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Processes evoked by seeing a personally familiar face encompass
recognition of visual appearance and activation of social and per-
son knowledge. Whereas visual appearance is the same for all
viewers, social and person knowledge may be more idiosyncratic.
Using between-subject multivariate decoding of hyperaligned
functional magnetic resonance imaging data, we investigated
whether representations of personally familiar faces in different
parts of the distributed neural system for face perception are
shared across individuals who know the same people. We found
that the identities of both personally familiar and merely visually
familiar faces were decoded accurately across brains in the core
system for visual processing, but only the identities of personally
familiar faces could be decoded across brains in the extended sys-
tem for processing nonvisual information associated with faces.
Our results show that personal interactions with the same individ-
uals lead to shared neural representations of both the seen and
unseen features that distinguish their identities.

familiar face processing j face recognition j social perception j person
knowledge j brain decoding

Face recognition is essential for effective social interactions.
When we see a familiar face, we spontaneously retrieve per-

son knowledge and the position occupied by that familiar indi-
vidual in our social network. This information sets us up for the
most appropriate behavior with that specific individual. The
importance of familiar faces for social interactions is reflected in
the way the human brain processes these stimuli. Familiar faces
are processed in a prioritized way with faster detection even in
suboptimal conditions (1, 2). Familiarity associated with faces
warps their visual representation (3) and can result in a more
homogenous representation across the visual field in areas with
retinotopic organization (4). Recognition of familiar faces entails
processing not only their visual appearance but also retrieval of
person knowledge and an emotional response (5–10). Different
parts of the distributed neural system for face perception con-
tribute to these processes (5, 10, 11). The core system for face
perception processes visual appearance, resulting in view-
invariant representations of identity in anterior temporal and
inferior frontal face areas (12–14). The extended system for face
perception plays a role in extracting semantic information from
faces as well as emotional responses (5, 11, 15, 16).

Here, we investigated the neural codes for high-level visual
and semantic information about personally familiar faces. Spe-
cifically, we asked whether these codes are supported by a com-
mon set of basis functions that are shared across people who are
personally familiar with the same individuals. We measured pat-
terns of brain activity with functional magnetic resonance imag-
ing (fMRI) while participants viewed images of personally famil-
iar faces and faces of strangers who were only visually familiar.
We used hyperalignment to derive a set of basis functions that
align brain response patterns in a common, high-dimensional
information space (17–19). Hyperalignment transformation

parameters were based on participants’ brain activity measured
while watching The Grand Budapest Hotel (20), an engaging
comedy-drama with rich characterizations of several individuals.
We found that these basis functions capture shared representa-
tions of visual appearance in the core system for both personally
familiar faces and visually familiar faces of strangers. Surpris-
ingly, we also found basis functions that capture shared repre-
sentations of personally familiar others, but not visually familiar
strangers, in extended system areas that are associated with rep-
resentation of person knowledge, theory of mind, and emotion.
Importantly, these basis functions are derived from brain
responses to the movie and are, thus, not specific to the familiar
individuals whose faces were the experimental stimuli. These
results show that the face processing system encodes both visual
and nonvisual high-level semantic information about personally
familiar others in a neural information space that is not specific
to a given set of faces and that is shared across brains.

Results
We measured patterns of brain responses to images of the faces
of four personally familiar individuals and four individuals who
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were only visually familiar (each presented in five different
head views; Fig. 1A) in a group of 14 participants who had
known each other for over 2 y. Participants were graduate stu-
dents, and the personally familiar faces were four other stu-
dents in the same PhD program. Personally familiar individuals
were rated as highly familiar by the participants (see SI
Appendix, Fig. S1 and Supplementary Information for quantita-
tive metrics of familiarity). The four individuals who were only
visually familiar were previously unknown. Participants became
visually familiar with these faces during an extensive behavioral
training session a day prior the fMRI experiment (average face
recognition accuracy during the training session was 97.9%
[95% bootstrapped CI: 96.9, 98.6]; see Materials and Methods
for more details and SI Appendix, Fig. S1).

