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Abstract

New Approach Methodologies (NAMs) that employ artificial intelligence (AI) for predicting 

adverse effects of chemicals have generated optimistic expectations as alternatives to animal 

testing. However, the major underappreciated challenge in developing robust and predictive AI 

models is the impact of the quality of the input data on the model accuracy. Indeed, poor data 

reproducibility and quality have been frequently cited as factors contributing to the crisis in 

biomedical research, as well as similar shortcomings in the fields of toxicology and chemistry. 

In this article, we review the most recent efforts to improve confidence in the robustness of 

toxicological data and investigate the impact that data curation has on the confidence in model 

predictions. We also present two case studies demonstrating the effect of data curation on the 

performance of AI models for predicting skin sensitisation and skin irritation. We show that, 

Corresponding authors: Vinicius M. Alves, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 
NC 27599-7355, USA; Charles Schmitt, Office of Data Science, Division of the National Toxicology Program (DNTP), National 
Institute of Environmental Health Sciences (NIEHS), Durham, NC 27560, USA. alvesv@email.unc.edu; charles.schmitt@nih.gov.
Author contributions
VMA developed the models and wrote the first draft of the manuscript. All the authors read, edited and approved the final manuscript.

Declaration of conflicting interests
The author(s) declared the following potential conflicts of interest with respect to the research, authorship and/or publication of this 
article: AT and ENM are co-founders of Predictive, LLC, which develops computational methodologies and software for toxicity 
prediction. All the other authors declare no conflicting interests.

HHS Public Access
Author manuscript
Altern Lab Anim. Author manuscript; available in PMC 2021 November 23.

Published in final edited form as:
Altern Lab Anim. 2021 May ; 49(3): 73–82. doi:10.1177/02611929211029635.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whereas models generated with uncurated data had a 7–24% higher correct classification rate 

(CCR), the perceived performance was, in fact, inflated owing to the high number of duplicates in 

the training set. We assert that data curation is a critical step in building computational models, to 

help ensure that reliable predictions of chemical toxicity are achieved through use of the models.
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Introduction

Efforts to reduce, refine and replace animal tests (according to the Three Rs principles) 

have accelerated in the last two decades.1,2 The Strategic Roadmap, published by the 

Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) 

in 2018,3 called for the development of alternative ‘New Approach Methodologies’ (NAMs) 

to help reduce the animal testing of chemical and medical agents. More recently, the United 

States Environmental Protection Agency (US EPA) declared a commitment to “eliminate all 

mammal study requests and funding by 2035.”4

The prediction of chemical toxicity by using studies and methods that could represent 

alternatives to animal testing has been an active research area at the intersection of 

toxicology, chemistry, molecular modelling, and regulatory science.5,6 Many modern 

in silico toxicity prediction tools, from read-across7 to quantitative structure–activity 

relationship (QSAR) modelling,8 rely upon knowledge on a range of adverse health effects 

that has been derived from experimental data on chemicals tested under different study 

protocols. The read-across relies on extrapolations from data-rich to data-poor compounds, 

based on perceived chemical ‘sameness’ or the presence of so-called ‘toxicity alerts’.9–11 

QSAR models employ various statistical and artificial intelligence (AI) approaches toward 

forecasting the putative adverse effects of new compounds. Both approaches are pursued 

actively to facilitate the replacement and reduction of animal testing in toxicology and 

risk assessment; however, these tools have limitations and their application has been 

challenged.12

Toxicologists and chemists alike are well aware that similar compounds, including those 

obtained by minor modifications of a parent molecule through metabolism, may have very 

different properties regarding toxicity, efficacy, or inter-individual variability.13 The presence 

of such pairs or groups of compounds with similar structures but different activity (often 

called ‘activity cliffs’)14 represents a significant challenge to both read-across and QSAR 

modelling. The difficulty of addressing this challenge explains why the results derived from 

QSAR and other in silico models are often met with caution.15 Nevertheless, computational 

predictions are appealing, as they are considerably less resource-intensive when compared 

to in vivo experimental testing. Also, as they are non-invasive and involve no animal use, 

they are usually not subject to any associated ethical approval requirements. As a result of 

this conflict between attractiveness and concerns over accuracy, computational predictions 

are usually used in combination with other evidence, or only for the initial screening/ranking 
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of compounds for further testing.16 Thus, increasing the reliability of predictions is a 

critical challenge to overcome, to help ensure the increased use of computational models 

of chemical toxicity as NAMs.

