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INTRODUCTION

Major histocompatibility complex (MHC) class II molecules
are the predominant presenters of exogenous antigens to T
helper cells (reviewed in references 21, 77, and 99). These key
molecules are critical for numerous aspects of immune func-
tion, including T-cell selection, tolerance induction, antibody
production, T-cell-mediated immunity, and the inflammatory
response. As principal mediators of transplant rejection, these
molecules are often common targets for immune therapies to
prevent the rejection of grafted tissues. Class II MHC is im-
plicated as a contributing factor in a host of diseases ranging
from rheumatoid arthritis and diabetes to Alzheimer’s disease
and multiple sclerosis.

Constitutive expression of class I MHC is restricted to “pro-
fessional” antigen-presenting cells but can be induced on var-
ious tissues by gamma interferon (IFN-y). In humans, a con-
genital lack of both constitutive and inducible class II results
in a profound and generally fatal immunodeficiency (type II
bare lymphocyte syndrome [BLS]) (7, 29, 45, 61, 67, 75, 112)
marked by a significant reduction of CD4™" T cells. Early mo-
lecular forays addressing BLS revealed that the genes encoding
class I MHC were not defective. Instead, the defect lay in
transcription factors controlling class I MHC gene expression.
BLS thus became the first disease known to be caused by de-
fective or absent transcription factors. The availability of pa-
tient-derived cell lines with class II MHC transcription defects
provided a unique tool of nature to identify the requisite tran-
scription factors.

Transcriptional regulation of class II MHC expression is
complex. Class I MHC and related promoters are character-
ized by the presence of conserved W (or S), X, and Y boxes
(Fig. 1) (reviewed in references 10, 67, and 75). The X element
is bipartite. The upstream X1 region is recognized by RFX, a
trimeric complex of RFX family members including RFXS,
RFXANK (RFX-B), and RFXAP (32, 74, 87, 117). The down-
stream X2 box is bound by X2BP (NF-X2), a complex com-
prising CREB, and an unidentified 120-kDa protein (83, 84).
Another trimeric complex, NF-Y (CBF), which is highly con-
served in eukaryotes, binds the Y box (69, 71, 146; reviewed in
reference 70). A number of factors interacting with the W box
have been described, including the RFX complex (26, 48, 120).
The factors involved in X and Y box binding are ubiquitous
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and expressed constitutively yet fail to account for either con-
stitutive or IFN-y-inducible class II MHC expression. Somatic
cell fusions using BLS patient-derived cells allowed the defi-
nition of complementation groups, with each group containing
a defect in a single genetic locus. This type of analysis revealed
a crucial locus, alr-1, which in all likelihood encodes the class
II transactivator (CIITA), which explained the lack of class
II transcription in BLS complementation group A (1, 118).
Group A cells express the requisite X and Y binding proteins
but fail to transcribe class II. CIITA expression appears to be
a nearly absolute requisite for expression of class II MHC,
whether constitutive or inducible (17, 19, 23, 47, 85, 103, 114,
118, 119). A number of class II MHC-related genes including
genes encoding HLA-DM (H-2M in mice) and invariant chain
(Ii), with promoters similar to those for classical class II genes,
are also regulated by CIITA (17, 18, 22, 23, 50, 137). CIITA
can also upregulate expression of class I MHC genes and
beta-2-microglobulin (8,m) through effects at site « in addition
to X- and Y-like sequences in the promoters for these genes
(40, 72, 104). These initial observations have led to the view
that CIITA is a master, or global, regulator for expression of
class II MHC and related genes.

Since the discovery of CIITA, numerous primary articles
and several reviews on its role in regulating the class II MHC
have been published. In this review, we will discuss the molec-
ular structure of this novel protein, its mechanism of function,
and its biologic and clinical relevance, which is broad.

A MASTER REGULATOR?

The father of all master regulators is MyoD, which when
placed into 10T1/2 cells can cause these cells to acquire char-
acteristics of muscle cells and the accompanying changes in
gene transcription (reviewed in references 135 and 136). By
this definition, CIITA is clearly a master regulator of class II
MHC genes. Many reports have found that placing CIITA in
an array of cell types can result in not only the induction of
class I MHC promoters but also the expression of cell surface
class I MHC proteins (8, 11, 18, 19, 23, 110, 118). Further,
expression of class II MHC is controlled quantitatively by
CIITA (96). In CIITA™/~ mice, class Il MHC is missing in
almost all tissues and cells with one exception (see below).
Invariant-chain expression is limited, but not absent, in
CITA '~ mice (17, 57). This is likely due to the presence of
additional regulatory elements in the invariant-chain promoter
(e.g., SP1 and NF-«kB) (12, 13, 142). In addition, the expression
of H-20 is not affected by the lack of CIITA (17). Most
cytokines which alter class II MHC expression, such as IFN-y,
tumor necrosis factor a (TNF-a), transforming growth factor
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FIG. 1. Organization of W, X, Y, and other motifs in the promoters of class
II MHC and related genes. Genes coding for class I MHC and related proteins
contain well conserved W, X, and Y boxes, the presence of which correlates with
transcriptional regulation by CIITA.

