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Abstract 
Background: A recommender system captures the user preferences 
and behaviour to provide a relevant recommendation to the user. In a 
hybrid model-based recommender system, it requires a pre-trained 
data model to generate recommendations for a user. Ontology helps 
to represent the semantic information and relationships to model 
the expressivity and linkage among the data. 
Methods: We enhanced the matrix factorization model accuracy by 
utilizing ontology to enrich the information of the user-item matrix by 
integrating the item-based and user-based collaborative filtering 
techniques. In particular, the combination of enriched data, which 
consists of semantic similarity together with rating pattern, will help 
to reduce the cold start problem in the model-based recommender 
system. When the new user or item first coming into the system, we 
have the user demographic or item profile that linked to our ontology. 
Thus, semantic similarity can be calculated during the item-based and 
user-based collaborating filtering process. The item-based and user-
based filtering process are used to predict the unknown rating of the 
original matrix. 
Results: Experimental evaluations have been carried out on the 
MovieLens 100k dataset to demonstrate the accuracy rate of our 
proposed approach as compared to the baseline method using (i) 
Singular Value Decomposition (SVD) and (ii) combination of item-
based collaborative filtering technique with SVD. Experimental results 
demonstrated that our proposed method has reduced the data 
sparsity from 0.9542% to 0.8435%. In addition, it also indicated that 
our proposed method has achieved better accuracy with Root Mean 
Square Error (RMSE) of 0.9298, as compared to the baseline method 
(RMSE: 0.9642) and the existing method (RMSE: 0.9492). 
Conclusions: Our proposed method enhanced the dataset 
information by integrating user-based and item-based collaborative 
filtering techniques. The experiment results shows that our system 
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has reduced the data sparsity and has better accuracy as compared to 
baseline method and existing method.
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Introduction
A Recommender System (RS) is a system that can provide 
item recommendation to a user based on their personalized 
interest. The attention for RS has increased dramatically over 
the past decade in various industries and domains such as  
e-commerce and online video streaming. There is a crucial need 
for having a system that can filter the numerous data around 
us as we are living in the area of the Internet with humungous 
data transactions and exchanges daily. With a properly imple-
mented RS, the user will get a personalized recommenda-
tion based on the preferences, interest, rating, search results, 
the similarity between other users and so on. There are various  
successful use cases where RS helps in increasing the revenue 
of industrial, especially on online businesses. E-commerce com-
panies such as eBay1 and Amazon2 have made use of RS to 
promote their products to the targeted customer. On the other 
hand, online video streaming company such as Netflix3 and  
YouTube4 have also implemented multiple types of RS in their  
system.

Generally, there are two types of RS: (1) content-based fil-
tering (CB), and (2) collaborative filtering (CF). The CB RS  
provides recommendations to a user by using user preferences 
or history while the CF RS generates the recommendations 
based on the relationship between the user and item. These two 
methods have their advantages and shortcomings. As such, to  
combine the advantages and eliminate the shortcoming of 
each specific method, a new group of RS named hybrid RS 
has emerged. According to a recent survey in 20205, most of 
the recently proposed RS techniques fall under this group. 
Besides that, the most proposed hybrid RS combine at least one  
CF method in their system. CF method can be further classi-
fied as memory-based and model-based CF. A memory-based 
CF suggest item based on the similarity between user or item 
while the model-based CF builds the model by learning the 
interaction between user and item. There are a few researchers  
who focus on enhancing the model performance by fine-tuning 
the parameter and method in the model development proc-
ess. However, the accuracy of the model built depends on  
the quality of the data6.