The recent emergence of AI methods has generated optimistic expectations in chemical 

toxicology, as researchers in this field have striven to reduce or replace animal testing with 

NAMs.17,18 Despite this excitement and current progress, the main limitation of AI models 

remains the quality of the toxicology and chemistry data used to train the models. Indeed, a 

key consideration that can be universally applied to any computational modelling approach 

is the need for careful data curation before initiating any model development.19 While 

data preparation has been repeatedly emphasised as a critical element to ensure rigour and 

reproducibility of experimental and computational research,15,20 many publications seem to 

overlook this critical step.21–25 In this article, we highlight several challenges associated 

with experimental data reproducibility, in order to reinforce the need for high-quality data 

curation as an essential initial step when developing predictive and robust AI models that 

could eventually reduce or replace animal testing.

Concordance in the outcomes of in vivo toxicology studies

Chemical toxicity mechanisms are complex and involve many interconnected molecular 

pathways, multiple cell types and different organ systems. The interpretation of experimental 

toxicology studies is further compounded by differences among studies in terms of assay 

protocols, exposure conditions and duration, chemical purity, strain, sex, and dose selection. 

Other sources of biological and stochastic variability may also weigh in on the analysis 

of concordance of toxicology outcomes from studies performed in the various animal test 

systems. The challenges associated with comparing results from across studies are well 

documented. For instance, evaluation of the sources of variability in ‘no effect levels’ 

derived from systemic toxicity studies in rodents has concluded that about one-third of the 

total variance evident cannot be accounted for solely by considering the obvious differences 

in study characteristics.26 One possible explanation for the challenges in replicating the ‘no 

effect level’ across studies stems from choices in dose selection; indeed, reproducible dose–

response data sets tend to have higher numbers of dose groups with fewer animals in each 

dose group. Another study found that, for the chemicals that were tested independently in 

the same Draize test on rabbit eyes, the reproducibility of the toxicity classification ranged 

from 73 to %94.27 The discordance was most pronounced for the compounds with weak or 

reversible effects — which is a consistent challenge in experimental toxicology. In a recent 

study, Rooney et al.28 found that 40% of chemicals classified initially as moderate irritants 

were classified as mild or non-irritants in the second test.

Several additional examples come from the efforts to define a ‘reference set’ of chemicals 

with conclusive and human-relevant adverse effects in rodent studies.29 For the rat 

uterotrophic assay, 70 compounds were identified in more than one study; among these, 

75% concordance was observed between studies with most discordant results attributable 

to the differences in study design (e.g. injection versus oral dosing).30 For the Hershberger 

Bioassay (a short-term test to evaluate androgen disruption in rats),31 authors found that, of 

25 chemicals tested in more than one study, 28% had discordant results between studies. 
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In addition, of the 65 chemicals tested in Hershberger studies and other in vivo studies 

with androgen-responsive endpoints, 43% indicated disagreements.32 Differences in study 

designs or physiology of the animal models were cited by the authors as potential reasons 

for discordant outcomes.

In addition, a recent analysis of skin sensitisation data showed that the Local Lymph Node 

Assay (LLNA), which is the most commonly used animal test, has low specificity (high 

rate of false positives) compared to human data.33 Additionally, in a previous analysis, we 

found the LLNA to be less reproducible than validated non-animal methods, such as the in 
chemico Direct Peptide Reactivity Assay (DPRA) and the in vitro KeratinoSens and human 

Cell Line Activation Test (h-CLAT).34

The impact of data curation on QSAR modelling

Researchers in the field of chemical toxicology are striving to improve the quality and 

reproducibility of both the data and the models. Rigorous data preparation and curation 

are essential, in order to support the development of robust and reproducible QSAR 

models.8 It has been shown repeatedly in the field of QSAR modelling that data curation 

strongly affects the predictive accuracy of the models.15,35–37 This experience suggests 

that data curation and rigorous external model validation should be made mandatory when 

employing computational models in regulatory assessment, to account for data inconsistency 

or relevance and avoid overly optimistic evaluation of a computational model’s power. 