B, interleukin 1 (IL-1), IL-4, and IL-10, either up- or down-
regulate CIITA and class II MHC accordingly (18, 23, 42, 57,
88, 89, 92, 107, 119). In addition to cytokine-regulated class II
MHC expression, the in situ expression of CIITA is also tightly
linked to class I MHC gene expression (115, 116).

Developmentally, class II MHC is tightly associated with
CIITA. Cell-type-specific and species-specific differences in
class I MHC expression can also be explained by differences
in CIITA. For example, CIITA is expressed in B cells but not
in plasmacytomas where class II is extinguished (109, 114).
CIITA is expressed in activated human T cells, which express
class II MHC, but not in resting or activated mouse T cells,
which lack class II MHC (20). However, one study has found
some class II and CIITA message by reverse transcription-
PCR (RT-PCR) in activated mouse T cells treated with IL-12
(41). Finally, CIITA regulates not only class II MHC but also
Ii and DM molecules. Promoters of genes coding for all the
aforementioned proteins have the W, X, and Y motifs, and
CIITA works through these motifs (reviewed in references 67
and 126). Nonclassical class II genes are not obligatorily reg-
ulated by CIITA (17). Differential expression analyses show
that the DNa gene is regulated by CIITA but that DO is not
(125).

On the other hand, there are a few exceptions where CIITA
is not required or associated with classical class II MHC gene
expression. For example, it has been shown that in CIITA ™/~
mice, class I MHC™ dendritic cells are detected in lymph
nodes and thymus, although the level is significantly lower than
that for control mice (17, 139). These studies relied heavily
on immunohistochemical staining and RT-PCR. The small
amount of class II MHC found in these tissues is apparently
not sufficient to permit development of a normal CD4* T-cell
population. We and others have found that TNF-a alteration
of class II MHC may not be associated with changes in CIITA
(30, 91). Indeed, it has been shown that negative modulation of
class I MHC can occur via posttranscriptional mechanisms as
has been observed with IFN-B (62), and posttranslational
mechanisms affecting CIITA also occur with TNF-a (42). Ad-
ditionally, NK cells have been reported to upregulate HLA-
DR in fibrosarcoma cell lines in an IFN-y- and CIITA-inde-
pendent fashion dependent on cell contact (28). Finally, some
invariant-chain and class II MHC isotype-specific expression in
in vitro-generated mutant cell lines has been shown to occur in
the absence of functional CIITA, which suggests the existence
of isotype-specific transacting factors (31, 122, 149). However,
in general, CIITA-independent class II expression appears to
be the exception rather than the rule. This may be similar to
gene regulation in muscle development, where the addition of
MyoD cannot convert all cells to muscle cells and the lack of
MyoD does not ablate all muscle development (4, 113). Hence,
in a parallel comparison, CIITA compares favorably with
MyoD to qualify as a master regulator.
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GENETICS

The coactivator function required for class II MHC expres-
sion was initially shown to reside on mouse chromosome 16
(the AIR-1 locus) (1). Human CIITA is encoded on chromo-
some 16 (119). The initial CIITA cDNA, cloned from the
RJ2.2.5 B-cell lymphoma, encodes an 1,130-amino-acid pro-
tein. Genomic DNA from mice shows that CIITA is encoded
by 19 exons (75), although the precise exon organization for
human CIITA has not been reported. Expression of human
CIITA is controlled by four distinct promoters, each with a
distinct product, with three of the forms predominating. In
mice only three promoters were identified (86) (Fig. 2). Pro-
moter I is constitutively active in dendritic cells and has a
promoter-specific first exon coding for 94 amino acids. In
cDNA preparations, promoter II gave rise to a separate prod-
uct, but this product is not present in significant amounts in any
of the individual cell lines tested to date. Promoter III is
constitutively active in B cells, responds to IFN-vy via a distal
upstream sequence, and has a first exon encoding 17 amino
acids (59, 86, 100, 101). The first 300 bp of promoter III is
sufficient for B-cell function and contains two important se-
quences including a transcription elongation factor 2-like ele-
ment (38). Promoter IV is IFN-y responsive, active in the
monocyte/macrophage lineage, endothelial cells, and fibro-
blasts, and drives expression of the shortest CIITA transcript
(86, 101). Thus constitutive expression of CIITA generally
results from promoters I and III. Promoter IV is likely respon-
sible for the majority of IFN-y-inducible expression, but se-
quences upstream of promoter III allow IFN-y-mediated mod-
ulation of constitutive CIITA expression. The significance of
the various isoforms of CIITA that differ only in the N termi-
nus is presently unknown.

