[41] Here, the GAN style transfer method was 
applied to combine an original picture with other image styles 
to obtain a multitude of pictures with a variety in appearance. 
The augmented dataset was utilized for diagnostic image 
classification. An image translation approach using cycleGAN 
was used in another study to generate synthetic colorectal polyp 
images from normal colonic mucosa images.[72] The generated 
synthetic images maintained the general structure of the normal 
images but exhibited adenomatous features. The quality of the 
augmented images was then evaluated by a pretrained classifier 
and through clinical evaluation by pathologists, finding that three 
of the four pathologists could not differentiate at least half of the 
synthetic images from real images. In another study, cGAN was 
used to synthesize realistic cervical histopathology images to 
expand a limited training dataset.[72] The authors used a filtering 
mechanism to control the feature quality of augmented synthetic 
images and boost the performance of the classifier. A cycleGAN 
was proposed to augment existing nuclei segmentation 
datasets by generating synthetic H&E patches representing 
several different organs for nuclei segmentation algorithm 
development.[33] Another study has recently investigated the 
use of GAN to augment the dataset of histological specimens 
of gliomas with synthetic gliomas, to increase the training and 
accuracy of deep learning techniques to predict the IDH gene 
mutation status.[73] The accuracy of the deep learning model for 
predicting the IDH status on  H&E stained histopathological 
images was increased from 80% (without augmentation) to 85% 

Figure  4: Examples of whole‑slide images annotated by  (a) green 
and  (b) blue ink marks obtained from The Cancer Genome Atlas 
database[44]

ba
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with GAN augmented data. Figure 5 shows some examples of 
GAN‑synthesized glioma images.

The studies listed in this section show the capability of GANs 
to generate synthetic images: from image‑to‑image translation 
for normalization and cleaning of color‑shaded and marked 
pathology images to the generation of augmented databases to 
solve histopathological data limitations. Further exploration of 
the application of GANs to WSI preprocessing will help in the 
workflow of digital pathology as it preserves the tissue sample 
structure when enabling further AI‑based image analysis. These 
studies also show the capability of GANs to generate synthetic 
images that can alleviate some of the limitations related to 
histopathological data.

Generative adversarial Networks in 
Histopathological Image Analysis

Computer‑aided analysis of images has been widely explored 
in many areas of studies for feature extraction and pattern 
recognition. With the recent advancement of digital pathology, 
histopathological image analysis has gained attention of many 
researchers.[74] Computer‑assisted quantitative analysis of 
histopathological images can significantly speed up clinical 
analysis and research project outcomes. In addition, AI has 
the potential to uncover information in pathology images that 
results in novel insights about diseases and therapy. GANs and 
their extensions have opened encouraging ways to challenge 
long‑standing image analysis problems such as segmentation, 
feature extraction, detection, and classification. In the following 
subsections, we categorized the histopathological image 
analysis articles into: automated detection and segmentation, 
other feature selection, extraction and quantification, and 
domain adaptation.[28,75,76]

Nuclei detection and segmentation
Automated segmentation and detection of tissue and cellular 
structures is an important task in histopathological image 
analysis. Classical methods for nuclei segmentation techniques 
include watershed algorithms, color‑based thresholding, 
morphological processing, active contours, and their variants.[77] 

During the last few decades, numerous state‑of‑the‑art methods 
have been proposed for nucleus detection and segmentation 
in digital pathology images.[78] GANs have also effectively 
enabled a range of nuclei segmentation tasks, including 
segmentation of nuclei from WSIs and the identification of 
nuclei within a specific region.

In an unsupervised nuclei segmentation method formulated 
as an image‑to‑image translation problem, diverse 
histopathological images were selected as nuclear domain 
and randomly generated nuclear shapes were selected as 
label domain.[75] Then, a cycleGAN was used to translate 
the histopathology images to the label domain by generating 
segmentation maps. Several challenges were reported in this 
study, including (1) reconstruction losses for segmentation 
resulting in the suppression of less bright nuclei with each 
gradient update, and (2)incorrectly generated nuclei shape 
annotations resulting in poorly segmented nuclei. Despite 
the challenges, the study showed that generative models can 
be a promising solution for the nuclei segmentation problem, 
including the separation of differently shaped nuclei. In 
another study, nuclei detection on colorectal adenocarcinomas 
histopathology images was peformed using a residual attention 
GAN, which is based on cGAN.[79] The residual attention 
mechanism is used to capture the characteristics of the 
nuclear regions more clearly by generating a more accurate 
probability map with spatial contiguity, resulting in improved 
nuclei detection.