On the other hand, ontology helps to structure the data in a way 
that the entities are connected within the database7. Thus, the 
relationship between each entity is preserved. Semantic similar-
ity can be easily calculated by various method that the ordinary 
method may not be able to discover. Ontology has been proven 
to help in increasing the accuracy of the RS and decrease the  
cold start issues8,9. With ontology, Manuela et al.10 reduced 
the fake neighbours’ problem cause by the CF method. Tarus  
et al.11 proposed an E-learning RS based on RS and the accuracy 
is better than using only CF without ontology. Shaikh et al.12 
proposed an ontology-based RS in an e-commerce website. 
User behaviour on the website has been captured as implicit  
feedback to the RS. Gohari and Tarokh13 proposed a hybrid 
method that using ontology to structure the data. User-based 
(UB) CF and item-based (IB) CF were used to generate the  
recommendation. Bagherifard et al.14 proposed a hybrid 
approach that utilizing ontology in CB and CF hybrid RS. In 

their approach, the user has been clustered before calculating 
pass to CB and CF. This reduces the compute time of the CF RS.  
Celyan et al.15 proposed SEMCBCF, which is an ontol-
ogy hybrid RS that extended from CBCF16, which is a CF RS  
without ontology integrated. The semantic similarity 
between items was calculated in their proposed system. The 
weighted average algorithm was used to combine the different  
similarity value. Nilashi et al.17 proposed an ontology hybrid 
recommendation that using IB and UB CF together with the 
clustering method to reduce overgeneralization. On another 
separate research, Liu and Li18 proposed an ontology CF RS  
based on Singular Value Decomposition (SVD). By employ-
ing the ontology as the data representation, the data sparsity has 
been decreased and the empty value of the user-item matrix was 
filled up based on IB CF. Inspired by their work, we proposed 
to address on enriching the data representation by means of  
ontology enrichment to give a more accurate recommendation.  
The summary of the recent publications has been done in  
Table 1.

In our proposed method, we focus on how to enrich the data 
information with ontology in order to increase the accu-
racy of the model-based RS. We proposed a method to enrich 
the user-item rating matrix by using the semantic similar-
ity calculated from ontology. We added a UB RS to the  
item-based RS to generate the predicted rating that used to 
fill the user-item matrix to improve on the accuracy. In addi-
tion, our proposed approach will also reduce the main problem 
that usually faced in the model training, which is the  
data sparsity issue. With the predicted rating filled in the  
original user-item matrix, it can fill up the unknown value thus 

Table 1. Recommendation system type and advantages of 
each publication.

Publication RS Type Advantages

10 CF
Reduce fake 
neighborhoods’ 
problem.

11,12 CF Able to capture implicit 
feedback.

14 Hybrid 
(CB and CF)

User has been 
clustered in ontology 
to reduce compute 
time. 

13,15,17 Hybrid 
(IB and UB CF)

13 User demographic 
is used. 
15 Unknown rating 
predicted by CB before 
CF process. 
17 Clustering item 
and user to reduce 
overgeneralization.

18 Hybrid 
(IB and model-based CF)

Enriching the matrix 
by IB CF before the 
model-based CF 
process.
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reduce the sparsity and increase the model training result. The 
experiment evaluations demonstrated that we have achieved  
higher accuracy and decrease the data sparsity problem of the  
original matrix.

Methods
Insipred by the data enrichment method proposed by Liu and 
Li18, we extended the work and proposed a hybrid method 
that used ontology to model the data. The semantic similar-
ity between each attribute will be calculated by using the  
ontology structure. The semantic similarity will be used in the  
rating prediction in IB CF and UB CF. The flow diagram of our 
proposed method is illustrated in Figure 1. The proposed method  
consists of four parts:
1. Crawling extra movie information from IMDB and construct  
the ontology

2. Unknown Rating prediction by IB and UB CF

3. Combine predicted ratings and forms a filled user-item rating 
matrix

4. Model-based CF.

We have selected the MovieLens 100K dataset as this is the 
standard dataset used for benchmarking purpose. This data-
set contains 100K rating records with 1682 movie data and  
943 user profile details. However, the movie information of 
the MovieLens dataset is limited. To have more details for the 
movie, we crawled the extra information from the IMDB web-
site such as movie country, classified, director, actors, and so 
on. After all the data had been crawled, we constructed the 
ontology representation for the dataset (see Figure 2). In the  
ontology representation, all the attributes nodes were con-
nected with each other via the relationship edges. The two main 
nodes were User and Movie connected through their related  
profile node. 