STRUCTURE AND FUNCTION

CIITA has predicted and apparent molecular masses of
123.5 and 135 to 140 kDa, respectively, suggesting some post-
translational modification (118). In those tissues and cell lines
tested to date detection of the endogenous CIITA protein has
been difficult at best, although some polyclonal-antibody prep-
arations seem able to detect endogenous CIITA in whole-cell
lysates of some cell types (14, 24). Intracellular concentrations
are insufficient for immunohistochemical staining, and West-
ern blotting requires larger numbers of cells for detection.
Structure/function studies to date have been mostly driven by
sequence comparison and have focused on the ability of trans-
fected CIITA to activate transcription and subsequent expres-
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FIG. 2. Promoter organization for CIITA. The CIITA upstream region in
humans contains four promoters (I to IV) with independent start sites and
alternate first exons. Significant mRNA populations have only been observed for
I, ITI, and IV in vivo. The 3’ splice site for the first exons of promoters I and III
is upstream of the translation start site for promoter IV mRNA and thus adds
seven amino acid residues (*). The core 1,106 amino acids of CIITA may be
encoded by as many as 17 exons.
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FIG. 3. Schematic representation of protein domain organization for CIITA. Numbering corresponds to the B-cell form of CIITA. The first 336 amino acids of
CIITA contain both an acidic domain and the PST domain. Residues 336 to 1130 contain the GTP-binding, NLS, and LRR motifs. G1, G3, and G4 mark the positions

of specific motifs required for GTP binding (see text).

sion from endogenous or engineered class II promoters, its
compartmentalization, and its capacity to interact with other
proteins.

Sequence analyses of CIITA have revealed a complex do-
main structure (Fig. 3) composed of an amino-terminal acidic
domain, proline-, serine-, and threonine-rich (PST) regions, a
GTP-binding site, at least one nuclear localization sequence
(NLS), and a series of leucine-rich repeats (LRR).

Acidic domain. The N-terminal end of CIITA contains an
acidic domain (residues 1 to 125) which through fusion to
GAL4 DNA-binding sequences has been demonstrated to act
as a transcription activation domain (54, 106, 148). The acidic
activation domains of herpes simplex virus type la transin-
ducing factor and VP16 (54, 148) can only partially substi-
tute for that of CIITA (~20 to 25% of wild type) using chi-
meric CIITA. Deletion of the acidic domain of CIITA results
in a dominant-negative form of the protein (9, 14, 145) and has
been touted as a possible vehicle for suppressing class II gene
expression in transgenic animals. Much interest in proteins
associating with CIITA has focused on this domain. A large
number of proteins shown to interact with CIITA interact with
residues in or near this domain. TFIIB, TAFIIs (30, 32, and
70), and CREB-binding protein (CBP) have all been demon-
strated to interact with the acidic domain of CIITA in vitro, in
vivo, and in some cases both (35, 36, 54, 68). In cotransfection
experiments CBP cooperated with CIITA to increase DRA
transcription, suggesting that CBP may provide a requisite
histone acetyltransferase activity (36, 54).

PST domain. CIITA contains a functionally necessary region
with abundant proline, serine, and threonine (Fig. 3; residues
133 to 322) (24, 118). Domains rich in proline are common in
a number of transcription factors, with either DNA-binding
(16, 80) ability or activation domain (78, 123) properties inde-
pendent of acidic sequences. In some instances, these proline-
rich activation domains also have increased frequencies of
serine, threonine, and glutamine as in the case of CTD-1, a
prototypical transcription factor not utilizing an acidic activa-
tion domain (78). Limited functional data regarding the role of
CIITA’s PST domain exist. Deletion of the N-terminal or C-
terminal half of this domain has no obvious impact on trans-
activation by CIITA, whereas complete deletion is highly det-
rimental to function and results in a dominant-negative protein
(24). The nonessential carboxy-terminal half of this domain is
absent in a CIITA mutant (106) and the published cDNA
clone for mouse CIITA (115). Examination of the mouse
genomic sequence reveals that the coding sequence for this
region is present in a discrete exon of the mouse CIITA gene
(J. F. Piskurich and J. P. Y. Ting, unpublished data), suggesting
the possibility of splice variants. Deletion of 151 to 160 N-
terminal residues from CIITA results in a potent dominant-
negative form of the protein (9, 14, 145), indicating that the