We used fMRI data collected while participants watched a
movie (The Grand Budapest Hotel) to derive a common model
of information spaces with hyperalignment (17). For each par-
ticipant, hyperalignment calculates transformations that remix
that individual’s cortical vertices into the model space dimen-
sions. These dimensions capture response basis functions that
are shared across brains, affording markedly stronger between-
subject decoding of brain response patterns (Fig. 2 and SI
Appendix, Fig. S2). Because these transformations are per-
formed on cortical vertices, they can be applied to new
responses in the same participant to model responses for new
stimuli that were not used in their derivation. These transfor-
mations derived from independent movie-viewing data were
used to project brain responses to the face images in the famil-
iar face perception experiment into the shared model informa-
tion space.

We performed separate between-subject multivariate pattern
classifications (MVPC) of responses to personally familiar faces
and the faces of visually familiar strangers. To analyze head-
view-invariant representation of identity, support vector machine
(SVM) classifiers of identity were trained on responses to
images of four head views and tested on the left-out head view
(Fig. 1B).

Between-subject classification of identity revealed an exten-
sive set of cortical areas with significant decoding accuracies
(Figs. 2 and 3). Whole-brain searchlight analyses (Fig. 2 and SI
Appendix, Fig. S3) revealed significantly higher decoding accu-
racies for personally familiar faces than for visually familiar
faces in the bilateral lateral occipital cortex, right middle fusi-
form face area (mFFA), and right inferior frontal gyrus (IFG),
as well as in right temporoparietal junction (TPJ), right insula,
and right dorsal and ventral medial prefrontal cortex (MPFC).
Region-of-interest (ROI) analyses (Fig. 3 and SI Appendix,
Figs. S4–S6) corroborated these findings and showed significant
decoding for both visually and personally familiar identities in
core areas in bilateral occipital face area (OFA), posterior FFA
(pFFA), mFFA, and anterior FFA (aFFA) and in right poste-
rior superior temporal sulcus (pSTS), right anterior temporal
lobe (ATL), and right IFG, as well as in extended areas in bilat-
eral precuneus. Decoding accuracies for personally familiar
faces were significantly higher than accuracies for visually famil-
iar faces in two areas of the right extended system—the MPFC
and the insula—and, at a lower threshold, in the right TPJ and
precuneus (two additional extended system area), the right
mFFA, the right IFG, and the left pSTS. Significantly higher
decoding accuracy for visually familiar faces than personally
familiar faces was found only in the left aFFA. A right hemi-
spheric bias was evident in the ROI analyses for both person-
ally familiar and visually familiar faces (SI Appendix, Fig. S7).

Identity decoding accuracies for personally familiar faces
were significant across the core and extended systems. In the
core system, decoding was significant in the ventral core system
(bilateral OFA; bilateral pFFA, mFFA, and aFFA; and the right
ATL), in the dorsal core system (bilateral pSTS), and in the

anterior core system (right IFG). Importantly, we found signifi-
cant identity decoding of personally familiar face identity in
nonvisual areas of the extended system (right TPJ, bilateral
MPFC, bilateral precuneus, and right insula).

By contrast, significant identity decoding accuracies for visu-
ally familiar faces of strangers were limited to areas of the core
system and the precuneus (see Figs. 2B and 3A). Decoding
accuracies were significant in the ventral core system (bilateral
OFA; bilateral pFFA, mFFA, and aFFA; and the right ATL), in
the dorsal core system (right pSTS and middle STS [mSTS]),
and in the anterior core system (right IFG).

Discussion
This study provides direct evidence of shared representations
of the distinctive visual appearance of familiar faces and
individual-specific person knowledge associated with personally
familiar others. We show that individually distinctive represen-
tations of familiar faces are embedded in a neural code that is
shared across brains. Two types of familiarity were investigated:
visual familiarity developed in the laboratory and with no asso-
ciated semantic information and personal familiarity that
results from direct and protracted social interactions over time
(on average 3.2 y 6 1.4 SD). Personally familiar faces, unlike
faces that are only visually familiar, have robustly distinct repre-
sentations in areas of the extended system, notably in areas
associated with person knowledge, theory of mind, social cogni-
tion, and emotional responses. These nonvisual areas include
the TPJ, MPFC, precuneus, and insula (11, 15, 16, 21–23). This
work both replicates and extends previous findings on the acti-
vation of the extended system by analyzing the information that
is encoded in brain activity of the extended system areas. Here,
we show that these activations encode high-dimensional repre-
sentations for personally familiar others and that the neural
code for these representations is shared across the brains of
people who are personally familiar with the same friends and
acquaintances.