The semantic similarity of the dataset can be easily counted 
from the ontology constructed above. We used the IB CF 
and UB CF together to predict the unknown value from the  
original user-item matrix. The IB CF calculate the semantic 
similarity by considering the relationships between items. We  
used the Jaccard similarity index in calculating semantic simi-
larity. Jaccard similarity measures the similarity by taking the 

Figure 1. Flow diagram of the proposed method.
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percentage of the intersection of two sets of data. The formula  
is depicted in Equation (1).

               ( , )
A B A B

J A B
A B A B A B

∩ ∩
= =

∪ + − ∩
               (1)

Where J(A, B): the Jaccard similarity index between data A and 
data B.

From the process above, we got the movie-movie similarity by 
each feature of the movie (see Table 2). We then combined all the 
movie-movie similarity by a weighted average algorithm, where  
the weight variables were decided by experiment evaluation  
to get the best combination.

After completing the IB similarity calculation, we were able 
to predict the unknown rating values in the user-item matrix. 
The theory of the prediction is finding the related movie  
ratings rated by the specific user. The formula used is shown  
in Equation (2).

                        
,

,
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Where i: the movie rated by the user, a: rating, u: user, m: movie

The algorithm first took all the movie rated by the spe-
cific user and compare to the similarity calculated. It then 
summed up the predicted value by using the weighted average  
method where the weight is the similarity of the movie to 

that specific movie. The predicted value put in a temporary  
matrix which was later combined with UB RS.

In the UB CF, we applied similar methods from the IB CF 
above. First, we calculated the similarity of each user fea-
tures then combined it with a weighted average algorithm.  
With the user-user similarity calculated, we then predicted 
the empty movie rating by finding similar users. The similar 
users’ rating to that specific movie was combined by the weight  
algorithm.

Once the two IB CF and UB CF methods were completed, 
the two predicted rating were then combined by using the 
weighted average algorithm to get the final predicted rating for  
filling the empty original user-item matrix. After the filling proc-
ess was completed, it was then passed to the model-based CF to  

Figure 2. Ontology constructed based on the MovieLens dataset.

Table 2. An example of a movie-movie similarity 
matrix.

Movie1 Movie2 Movie3 Movie4 …

Movie1 1 0.35 0.86 0.5 …

Movie2 1 0.2 0.6 …

Movie3 1 0.88 …

Movie4 1 …

… 1
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construct the model. The CF model used in this paper was SVD. 
SVD decomposed the matrix into two lower dimensionality 
matrix and extracted the latent features. It is a famous method  
used in the model-based CF.

Results
In the evaluation, we have compared the result from the 
baseline model that based on SVD method alone to predict  
rating and an existing method that uses the IB CF to enrich the  
original user-item matrix. 

The proposed system was developed using Jupyter Notebook 
6.4.0 in Python 3.6 and Linux environment (Ubuntu 18.04). 
The Neo4j database has been used to store the data as the it is 
a graph database that our ontology representation will main-
tain in the data model. We applied the Root Mean square error  
(RMSE) algorithm to determine the accuracy of the system. 
It is a common approach to determine the predictive accu-
racy of the model19. It gives a relatively high weight to large 
errors. The smaller the RMSE value, the more accurate the  
model is.

Several experiments have been done to decide the weight 
variable used in combining the IB CF and UB CF. Various 
weightage variables ranging from 0.3 to 0.7 have been  
tested. Figure 3 shows that the best accuracy is achieved with a 
weightage of 0.5.

A similarity threshold was applied in the system to prevent 
destroying the original information of the original matrix when 
filling the empty value. Figure 4 shows that the accuracy of 
the model was affected by the similarity threshold. Overall, 
our proposed method had the lowest RMSE value across the  
similarity threshold testing (see Figure 5). 