remaining, seemingly functional portion of the PST domain of
CIITA likely fails to mediate activation events independent of
the upstream acidic sequences. However, a GAL4-CIITA fu-
sion protein containing residues 104 to 402 can bind CBP and
enhance transcription from a GAL4 binding site containing a
promoter (54). As some proline-rich sequences bind DNA
(16), it is possible that this domain in CIITA may contact
and/or bind DNA. The fact that CIITA has failed to bind DNA
thus far makes this possibility seem unlikely.

Residues C-terminal to the acidic and PST domains (resi-
dues 317 to 1130) are necessary to promote transcription from
a promoter comprising the W, X, and Y boxes (148). Relatively
small perturbations of spacing and sequence in the DRA pro-
moter render it unresponsive to IFN-y (131), suggesting that
CIITA is constrained by the promoter arrangement. An intact
X box seems crucial to CIITA’s ability to transactivate, sug-
gesting cooperation between CIITA and X box binding pro-
teins (83, 106). These observations suggest that a number of
interactions, presumably with X box binding factors and NF-Y,
occur with domains other than the acidic domain (see MODE
OF ACTION). Amino acids 317 to 1130 of CIITA can be
broken down further into a GTP-binding site, nuclear localiza-
tion signal sequence, and a series of leucine-rich regions dis-
cussed below.

GTP-binding site. The presence of a Walker A motif (also
known as a P loop or G1 motif) known to be involved in ATP
and GTP binding was noted with the initial description of
CIITA (118). Further examination revealed GTP-binding mo-
tifs similar to those in other GTP-binding proteins, including a
magnesium binding site (G3) and a guanine coordination site
(G4). CIITA can bind GTP both in vitro and in vivo (43).
Deletion or substantial mutation of individual sites (G1, G3, or
G4) has a significant impact on both GTP binding and trans-
activation (14, 24, 43). In contrast, substitution with related
sequences from Ras rescued CIITA function (43). Deletions in
this region also have an impact on the ability of CIITA to
“open” a closed promoter (157). GTP binding regulates a
variety of cellular functions by acting as a molecular switch,
where GTP binding results in one conformation (“on”) and
GDP binding results in another (“off”). GTPase activity can be
intrinsic or extrinsically provided by GTPase-activating pro-
teins (GAPs) and can promote the off conformation. Exchange
activity can be modified by guanine exchange factors (GEFs),
which exchange GDP for GTP thus turning the protein on. In
vitro, CIITA exhibits an apparent lack of intrinsic GTPase
activity, and CIITA mutants that have intrinsic GTPase activity
are functionally impaired (43). It is of great interest to deter-
mine if GAPs or GEFs regulate CIITA.

Recent experiments demonstrate that residues close to, if
not within, the GTP-binding region (residues 336 to 702) can
interact with themselves and with residues between 939 and
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1130 (see M. W. Linhoff, J. A. Harton, B. J. Conti, D. E.
Cressman, and J. P.-Y. Ting, submitted for publication; T. J.
Sisk, S. Roys, and C.-H. Chang, submitted for publication).
This finding suggests that cooperation within the GTP-binding
domain or between the GTP-binding domain and C-terminal
LRR, or both, may be important for nuclear localization or
transcriptional activation.

NLSs. CIITA is present in both the cytoplasm and the nuclei
of transfected cells (28a), and this localization is critical for
normal CIITA function. The simian virus 40 (SV40) NLS
(KKRKK) recognized by the importins (karyopherins) has be-
come the classic model for nuclear import of protein, with a
plethora of nuclear proteins possessing some functionally es-
sential iteration of the motif. A naturally occurring 24-amino-
acid deletion in the C terminus of CIITA, identified in a BLS
patient, lacks a 5-amino-acid motif very similar to the SV40
NLS. We have shown that this five-amino-acid deletion as well
as the original patient-derived CIITA forms are present in the
cytoplasm and not the nucleus. Functional studies of this re-
gion indicate that this motif in CIITA is essential for nuclear
localization of CIITA and can function as an NLS independent
of other CIITA-derived sequences (28a). GTP binding by
CIITA is also required for nuclear import (43). We have pos-
tulated a relationship between the availability of GTP and the
ability of CIITA to translocate to the nucleus as a means of
regulating CIITA’s activity. Elucidating such regulation will
require further study. The relationship between NLS-depen-
dent and GTP-dependent nuclear translocation of CIITA is
unknown.