Chemical and biological data curation is not the only factor that affects the accuracy and 

utility of in silico approaches as alternatives to animal testing. For instance, improper 

statistical analysis has been heavily discussed as a factor as well,38–40 but inaccurate 

chemical and biological data is still the central issue in modelling chemogenomics data.8

Lack of concordance between the outcomes of animal studies for the same chemical is 

a known challenge in regulatory science, but computational toxicologists do not widely 

recognise it. However, this challenge should be acknowledged and identified when building 

QSAR models, mostly because prediction error cannot be significantly smaller than 

experimental measurement error.15 When analysing duplicates, the assay reproducibility 

can be estimated. Divergent data points should be further investigated for the availability of 

additional data. In the case of none being identified, the respective compounds can be set 

aside and predicted by consensus QSAR models, i.e. multiple QSAR models using different 

sets of descriptors and/or AI algorithms.41

As was recently reported,42 some of the data contained in the European Chemicals Agency 

(ECHA) Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) 

database are not from the guideline studies, but were predicted by using QSAR models or 

read-across. Therefore, these data points should be used advisedly for building new models, 

since models that predict compound categories that have been predicted by similar models 

are likely to suffer from inflated accuracy. Also, much of the data in this database has been 

marked as ‘not reliable’ by ECHA. As part of a more robust data ecosystem, experimental 

and predicted data employed by regulatory agencies need to be better structured and 

properly annotated in order to be easily integrated within informatics systems. It also needs 
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not to be mined from free text present in reports. Another critical issue is the variability 

or errors in reported units of measurement, especially the use of concentrations or doses 

in weight rather than in molar units, since the biological effect of a chemical is due to 

the number of molecules present and not their weight (even though the weight can affect 

pharmacokinetic properties or dispersion in the environment).15 To provide an example of 

data harmonisation, the ChEMBL43 database has standardised all its data to nanomolar 

units.

In vivo test reproducibility is not the only factor that affects the accuracy and utility 

of in silico approaches as alternatives to animal testing. Recently,42 we have reported 

the collection, curation and integration of the most extensive publicly available data sets 

for acute toxicity tests collectively known as the ‘six-pack’ (acute oral toxicity, acute 

dermal toxicity, acute inhalation toxicity, skin irritation and corrosion, eye irritation and 

corrosion, and skin sensitisation). The data used in this study were collected from multiple 

sources, including scientific publications, the National Toxicology Program Interagency 

Center for the Evaluation of Alternative Toxicological Methods on behalf of ICCVAM, and 

the REACH study results database (https://iuclid6.echa.europa.eu/reach-study-results). As a 

result of curation, the sizes of the data sets were considerably diminished before QSAR 

model development. Upon inspection, we found many data points initially processed as 

experimental records to be, in fact, predictions made by either QSAR models, read-across, 

or expert-based systems. In addition, many experimental data points have been flagged as 

‘not reliable’. The ‘shrinkage’ was substantial for most of the data sets that were examined:

• for the skin sensitisation endpoint, we reduced the data set from 10,861 records 

to 1000;

• for skin irritation/corrosion, the data set was reduced from 5274 to 1012;

• for eye irritation and corrosion, the data set was reduced from 7322 to 3547;

• for acute dermal toxicity, from 29,824 to 2622;

• for acute inhalation, from 8176 to 681; and

• lastly, because acute oral toxicity data was already extensively curated, the data 

set was reduced from 8994 records to 8495.

More details about the data curation and how many compounds were reduced at each 

step can be found elsewhere.42 The models were implemented on a freely available web 

application termed Systemic and Topical Toxicity (STopTox; https://stoptox.mml.unc.edu/).

Case studies

As illustrative examples of the impact of data curation on QSAR modelling accuracy, 

we describe here two study cases: a direct comparison between modelling the uncurated 

and curated data for: (i) skin sensitisation endpoint from the REACH database (https://

iuclid6.echa.europa.eu/); and (ii) rabbit Draize Skin Irritation/Corrosion data available in 

the ICE database (https://ice.ntp.niehs.nih.gov/).44 The curated and uncurated data sets for 

each endpoint were modelled using the same protocol: ECFP4-like circular fingerprints with 

2048 bits and an atom radius of 2 (Morgan2) calculated in RDKit (http://www.rdkit.org) 
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along with the Random Forest45 algorithm implemented in KNIME.46 Both data sets were 

balanced by using undersampling before modelling, in order to equalise the number of 

toxic and non-toxic compounds. We followed a five-fold external cross-validation procedure 

to estimate the predictive power of the models.47 The full set of compounds with known 

experimental activities was divided into five subsets of similar size (external folds), although 

Random Forest parameters were not extensively tuned for these comparisons. The curated 

and uncurated data sets and the KNIME workflow for model development are available on 

GitHub (https://github.com/alvesvm/atla_curation).