By creating a common representational space using hypera-
lignment, we were able to decode identity information across
participants. Between-subject classifiers are a stringent test to
determine whether the information about the stimuli and the
way this information is encoded in brain activity are shared
across participants (17–19, 24). These classifiers are trained on
data from n � 1 subjects and tested on the left-out nth subject.
In order for the classifier accuracy to be significantly above
chance, information about the stimuli must be encoded in a sim-
ilar format in the training subjects’ brains and in the test sub-
ject’s brain. Thus, our between-subject decoding results show
that both the visual and semantic information encoded in idio-
syncratic fine-scale patterns of brain responses are shared across
people who are personally familiar with the same identities.

Decoding accuracy of identity was high for both personally
familiar and visually familiar faces in the early core system for
visual processing of faces, with higher decoding of personally
familiar faces in patches near the functionally defined OFA and
the right fusiform gyrus (Fig. 2C). These findings indicate that
learning associated with the development of personal familiar-
ity modifies the representation of faces at multiple levels. More
robust representation in areas for visual and semantic represen-
tation of others may underlie, in part, the behavioral advan-
tages for detection and recognition of personally familiar faces
(1, 2, 4, 25–27). Conversely, alterations in structural and func-
tional connectivity between these visual and semantic areas
may underlie changes in face processing abilities with aging and
deficits such as prosopagnosia (28, 29).

Decoding accuracy of identity was high for personally famil-
iar faces in areas associated with person knowledge and proc-
essing of social information (5, 9, 16, 30, 31). This finding
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Fig. 1. Experimental paradigm and between-subject identity decoding analyses. (A) Experimental paradigm with two example trials. In each trial, an
image was presented for 1,600 ms (Upper). To prevent visual adaptation, the same image was repeated three times for 500 ms with random jitters in size
and location between repetitions (Lower). After each trial, participants reported whether the identity presented in the current trial was the same or dif-
ferent as the previous trial (1-back repetition detection on identity) with a button press at every trial. The familiarity of the stimuli was blocked within
runs and counterbalanced across sessions (Lower Right; see Materials and Methods for more details). (B) We performed between-subject identity decod-
ing on hyperaligned data by cross-validating across participants and head views. The hyperaligned functional data were divided into a training set with n
� 1 participants and a test set with the left-out participant (Top). Then, within each surface searchlight, a linear classifier was trained on samples from
the n � 1 participants to distinguish the four identities in four head-views (Bottom, orange shaded box). The classifier was tested on the left-out head-
view from the left-out participant (green shaded box). The process was repeated exhaustively for all five head-views (see example splits at the bottom)
and for all participants. Thus, identity classifiers were tested for generalization across both participants and head views.
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Fig. 2. Decoding identity across participants with surface-searchlight, between-subject MVPC after hyperalignment. (A) Brain map showing decod-
ing accuracy for personally familiar faces. (B) Brain map showing decoding accuracy for visually familiar faces. Both maps are thresholded at P <
0.05, one-sided, after permutation testing and FDR correction (Benjamini-Hochberg). “NS” on the colorbar indicates the range of nonsignificant
accuracy values greater than 25%. (C) Difference in decoding accuracy between personally familiar faces and visually familiar faces. Red vertices
indicate higher decoding accuracy for personally familiar faces (Personal > Visual). Blue vertices indicate higher decoding accuracy for visually
familiar faces (Visual > Personal). The map is thresholded at P < 0.05, two-sided, after permutation testing and FDR correction (Benjamini-Hoch-
berg). For personally familiar faces, significant between-subject decoding accuracy was present across the core system: bilateral OFA and fusiform
gyrus, right ATL (ventral core system); right pSTS, mSTS, and anterior STS (dorsal core system); and right IFG (anterior core system). Significant
decoding accuracy was also present in areas of the extended system: right TPJ and MPFC(theory of mind areas), bilateral precuneus, and right
insula. For visually familiar faces, significant between-subject decoding accuracy was limited to areas of the core system: bilateral OFA and fusi-
form gyrus, right mSTS, and right IFG. Between-subject decoding accuracy for personally familiar faces was higher than for visually familiar faces
in large portions of the face processing network. Higher decoding accuracy for personally familiar faces was present in areas of the core system
such as bilateral lateral occipital cortex (LOC), right mFFA, and right IFG, and areas of the extended system such as right TPJ, precuneus, MPFC, and
insula.
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suggests that participants developed shared person knowledge
about the personally familiar identities even if they had unique
real-life interactions with those identities and that a shared
code for this information is embedded in areas of the extended
system for face perception. Shared person knowledge was
reflected in similar patterns of brain activity in a common high-
dimensional representational space across participants. This
high-dimensional information space might encode a person
knowledge information space. Our knowledge about an identity
includes both episodic long-term memories and semantic attrib-
utes associated with a specific individual, such as personal
traits, attitudes, opinions, and position in the social network
(16, 32–34). Constellations of these attributes for individual
persons can be thought of as vectors in a high-dimensional
information space that captures the complexity of person
knowledge. In this space, each individual has a unique person
knowledge vector that distinguishes their identity. Some fea-
tures can be common across identities (for example, similar epi-
sodic memories associated with different identities), but each
identity is defined in aggregate by a unique constellation of
multiple features. In order to be represented in brain activity,
such a high-dimensional person knowledge information space
should map onto a high-dimensional neural information space.
Our work suggests that this high-dimensional neural informa-
tion space exists. Future work will need to investigate the struc-
ture and content of the shared person knowledge and how it
maps onto the high-dimensional neural information space. In
this study, shared person knowledge could be the result of the
shared experiences that the group of participants (PhD