Cycling of CIITA between cytoplasm and the nucleus is
suggested by cytoplasmic and nuclear expression (28a). CIITA
exit from the nucleus, if occurring, should be mediated by
nuclear export sequences (NES). Conforming roughly to the
consensus LXXXLXXLXL, putative NES abound in CIITA,
but functional studies have yet to elucidate which, if any, of
these are relevant.

Leucine-rich regions. Through sequence analysis of portions
of CIITA it has become apparent that CIITA contains a num-
ber of leucine-rich sequences. These include leucine-charged
domains (LCDs) (14), a series of leucine-rich repeats (LRR)
(reviewed in reference 15) in the C terminus with similarity to
those of Nodl, a nucleotide-dependent activator of caspases
(46). Presumably these motifs mediate protein-protein inter-
actions. Alanine substitution mutations in the LCD motifs of
CIITA diminish class II MHC transcription (14). Some C-
terminal deletions in CIITA (which happen to remove one or
more LRR sequences) both abrogate transactivation function
and confer a dominant-negative effect (9, 14, 22). While CIITA
has fourLRR which conform precisely to the published con-
sensus (15), CIITA also contains a number of LRR-like se-
quences (some of which only vary from the consensus by a
single residue). Surprisingly, a point mutation changing F at
961 to S (within an LRR-like sequence adjacent to the iden-
tified NLS mentioned above) is responsible for an unusual BLS
case. This particular patient was not diagnosed until his late
twenties and died early in his thirties (102). In recent experi-
ments examining CIITA self-association, specific point muta-
tions within the LRR of CIITA diminished both transactiva-
tion and the ability of this region to self-associate with residues
336 to 702 (Linhoff et al., submitted); it remains unclear if
these associations are direct or indirect. Mutations at various
points in the LRR of CIITA affect the ability of CIITA to
activate transcription, largely due to a defect in nuclear trans-
location (S. B. Hake, K. Masternak, C. Kammerbauer, C. Jan-
zen, W. Reith, and V. Steimle, submitted for publication; J.
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FIG. 4. The domain organization of CIITA is similar to those of other NBS-
and LRR-containing proteins. CIITA is compared to two NBS- and LRR-
containing proteins, mammalian Nod1 and the plant disease resistance protein
RPMI (see text). The N-terminal domains of these proteins are dissimilar. Tick
marks, intervals of approximately 100 amino acids.

Harton and J. P.-Y. Ting, unpublished data). Together these
observations support an important role for CIITA’s LRR.

The LRR of CIITA have homology to a number of LRR-
containing proteins. An example is the RNase inhibitor family,
which includes human and pig RNase inhibitor and Schizosac-
charomyces pombe rnalp (44, 52, 98). Surprisingly, Nod1 (see
above) is similar to CIITA and contains a nucleotide binding
site (NBS) motif upstream of its LRR (46). More intriguing
still is the apparent conservation of NBS-LRR proteins, which
function as disease resistance products in numerous species of
plants (reviewed in reference 33). Remarkably, these proteins
have NBS motifs and LRR with spacing and sizes similar to
those of CIITA (Fig. 4), suggesting a divergent family of genes
with a similar domain structure. It is tempting to speculate that
these motifs are crucial for proteins which protect against
infectious agents in both mammals and plants.

MODE OF ACTION

The mode of action of CIITA has been an enigma since its
discovery, due to the lack of consensus DNA-binding motifs
and its inability to bind W, X, and Y elements. However,
CIITA requires intact W, X, and Y elements and requires their
stereospecific alignment. Thus changes in X and Y by half a
helical turn destroy the ability of CIITA to upregulate these
genes, while insertion of a whole helical turn does not (150).
This parallels early data demonstrating that IFN-y induction of
class I MHC promoters also requires an aligned promoter
(130, 131). These data suggest that proteins binding to W, X,
and Y may interact with CIITA in a highly specific three-
dimensional structure allowing proper binding and intermolec-
ular interactions. Indeed two lines of evidence now indicate
that this is occurring. The first is indirect, showing that exog-
enously expressed CIITA can result in the in vivo protein
binding of W, X, and Y of class II MHC, Ii, and DM promot-
ers, as shown by in vivo footprinting (105, 132, 141). Second
and more directly, in vitro and in vivo analyses have shown that
CIITA interacts with RFXS, RFXANK, CREB, NF-YB, and
NF-YC (75, 111, 150; Hake et al., submitted). Furthermore,
recruitment of CIITA into the transcription complex requires
the multiple, synergistic interactions provided by these tran-
scription factors (76). Interactions between these factors and
CIITA have been observed within the following residues of
CIITA: RFXS5, 335 to 612; RFXANK, 1 to 335; CREB, 1 to
612; NF-YB, 518 to 612; NF-YC, 218 to 335 (150). The recent
observation that deleterious mutations in the LRR fail to dis-
rupt REXS, RFXANK, NF-YB, and NF-YC (Hake et al., sub-