The performance of deep learning algorithms for segmentation 
highly depends on the quality and volume of labeled 
histopathology data available for training. Furthermore, 
most of the work has focused on developing cellular and 
cellular feature segmentation methods for single organs. In 
a multiorgan study, cGANs are used to train synthetically 
generated data and real data to perform nuclei segmentation.[80] 
First, a cycleGAN model was trained with images from four 
different organs to synthetically generate pathology data with 
perfect nuclei segmentation labels. These real and synthetically 
generated images were subsequently used to train a cGAN to 
perform nuclei segmentation. The study demonstrates that this 
approach performs better than the state‑of‑the‑art methods for 
nuclei segmentation.

The concept of the information‑maximizing GAN (infoGAN) 
architecture,[35] which learns the visual representations of the 
cell nuclei by utilizing features in the image such as shape, 
nuclear density, and color, was explored for the classification 
of breast cancer histology images.[81] First, a CNN‑based 
stain transfer method is used to normalize the H&E stained 
breast cancer histology images. The stain‑normalized breast 
histology images are then trained by a neural network to 
segment out the nuclei. Finally, infoGAN is used to classify the 
segmented nuclei in an unsupervised manner based on visual 
representations of different types of nuclei.

Feature selection, extraction, and quantification
Selection, extraction, and quantification of relevant features 

Figure 5: Samples of generative adversarial network synthesized glioma 
images from coarse to fine scales
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from histopathological images have long been an active area of 
research within the image processing community. Automated 
cancer diagnosis relies on capturing cellular and tissue level 
features to quantify the changes in a given tissue.[45] Traditional 
methods used for feature extraction include morphological, 
topological, textural, fractal, and/or intensity‑based methods.

Pathology GAN[28] is a framework that generates high‑fidelity 
synthetic cancer images using GANs to capture the key tissue 
features such as color, texture, spatial features of cancer and 
normal cells, and their interaction. The proposed model uses 
the generated images to obtain the feature space based on 
cell density and morphology in cancer tissue and captures 
pathologically meaningful representations. The study also 
demonstrated that pathologists were not able to reliably find 
differences between the real and generated images. Another 
study used a GAN architecture to perform unsupervised 
representation learning for cell‑level images segmented 
from bone marrow histopathology images.[35] Each cell‑level 
image contains only one cell, enabling GAN‑based learning 
of interpretable and disentangled cellular elements. These 
cell‑level visual representations can be used for a variety of 
tasks such as cell classification based on their semantic features. 
The proposed pipeline used the cell‑level information to 
calculate the cellular class proportions in the histopathological 
images, combining this with nuclei segmentation to perform 
image‑level classification of histopathology images. Then, 
image‑level classification was performed to differentiate 
between normal and abnormal bone marrow pathology images. 
The study revealed that the algorithm can classify different 
cell types such as myeloblasts, monocytes, granulocytes, 
lymphocytes, and erythrocyte precursors and quantify their 
presence to confidently discriminate normal from abnormal 
images. However, some abnormal images were wrongly 
classified as normal which the authors attribute to the atypical 
staining of erythroid precursors. The authors suggested 
improvements to make the model more robust to these 
variations and also highlighted that acquiring high‑quality 
histopathological images is a priority for reliable results.

To improve segmentation accuracy, a GAN‑based 
image‑to‑image translation method was proposed that is 
based on image content enrichment rather than increasing 
the number of samples, by overlapping virtual images with 
the given  (original) image.[82] First, the input image to be 
segmented is translated to different domains (stains) by several 
generators to produce virtual images with stains different from 
the original image. All these virtual images are concatenated 
and merged with the original image, resulting in an enriched 
multichannel image. As the second step, the enriched images 
are used to train and test a fully connected convolutional 
network for segmentation. An experiment with mouse kidney 
pathology images showed an improved segmentation score 
for kidney glomeruli for enriched images compared to using 
the original images only. The study relies on the rationale 
that the two models individually trained to solve a specific 
subproblem are more powerful than one single model trained to 

solve the whole, more complex problem. The image‑to‑image 
translation approach here produces highly realistic and detailed 
histopathological images with added information from the 
virtual stains, leading to improved segmentation.

Domain adaptation
Domain variations such as differences in staining between 
laboratories can prevent the predictions based on a model 
learned from one domain being directly applicable to another 
domain  (other laboratory). Oftentimes, paired images from 
the different domains (for example, the same samples imaged 
at different laboratories) are not available; thus, direct 
transformation cannot be learned. Domain adaptation is the 
task of transferring the image features between domains, so 
that classification based on the annotated source domain can 
be reliably applied to the unlabeled target domain. A study 
was proposed for classification and grading of breast cancer 
images by transforming the target images to the source 
domain and then applying a deep learning method.[76] The 
authors used cycleGAN for unsupervised domain adaptation 
to transform data from four different medical centers to data 
from one center to reduce the variability in the data and 
improve the classification results. Another study[26] addressed 
unsupervised domain adaptation using a different paradigm, 
namely the alignment of the learned image feature space of 
the source domain with the unlabeled target domain. The 
adversarial training minimized the distribution discrepancy 
in the feature space between the source and target domains. 
Asymmetric adaptation resulted in fine‑tuning of the target 
domain network guided by the source‑domain network, thereby 
mimicking the distribution of the source‑domain feature space. 
Thus, the target network gets trained to extract the domain 
invariant features from input samples. Using a set of prostate 
histopathology images, the classification results showed 
improvement compared to baseline models, indicating that 
adversarial training may not only decrease color differences 
but also mechanical distortions, morphologic, and structural 
differences resulting from different processing routines.