students in the same program) had on a daily basis in a group
setting. Alternatively, the person knowledge shared by the par-
ticipants might contain the more stable attributes and traits
associated with the personally familiar identities.

Our study provides evidence for the critical importance of
using personally familiar faces to investigate the full potential
and scope of the face processing system. Previous work has
shown that personal familiarity is not equivalent to familiarity
developed over passive exposure, such as familiarity with
famous individuals (6–8). Studies comparing brain responses to
personally familiar faces versus famous faces found stronger
activation for personally familiar faces in areas of the extended
system such as TPJ, precuneus, and MPFC (16, 35). Most of
our life is spent interacting with personally familiar individuals,
and quick recognition and activation of person knowledge are
prerequisites for appropriate and effective social interactions. If
we are to understand how the face processing system works
outside of artificial laboratory settings, we need to study the
human brain with the stimuli it evolved to process for survival:
socially relevant, personally familiar others.

Materials and Methods
Participants. Fourteen participants (6 female, mean age 27.42 y 6 1.74 SD)
took part in the experiment. All had normal or corrected-to-normal vision.
Participants were graduate students in the Psychology and Brain Sciences
Department at Dartmouth College. The study was approved by the Dart-
mouth Committee for the Protection of Human Subjects. All participants
providedwritten informed consent to the study. The participants in this exper-
iment also took part in a movie-watching experiment (The Grand Budapest

Fig. 3. Decoding identity across participants in areas of the core and extended system with between-subject MVPC after hyperalignment. (A) The bar-
plots show between-subject classification accuracy within ROIs in the core system (red, orange, and yellow bars) and in the extended system (green bars).
Accuracy values are centered around chance level (25%). Error bars show SEM (SE, n = 70 cross-validation folds); * indicates significance at P < 0.05 with-
out FDR correction; ** indicates significance at P < 0.05 with FDR correction (Benjamini-Hochberg). P values were estimated with permutation testing
(one-sided for Top and Middle, two-sided for Bottom; see Materials and Methods for details). Top: personally familiar faces. Middle: visually familiar
faces. Bottom: difference in accuracy between personally familiar faces and visually familiar faces. (B) Brain map showing the ROIs whose accuracy values
are plotted in A. ROIs for the core system were determined with a dynamic face localizer. ROIs of the extended system were determined with an anatom-
ical parcellation (see Materials and Methods). The diagram at the bottom shows the distinction in ventral, dorsal, and anterior core system and extended
system, as proposed in ref. 13. Decoding of identity for both personally and visually familiar faces was significant in most areas of the core system, includ-
ing FFA, ATL, and IFG (red and yellow bars). However, in extended system areas (green bars), decoding of identity was present only for personally familiar
faces (except in bilateral precuneus).