VoL. 20, 2000

e BOsal Factors

K

MINIREVIEW 6189

Oct

TATA

FIG. 5. Multiple transcription factor contacts allow CIITA to function as a transcriptional scaffold and integrator. CIITA contacts components of the basal
transcription machinery via its acidic domain. Interactions with RFX, RFXANK, CREB (X2BP), NF-YB, and NF-YC have been mapped. The region of CIITA
required for each interaction is shown (see text). Domain markings for CIITA are the same as in Fig. 3. TBP, TATA-binding protein.

mitted) is consistent with the mapping result above. Interac-
tions between CIITA, RFX, CREB, and NF-Y are likely to be
important as suggested by the observation that a C-terminal
domain of RFX is required for cooperative binding between
RFX and NF-Y (138). CIITA interactions with the B-cell-
specific protein Bob-1 (OcaB) (34) have been described, but
the domain involved is unknown. Thus many of these proteins
could be contacting independent domains of CIITA (acidic,
PST, or GTP binding), the exact sites of which will hopefully be
informative. Considering the interactions between CIITA and
components of the basal transcription machinery (see Struc-
ture and Function, “Acidic domain”), these observations have
led to a firm view of CIITA as a scaffold which acts as an
integrator or enhanceosome for class II transcription (37, 76,
127, 150; S. J. P. Gobin, M. van Zutphen, S. D. Westerheide,
J. M. Boss, and P. van den Elsen, submitted for publication).
Thus a composite picture would show all these proteins bind-
ing to CIITA and localized to the promoter (Fig. 5). A ques-
tion of whether this binding is direct or indirect still has not
been completely resolved and awaits the isolation of these
proteins in pure form.

BIOLOGICAL SIGNIFICANCE

The implications of a master regulator controlling expres-
sion of class I MHC genes are immense. Aside from the
obvious importance of CIITA to BLS, the regulation of CIITA
largely determines the presence or absence of class II MHC
and its degree of expression and thus the nature of the immune
response. Consequently, CIITA is exceedingly important when-

ever class I MHC is required and will impact infectious dis-
eases, neurologic disorders, autoimmune diseases, tumor
rejection, graft acceptance, and perhaps even normal develop-
ment. Furthermore, as CIITA is a single protein that affects a
large family of genes, it represents an ideal target for pharma-
cological intervention in the class II antigen presentation path-
way, whether for immune suppression in transplantation and
autoimmunity or for enhancement for BLS and tumor rejec-
tion.

An emerging pathway by which pathogens escape the im-
mune system involves modulating CIITA expression. Cytomeg-
alovirus, for example, downregulates expression of CIITA by
altering the IFN-y signal pathway, thus diminishing the im-
mune stimulatory function of class I MHC (60, 79). During
Mpycobacterium bovis BCG infection of murine macrophages, a
mycobacterial N gene product diminishes IFN-y-mediated
phosphorylation of STAT-1a, thus reducing CIITA and class 11
MHC expression (140). Chlamydia similarly interferes with
CIITA transcription through the degradation of upstream
stimulatory factor 1 (147).