The experiment evaluations indicated that our proposed 
approach had the lowest RMSE value. With the unknown rat-
ing filled by IB and UB CF before passing to the model-based  
CF, the data sparsity also decreased from 0.9542% to 0.8435%.

Discussion
From the experimental results in the earlier section, we observed 
that adding the IB CF method to enrich the original data helped 

Figure 4. RMSE comparison with different similarity threshold and methods.

Figure 3. RMSE of Various Ratios of User-based to Item-based Collaborative Filtering.
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to increase the accuracy of the model-based CF RS. It helped to 
boost the information of the original matrix while not destroying  
the original information. The added user-item CF method 
allowed the system to get more accurate similar user and 
items. However, we still want to know if our proposed method  
works in other model-based CF RS. Hence, we change the 
SVD model to the SVD++ model as the enhanced proposed 
method and re-run the experiment. SVD++ is an extended work 
from SVD, which achieve better accuracy by optimizing the  
algorithm to consider implicit feedback20. In our experiments, 
the results in Figure 6 below show that the enhanced ptoposed 
method with SVD++ outperforms any other method we used above 
with the enriched data. This helps to verify that our method can  
be applied to not only SVD, but any other model-based CF RS. 

From all the results above, it shows that our proposed method 
can increase the accuracy of the model-based CF RS. By  
adding the UB CF method to the existing method proposed 
by Liu and Li18 that employed only the IB CF method, we can  

Figure 6. Lowest RMSE value comparison between various methods.

achieve better accuracy than the existing method. This is due to 
the added UB CF method which allows the system to find the 
related item by user demography, whereas the IB CF method  
is not able to do it. 

Conclusions
In this paper, we reviewed the current ontology based RS and 
proposed a data enrichment method which uses ontology in a 
hybrid RS. The proposed method increases the model-based 
CF RS input data quality by adding the UB CF to the existing 
IB CF method. Both methods use the structure of ontology to  
calculate the semantic similarity and, subsequently, fill the 
unknown rating values of the original user rating matrix. Experi-
ment results indicated that the data sparsity problem has been  
minimized and the accuracy of the RS system has been increased.

Several improvements can be conducted in future includ-
ing algorithm optimization. The current offline model build-
ing algorithm takes time to process and can be optimized as 

Figure 5. Lowest RMSE value comparison between various methods.
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parallel processing to improve the processing time. Besides,  
the semantic similarity calculation can be changed to the 
level-based calculation to fully utilise the benefits of having  
ontology in the system.

Data and Source Code Availability
Underlying data
Zenodo: chewljie/dataset-enrichment-RS: V1.0 Initial Release, 
https://doi.org/10.5281/zenodo.5418122

This project contains the following underlying data:
•   �MovieLens 100K. (https://grouplens.org/datasets/movielens/

100k/)

•   �Extra movie details from OMDb API.
    (https://www.omdbapi.com/)

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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can add equations and formulas for steps in the Methods section, so that others can easily 
evaluate and replicate this work. As the focus of this paper is ontology extension from the 
previous research, please add a detailed explanation about the function of data enrichment and 
the ontology modeling in the Methods section. I suggest to explain how the ontology structure 
can be used in different cases and the scope of complexity of the ontology structure. In addition, 
please add more discussion about the data enrichment and use of ontology in the Discussion 
section.
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Author Conclusion 
 
In this paper, the authors reviewed the current ontology based RS and proposed a data 
enrichment method which uses ontology in a hybrid RS. The proposed method claims to increase 
the model-based CF RS input data quality by adding the UB CF to the existing IB CF method. Both 
methods use the structure of ontology to calculate the semantic similarity and, subsequently, fill 
the unknown rating values of the original user rating matrix. Experiment results indicated that the 
data sparsity problem has been minimized and the accuracy of the RS system has been increased. 
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