N
EU

RO
SC

IE
N
CE

Visconti di Oleggio Castello et al.
Shared neural codes for visual and semantic information about familiar faces in
a common representational space

PNAS j 5 of 8
https://doi.org/10.1073/pnas.2110474118



Hotel). The movie-watching dataset is publicly available, and we refer the
reader to the publication for more details (20).

Stimuli. Stimuli for the familiar face perception experiment were faces of
eight different individuals in five different head views each (Fig. 1A). Four
graduate students (two female) in the same department as the participants
served as models for the personally familiar faces. Four undergraduates (two
female) served as models for the unfamiliar faces (see Procedure). (The under-
graduate models graduated before the study was conducted; thus, partici-
pants were not familiar with them.) All models were Caucasian. Short videos
and still pictures of each personwere taken in the laboratory. The short videos
were taken while the experimenter explained the procedure to the models
and asked them to look around the room, which ensured a natural transition
to different head views. Each video was shown to the participants of the fMRI
experiment without the audio. The videos covered the person’s head and
shoulders, and all models wore a black T-shirt. During the recordings, models
were conversing naturally and listening to the experimenter. These recordings
(without the audio) were used during a behavioral training session to visually
familiarize participants with the unfamiliar individuals. All models provided
written informed consent to allow the use of their images for research and in
publications.

Still face images were taken with five different head views: left and right
full profile, left and right half profile, and full-frontal view (Fig. 1B). To ensure
consistent image quality, all pictures were taken in the same studio with iden-
tical equipment and lighting conditions. All still images were cropped and
included the hair. Each image was scaled to a resolution of 500 × 500 pixels,
gray scaled, and matched in average luminance and contrast using the SHINE
Toolbox (36).

fMRI data were also collected while participants viewed the final 50 min of
The Grand Budapest Hotel. Participants watched the first part of the movie
right before the scanning session. These data are part of a larger, publicly
available movie-watching dataset, and we refer the reader to the publication
for more details (20).

Procedure. Each participant took part in one behavioral session and three
fMRI sessions. During the behavioral session, participants completed a training
task to become visually familiar with four unfamiliar identities. During two
fMRI sessions, participants performed a one-back repetition detection task on
identity for visually familiar and personally familiar faces (Fig. 1A). A question-
naire was sent to the participants after the experiment to quantify how
familiar they were with the personally familiar individuals shown in the exper-
iment. In the third fMRI session, participants watched the final 50 min of The
Grand Budapest Hotel (20).

Before the behavioral training session, we verified that participants did not
know any of the identities used for the visually familiar condition. In the behav-
ioral training session, participants viewed four 15 s videos for each identity (no
audio). Then, participants performed a face identity-matching task. Each trial
consisted of two stimuli separated by a 0.5 s interstimulus interval. Stimuli
were still images of the four identities with different head views (presented
for 1 s) or 1 s video clips randomly selected from the 15 s video clips. Partici-
pants reported if the identity was the same or different using a keyboard.
There were 360 trials in total, with matching identities in half of the trials.
Participants were shown their accuracy as feedback every 30 trials (12).

Participants underwent two separate fMRI sessions on separate days (max 2
d between sessions). While they underwent anatomical scans, participants
were shown all 40 images that would be used in the experiment: 4 identities ×
5 head views × 2 familiarity types (visually familiar, personally familiar). After
the anatomical scan and a gradient-echo fieldmap scan, participants under-
went 10 functional runs for the main task and one functional run for a local-
izer. In each functional run, faces from only one type of familiarity were shown,
and the order of the runs was counterbalanced across sessions (the first session
started with a “personally familiar face” run, and the second session started
with a “visually familiar face” run, alternating conditions). Thus, the familiarity
of the stimuli was blocked in each run. The sixth run was always a localizer run.
(Data from these localizer runs were not used for the analyses reported here.)