In contrast to examples where CIITA is downregulated
during infection, the human immunodeficiency virus (HIV)
utilizes CIITA to upregulate HIV long terminal repeat (LTR)
function (108). There is a correlation between expression of
class I MHC and higher HIV expression and replication. The
introduction of CIITA into T cells leads to increased viral
replication and transcription from the HIV LTR. CIITA is
expressed by activated human T cells and macrophages, and
both of these cell types are the primary targets of HIV, both
having developed different receptors for HIV. This correlation
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is intriguing and suggests that CIITA, not unlike other known
positive regulators of HIV LTR (i.e., Tat and NF-«kB), regu-
lates the transcription and replication of HIV. In contrast,
mutations in the cysteine-rich portion of HIV Tat (C22S37G
and C37G) decrease class II MHC transcription, leading to
diminished class II MHC expression in the THP-1 (monocytic)
and H-9 (T-lymphocyte) cell lines, an effect not seen with
wild-type Tat (128). Interestingly these mutations can decrease
class II MHC transcription without affecting CIITA expression
(128), likely through disruptive interaction with transcription
elongation factor b (49). This suggests a clever mechanism to
evade immune detection (via loss of class II MHC) while
potentially maintaining CIITA-dependent HIV LTR transcrip-
tion. A seeming dilemma exists in the literature. Tosi et al.
show that mutant HIV Tat, but not the wild type, interferes
with class II MHC transcription and expression, whereas Ka-
nazawa et al. present the opposite with a different mutation in
the cysteine-rich region of HIV Tat (49, 128). This difference
may be due simply to differential effects of HIV Tat and its
mutants on expression of class I MHC in THP-1 and H-9 cells
versus COS cells.

As discussed above, a lack or decrease in class I MHC can
prove advantageous to invading pathogens. Conversely, in-
duced class I MHC expression has an implicated role in in-
flammatory processes (reviewed in references 2, 27, 66, and
138) and the role of class II MHC in autoimmune disease has
been extensively studied (reviewed in references 77, 90, and
124). The role of CIITA in these diseases is currently being
studied. In nonobese diabetic mice it has been shown that the
lack of CIITA prevented diabetes despite noticeable pancre-
atic infiltration (82), whereas class II MHC deficiency alone
was insufficient to prevent cytotoxic T-cell-mediated disease
pathology in a model of lymphocytic choriomeningitis virus-
induced diabetes (55). In autoimmune thyroiditis, potential
interactions between CIITA and single-strand binding protein
1, a regulator of thyroid-stimulating hormone gene expression,
may contribute to increased class II MHC expression (5, 81),
thus allowing thyroid cell antigen presentation to T cells (143).

Correction of the BLS defect is an obvious use of CIITA in
gene therapy. Retroviral transfer of CIITA was recently em-
ployed to correct class II deficiency in cells from a BLS patient
(11). Another significant application is the potential use of
dominant-negative forms of CIITA in the production of class
II MHC-deficient organs for transplantation (9, 22, 145). We
have found that the lack of CIITA in heart donor grafts also
greatly enhances graft survival in totally allogeneic hosts (W. J.
Brickey, N. J. Felix, and J. P.-Y. Ting, unpublished data). This
level of enhancement is beyond that produced by A, ™'~ grafts,
perhaps owing to repression of all class II MHC expression
including Ii and DM in CIITA knockout mice.

Tumors often lack class II MHC and thus have diminished
immunogenicity. The expression of class I MHC and/or co-
stimulatory molecules has shown promise in increasing tumor
immunogenicity and tumor rejection (6, 94, 95). Loss of the
retinoblastoma protein (Rb), a tumor suppressor, has been
linked with loss of class II inducibility in retinoblastoma, non-
small-cell lung carcinoma and bladder carcinoma (63, 65, 93).
Rb is thought to in some way allow or enhance the accessibility
of class I MHC promoters (63). Whether CIITA requires Rb
to function is unclear and may depend on the relative expres-
sion of the individual proteins or other cell-type-specific fac-
tors (64, 129). In tumors with intact Rb, a failure to upregulate
CIITA in response to IFN-y is the most common explanation
for absent class II MHC (64). CIITA is absent in small-cell
lung cancer, and transfection of CIITA can restore class II
expression (144). Restoring class II expression to tumor lines
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by introduction of either the IFN-y gene (97) or the gene for
CIITA (73) can improve the immunogenicity of the tumor.
However, overexpression of CIITA leading to high levels of
class II MHC correlated with increased tumorigenicity (73),
suggesting that overexpression of CIITA may be detrimental in
tumor therapy approaches. Other experiments suggest that
class II-transfected tumors are more immunogenic than CIITA
transfectants due to an ability of class II-transfected tumors to
present endogenous antigen whereas CIITA expression also
induces Ii, which favors presentation of exogenous antigens (3,
25).