In medical image processing, learning of distinctive patterns 
and feature extraction plays an important role in the diagnosis 
of diseases. The discussions in the above sections show 
the rich feature extraction capability of GANs, their power 
to extract semantically meaningful information from the 
histopathological images, and transferring the image features 
between different domains.

Discussion and Conclusion

Digital pathology is rapidly growing alongside the recent 
developments in AI and deep learning. The integration of 
AI with pathology can contribute exciting changes to health 
care, including precision medicine through personalized 
patient models and treatments.[83] In particular, the innovative 
development of GANs and its variants has led to an improved 
digital pathology workflow resulting in more informed and 
comprehensive cancer diagnosis.[28,82] In recent years, GANs 
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have gained significant attention in the area of various medical 
image processing tasks, including virtual staining of tissues 
slides, which bypasses the laborious and expensive process of 
histological staining.[59,60] We consider the application of GANs 
to digital pathology as a promising upcoming research area with 
many opportunities to be explored. Fortunately, it is gaining the 
interest of the computational and medical researchers.

In this study, we have presented the application of GAN models 
to histopathological image processing. The above discussion 
shows that GAN has the power to facilitate several practical 
applications in digital pathology. The advantages of GANs in 
digital pathology can be summarized as the following.

Resolving scarcity of training datasets by producing 
realistic synthetic data
Due to privacy concerns, high cost, and complexity of data 
collection and labeling, medical datasets tend to be relatively 
small compared to the general datasets. GAN‑based models 
can be a promising solution for the limited size of publicly 
available clinical datasets. The ability of GANs to mimic 
data distributions and produce realistic synthetic data can be 
employed to augment data, enlarge the medical datasets, and 
handle class imbalance. Furthermore, the manual labeling of 
WSIs is a time‑consuming task that could be solved using 
synthetic labeled images.

Augmentation by generating data with diversity
Augmentation of data can be performed in many ways, such 
as image transformation and color transformation methods. 
However, these augmentation techniques do not provide 
diversity in the data being generated. GANs are additionally 
effective for the augmentation that is difficult to implement 
with standard augmentation techniques, through its capability 
to generate realistic and customized variations.

Preprocessing of input data
GANs have proved to be effective candidates for image 
preprocessing tasks, such as color normalization, ink removal, 
and data augmentation. We envisage that it could be further 
explored to use generative models for the development of 
universal image preprocessing steps that can be applied to 
all types of histopathology images irrespective of the sample 
types.

Virtual staining of the whole‑slide images
Histological staining of tissue slides is usually a laborious and 
expensive process during pathological diagnosis. GANs can be 
a potential candidate for virtual staining of tissue slides which 
can generate images with reduced stain variations. This will 
eventually reduce the labour and cost incurred in the actual 
histological staining.

Effective in learning and extracting features
Feature extraction and pattern recognition play an important 
role in medical image analysis for the diagnosis of diseases. 
GANs are powerful tools in extracting and quantifying 
semantically meaningful information from images, with 

several advantages in digital pathology for automatic detection, 
segmentation, and classification applications.

Although the number of studies applying GANs has 
increased significantly in the last 3  years, it should be 
noted that most of the research has been focused to MRI 
instead of other medical imaging modalities. One reason for 
this might be the large number of publicly available MRI 
datasets compared to the pathological datasets. In the area 
of histopathology, most of the GAN‑based methods applied 
to histopathological images focused on breast cancer or 
prostate cancer datasets. This leaves ample scope to adopt 
these state‑of‑the‑art GAN‑based methods to datasets 
representing other organs.

Despite its significant success as a generative model, the 
training of GAN is an expert task and the training process 
encounters many challenges such as vanishing gradients, mode 
collapse, and failure to converge. The possible solutions to 
handle GANs challenges are to choose appropriate network 
architectures, to use customized loss functions, and to apply 
various forms of regularization.[84] Another important challenge 
with GANs is that they are often focused on matching the 
input image to a target distribution of images, sometimes 
resulting in additional trivial or misleading features by adding 
or removing textures. A study employing cycleGAN used a 
structural loss to suppress these features, which the authors 
refer as “imaginary” ability of the GANs especially while 
encountering new features.[27] Many variants of GAN with 
diverse characteristics have been proposed for handling the 
drawbacks of GANs, but several issues persist to be dealt 
with for future research to take full advantage of the extensive 
capabilities of GAN‑based methods to transform and advance 
digital pathology.
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