Each run had 63 trials (60 stimulus trials and 3 fixation trials). Each stimulus
trial was 5 s long and started with a stimulus image presented for 500 ms fol-
lowed by a 50-ms black screen, repeated three times, and followed by 3,400
ms fixation (Fig. 1A). In each trial, the image size was jittered (650 pixels
equivalent to 1.25° variations). The three repetitions on each trial were of the
same identity and head view but with the location jittered (610 pixel varia-
tions in the horizontal and vertical location). Each face image subtended
∼12.5° of visual angle. Participants performed a one-back repetition detection
task based on identity, pressing a button with the right index finger for

“same” and the right middle finger for “different” (12). All runs started and
endedwith 15 s of a white fixation cross on a black background.

To minimize carry-over effects, the trial sequence was created by generat-
ing Type-1, Index-1 (T1I1) sequences (37, 38) (https://cfn.upenn.edu/aguirre/
wiki/public:t1i1_sequences) as follows. First, 10,000 T1I1 sequences with 21
labels (20 trial conditions plus a null trial) were generated and their efficiency
(39) was computed (using the tool from https://cfn.upenn.edu/aguirre/wiki/
doku.php?id=public:selection_of_efficient_type_1_index_1_sequences). The
efficiency calculation was based on matrices that indicated the relationship
between pairs of stimuli. We used three such matrices: identity (1 for same
identity and 0 otherwise), head-view (1 for same head view and 0 otherwise),
and mirror-symmetry (for example, 1 for left and right profile views). Then,
we selected the top two sequences, one for personally familiar faces and one
for visually familiar faces. Because each T1I1 sequence with 21 labels is 212 + 1
= 442 trials long, we generated a longer sequence by appending another T1I1
sequence that started with the same label. The final sequence was then bro-
ken into 10 subsequences with 63 trials for each run.

An important property of T1I1 sequences is that every 21 trials all labels are
presented. Thus, in each run, each image was presented exactly three times,
with three blank trials. An extra trial was added at the beginning of each run,
either repeating the first image (for the first run) or repeating the last trial of
the previous run (for the remaining nine runs). The sequence order was coun-
terbalanced across participants by inverting the original sequences every other
participant (an inverted T1I1 sequence is a T1I1 sequence).

Imaging Parameters. All functional and structural images were acquired using
a 3T Siemens Magnetom Prisma MRI scanner (Siemens) with a 32-channel
phased-array head coil at the Dartmouth Brain Imaging Center. Functional
blood-oxygenation level-dependent images were acquired in an interleaved
fashion using gradient-echo echo-planar imaging with prescan normalization,
fat suppression, a multiband (i.e., simultaneous multislice) acceleration factor
of 4 (using blipped CAIPIRINHA), and no in-plane acceleration (i.e., in-plane
acceleration factor of 1): repetition time/echo time TR/TE = 1,250/33 ms, flip
angle = 64°, resolution = 2.5 mm3 isotropic voxels, matrix size = 96 × 96, field
of view (FoV) = 240 × 240 mm, 56 axial slices with full brain coverage and no
gap, and anterior–posterior phase encoding. At the beginning of each run,
three dummy scans were acquired to allow for signal stabilization. A gradient-
echo fieldmap scan was acquired at the beginning of each scanning session
for EPI distortion correction.

A T1-weighted structural scan was acquired using a high-resolution single-
shot Magnetization Prepared - RApid Gradient Echo (MP-RAGE) sequence
with an in-plane acceleration factor of 2: repetition time/echo time/inversion
time TR/TE/TI = 2,300/2.32/933ms, flip angle = 8°, resolution = 0.9375 × 0.9375
× 0.9 mm voxels, matrix size = 256 × 256, FoV = 240 × 240 × 172.8 mm, 192
sagittal slices, ascending acquisition, anterior–posterior phase encoding, no
fat suppression, and 5min 21 s total acquisition time. A T2-weighted structural
scan was acquired with an in-plane acceleration factor of 2 using GRAPPA: TR/
TE = 3,200/563 ms, flip angle = 120°, resolution = 0.9375 × 0.9375 × 0.9 mm
voxels, matrix size= 256 × 256, FoV= 240 × 240 × 172.8 mm, 192 sagittal slices,
ascending acquisition, anterior–posterior phase encoding, no fat suppression,
and 3min 21 s total acquisition time.