As mentioned above, class I MHC and B,m can also be
transcriptionally regulated by CIITA (40, 72, 104). Both class I
and B,m promoters contain W, X, and Y motifs (40, 107),
consistent with the requirement of these elements for transac-
tivation by CIITA. In cell lines, CIITA has been observed to
increase and in some cases induce class I expression following
transfection of CIITA (78). However, class I MHC expression
in CIITA-deficient mice is apparently normal. An answer to
this conspicuous paradox may lie in the genetics of develop-
ment. Trophoblasts lack expression of the classical class I and
class I MHC (reviewed in references 56 and 134, expressing
instead the nonclassical class I molecule HLA-G (53). CIITA
fails to transactivate the HLA-G promoter in extravillous cy-
totrophoblast cells but does transactivate HLA-A and B pro-
moters (39). Expression of CIITA can induce class I promoter
activity in trophoblast-derived choriocarcinoma cells (58).
Thus CIITA appears to be under tight control early in devel-
opment. As CIITA-deficient mice develop normally, suggest-
ing that the lack of CIITA does not interfere with develop-
ment, one is left to propose that the effects of CIITA on class
I transcription might have subtle roles during normal develop-
ment. Alternatively, it could be easily argued that class | MHC
expression in vivo is not regulated by CIITA. This interpreta-
tion is teleologically unsatisfying and begs the question of the
necessity of obvious W, X, and Y elements within the class I
MHC. Furthermore, recent chromatin immunoprecipitation
experiments reveal that CIITA is bound to class I MHC and B,
promoters in vivo (76). It may be best to conclude that a
physiologically relevant role for CIITA in regulating class I
MHC expression will likely be subtle and possibly restricted to
limited developmental or cell-specific events.

These early studies suggest that, in principle, modulation of
CIITA, whether by suppression to generate better transplants
or avoid autoimmune disease or by introduction to improve
immune responses to pathogens or tumors, is a promising field
of study with enormous potential.

SUMMARY

Great progress in understanding the relative importance of
various portions of CIITA for transcriptional activation of class
II MHC genes has been made since CIITA’s discovery in 1993.
Emerging from these studies is a fairly consistent picture where
CIITA is expressed, binds GTP, translocates to the nucleus,
and interacts with specific DNA-binding transcription factors
and basal transcription components, thus opening and activat-
ing class I MHC and related promoters. Despite these strides,
this model is essentially unchanged from that initially es-
poused. The observation that class I MHC promoters in some
B cells are bound to X and Y box binding proteins and thus
open even in the absence of CIITA, whereas these same pro-
moters in non-B cells are closed until CIITA is present, is
provocative. One potential explanation is that CIITA possesses
two distinct functions, the ability to direct the opening of re-
sponsive promoters (presumably through some form of remod-
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eling) and the ability to activate transcription through its acti-
vation domain and protein-protein interactions (132, 141). The
presence of a locus control region responsive to a B-cell-spe-
cific factor is another possibility, yet CIITA must, in some
fashion, be directing chromatin remodeling in cells which can
be induced to express CIITA. While CBP is an obvious candi-
date for mediating remodeling, no conclusive experiments
have shown that CBP is required for the remodeling of class II
MHC promoters. The studies above support interactions be-
tween CIITA and transcription factors, but does CIITA merely
bind these factors to place the activation domain appropri-
ately? Why has it been difficult to demonstrate a role for
CIITA in a transcription complex? Is GTP binding only essen-
tial for nuclear import? Is nuclear export of CIITA occurring
and is it relevant? What aspect of class II MHC transcription
requires that retinoblastoma protein Rb be present? Is CIITA
a prototype for a family of transcriptional coactivators? Why is
limited class II expression observed in the absence of CIITA?
The evolutionary conservation of W-, X-, and Y-containing
promoters in mammals, birds (104), amphibians (51), and fish
(121) suggests that CIITA may be extremely old; what are its
origins?

All remaining questions aside, CIITA is truly a remarkable
protein. Controlled by up to four separate promoters, CIITA
has been imparted a complex pattern of inducible and consti-
tutive expression that can be regulated in developmental path-
ways. Through exercising specific control over the transcription
of every major component of class II MHC antigen presenta-
tion pathway, CIITA gains the title of a master regulator. As
CIITA appears to be class II MHC specific, it can be thought
of as the core transcription factor of which all the remaining
components are but cofactors. This is central to the concept of
CIITA as a scaffolding protein or integrator and perhaps alters
our view of transcriptional control away from promoters and
individual factors towards a more unified enhanceosome per-
spective.

The view of CIITA as a master regulator has implications for
practical applications that are staggering. Successful engineer-
ing of dominant-negative CIITAs may lead to the production
of transplant tissues unable to express class II MHC and the
associated self peptides which contribute so significantly to
graft rejection. A thorough understanding of CIITA’s molec-
ular mechanisms may lead to therapeutics which allow tempo-
rary enhancement or suppression of class II MHC, thus favor-
ably altering the immune response during critical events in
pathogenesis, autoimmune disease, tumorigenesis, and neu-
roinflammation.
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