Data Preprocessing. Anatomical and functional data were preprocessed using
fMRIPrep version 1.0.3 (40). Functional data were slice-time corrected, motion
corrected, distortion corrected, and projected to the standard surface tem-
plate fsaverage6, consisting of 40,962 nodes for each hemisphere. Physiologi-
cal noise components were estimated using CompCor (41). (See the SI
Appendix, Supplementary Methods for more information about the prepro-
cessing steps.) No additional smoothing was performed in any of the analyses.

Hyperalignment. We estimated hyperalignment parameters with whole-brain
searchlight hyperalignment (18, 19). Hyperalignment was based on movie-
watching data that was collected previously. The dataset is publicly available,
and we refer the reader to the associated publication for more details (20).
Transformation matrices were determined for discal searchlights of radius 20
mm, ignoring nodes in the medial wall.

Functional data for each participant was then projected into the reference
participant’s space by combining the individual projection matrix to the com-
mon model space with the transpose of the reference participant’s projection
matrix. This transformation was performed as a single step andwas applied to
the z-scored preprocessed functional runs. The hyperaligned functional runs
were then used for all subsequent analyses.

GLM Modeling. Before fitting a general linear model (GLM), we regressed out
the motion parameter estimates and the first six physiological noise compo-
nents estimated by CompCor. In addition, the signal was high-pass filtered at
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a frequency of 0.0066 Hz. This preprocessing step was performed as a single
operation using 3dTProject in AFNI.

We modeled the task data for multivariate analyses using a canonical
hemodynamic response function (HRF) (BLOCK response in AFNI) convolved
for the duration of the stimulus (1.6 s). Each image was modeled separately
within each run, yielding 400 regressors of interest (10 runs × 2 types of famil-
iarity × 4 identities × 5 head-views). We also modeled participants’ responses
(whenever participants responded “same”), as well as the first repeated trial
in each run as a single condition. Additional nuisance regressors included poly-
nomial changes up to third order. A single model wasfittedwith all conditions
using 3dDeconvolve in AFNI. The resulting t-values associated with the regres-
sors of interest were used for MVPC (42).

Definition of ROIs in the Core and Extended System. Face-responsive ROIs
were determined after hyperalignment in the reference participant’s space
with data collected for another experiment. In separate scanning sections, 21
participants (including the 14 reported here) performed four runs of a
dynamic functional localizer (see refs. 43 and 44 and https://github.com/
mvdoc/pitcher_localizer for more details).

The first localizer run for each participant was hyperaligned and mapped
back to the reference participant’s space. We then modeled the correspond-
ing 21 hyperaligned localizer runs using 3dREMLFit in AFNI. Each condition
(faces, objects, scrambled objects, scenes, and bodies) was modeled using a
standard HRF response convolved with a boxcar function. Nuisance regressors
included polynomial changes up to third order, as well as button presses.

To create ROIs for face-responsive areas, we followed a two-step process.
In the first step, we visualized the contrast “Face vs. Other categories” in
SUMA (45). The contrast map was thresholded at t = 1.96 (corresponding to P
< 0.05, two-sided). If no nodes surpassed the threshold for one of the ROIs,
the threshold was lowered to t = 1.65 (corresponding to P < 0.05, one-sided).
Then, we manually selected center nodes near or at peaks of activation for
the following nine face-responsive ROIs: OFA, pFFA, mFFA, aFFA, ATL, pSTS,
mSTS, anterior STS, and IFG.

In the second step, the center nodes were automatically refined by select-
ing the node with the maximum t-value in a discal neighborhood of radius 3
mm centered around the peaks determined in the first step. The final face-
responsive ROIs were created by selecting all nodes within a 15 mm radius
from the center nodes. Nodes that belonged to more than one ROI were
assigned to the closest ROI according to the geodesic distance on the surface.
Thus, all ROIs were nonoverlapping.

Extended system ROIs were generated bymerging anatomical parcels from
the multimodal parcellation developed by the Human Connectome Project
(46). The corresponding parcels were individuated manually. We created four
ROIs for areas of the extended system:MPFC, TPJ, precuneus, and insula.

MVPC. All MVPC analyses were performed on hyperaligned data projected to
the template surface fsaverage6. All analyses were implemented in Python
and PyMVPA (47). MVPC used a linear SVM classifier (48). The SVM classifier
used the default soft-margin option in PyMVPA, which automatically scales
the regularization parameter according to the norm of the data.

Between-subject identity classification was performed by nested cross-
validation across participants and head views (Fig. 1B). First, the hyperaligned
data from each participant were averaged across runs, yielding 20 samples (4
identities × 5 head views) for each participant and type of familiarity. Second,
the data were split into a training set that consisted of data from n� 1 partici-
pants, and a test set with data from the left-out nth participant. This step
corresponds to cross-validation across participants. Third, a classifier was

trained on samples from the training set associated with the four identities in
four head views. The classifier was tested on samples from the test set associ-
ated with the four identities in the left-out head view. This step corresponds
to cross-validation across head views. This process was repeated exhaustively
for all head views and participants and resulted in 5 × 14= 70 folds. As a result
of this process, the classifier was trained and tested on completely indepen-
dent data, both at the level of participants and stimuli (Fig. 1B).

MVPC analyses were performed both whole-brain and within ROIs. For
whole-brain analyses, we centered surface searchlights on each node and
included all nodes within a cortical disk of radius 10 mm. Classification accura-
cies from each searchlight were placed into their center surface nodes, result-
ing in one accuracy map for each cross-validation fold. For ROI analyses, nodes
associated with each ROI were used instead of searchlights.

Statistical thresholding was performed with permutation testing. First, all
MVPC analyses were repeated 100 times by randomly shuffling identity labels
within each participant and head view independently. This shuffling main-
tained the same proportion of labels in each participant and head view as the
original dataset. Then, to create an empirical null distribution, we boot-
strapped (random sampling) 70 cross-validation folds (5 head views × 14 par-
ticipants) from the permuted analyses and averaged across these folds. This
process was repeated 10,000 times. For each searchlight or ROI, we then esti-
mated the empirical P value by counting howmany times the null distribution
exceeded the accuracy value of the original unpermuted dataset (adding 1 to
both numerator and denominator to adjust for bias; see ref. 49). This corre-
sponds to a one-sided permutation test. The Benjamini-Hochberg (50) False
Discovery Rate procedure (FDR correction) was used to correct the resulting P
values for multiple comparisons.

To compute the difference in classification accuracy between personally
familiar identities and visually familiar identities, we first averaged the accuracy
values from the 70 cross-validation folds for the two conditions (personal and
visual) independently. Then, in each of the two resulting maps, we set accuracy
values below chance level to 25% (SI Appendix, Fig. S3). Values below chance
level are caused by noise in the data, and thus they are not meaningful, but
they can inflate the estimate of the difference. Finally, the difference map
between the two conditions (personal–visual) was computed. Statistical testing
was performed with permutation testing. Permuted cross-validation folds were
bootstrapped (random sampling) for the two conditions independently, an
average map across cross-validation folds was computed for each condition,
accuracy values below chance level were set to 25%, and a permuted differ-
ence map was computed. This process was repeated 10,000 times to generate a
null distribution of difference values for each searchlight or ROI. An empirical
two-sided P value was computed by counting how many times the absolute
value of the null distribution exceeded the absolute value of the original
unpermuted difference map (adding 1 to both numerator and denominator to
adjust for bias; see ref. 49). The resulting P values were then FDR-corrected
using the Benjamini-Hochberg procedure (50).

Data Availability. Data from the fMRI face perception experiment is publicly
available on OpenNeuro at https://openneuro.org/datasets/ds003834 (52). The
movie-watching data of The Grand Budapest Hotel is publicly available at
https://openneuro.org/datasets/ds003017 (51). Code associated with this work
is available on GitHub at https://github.com/mvdoc/identity-decoding.
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