The original skin sensitisation data set comprised 10,588 records for 9801 unique chemicals, 

composed of many types of assays and study categories. Data from different OECD 

(Organisation for Economic Co-operation and Development) Test Guideline (TG) skin 

sensitisation assays (TG 406, 411, 429 and 442B)48–50 were available. Only 3309 data 

points had defined chemical structures, which composed the ‘uncurated set’, containing 

818 sensitisers and 2491 non-sensitisers. Next, we curated the data following the best 

practices widely accepted by the cheminformatics community.20 In the ‘curated set’, in 
vitro, ‘weight-of-evidence’ categories as well as in vivo studies labelled as ‘disregarded 

study’ were discarded; only the data corresponding to the Local Lymph Node Assay 

(LLNA; TG 42950 and 442B51) were retained, resulting in 1275 data points. Upon chemical 

standardisation, removal of mixtures, inorganics, and the neutralisation and removal of 

counterions, 532 compounds (187 sensitisers and 345 non-sensitisers) were retained. With 

these data, we developed binary QSAR models to predict LLNA skin sensitisation outcomes 

according to the best practices of QSAR modelling.36 The statistical characteristics of binary 

QSAR models are summarised in Table 1. Although Random Forest parameters were not 

highly tuned for this comparison, we can observe that models generated with uncurated 

data showed a 7% higher correct classification rate (CCR), 16% higher specificity, 10% 

higher positive predictive value (PPV) and 3% higher negative predictive value (NPV). The 

sensitivity was 2% lower than that for the ‘curated’ data set models. These results show 

artificially higher model performance when developed from the uncurated set; however, this 

model performance is deceptive because of the high number of duplicates of the training set 

compounds found in the external folds of the models.

The original rabbit skin irritation/corrosion data set comprised 13,844 records collected 

from the REACH database. Rooney et al.28 established a curated data set by flagging 

studies with methodological deviations and curated the data set based on US EPA and the 

Global Harmonisation System protocols. The final data set comprised 2624 test records, 

representing 990 chemicals. The data set contains records for several timepoints. For this 

analysis, we kept the data only for the 24-hour timepoint—thus, 4160 chemicals with 

defined chemical structure constituted the ‘uncurated set’, comprising 2993 irritants and 

1167 nonirritants. The complete protocol for the curation of this data set can be found 

elsewhere.28 Here, chemicals were standardised, mixtures and inorganics removed, and for 

the records containing counterions, the molecules were neutralised and counterions were 

removed. The ‘curated set’ contains 159 compounds (79 irritants and 80 non-irritants). 

Binary QSAR models to predict rabbit skin irritation were developed following the 

same protocol for skin sensitisation and the results are also summarised in Table 1. We 

can observe that models generated with uncurated data showed a 24% higher correct 
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classification rate (CCR), 40% higher sensitivity, 26% higher PPV, 7% higher specificity 

and 23% higher NPV. The difference between the statistics of models developed with 

curated and uncurated sets was more pronounced than in the case of skin sensitisation. 

The models generated with uncurated rabbit skin irritation data also showed an artificially 

higher performance than the models developed with curated data, which were not predictive. 

Obviously, the statistics of the models generated with the uncurated set are deceiving, and 

the use of these models could lead to making less scientifically sound decisions.

Data curation challenges in the era of Big Data

The rapid growth of publicly available toxicology data52 does not obviate the need for 

careful data curation before model development. Addressing and ensuring data quality 

and assay reproducibility is the first step in curating chemogenomics data. Several studies 

have pointed out errors in chemical structures deposited in public databases.35,53 Even 

a relatively small number of erroneous data points can significantly affect modelling 

outcomes, especially when assessing the external model accuracy.54 Many investigations 

have shown that the model’s predictivity is affected by the accuracy of the chemical 

structure, choice of descriptors, modelling algorithms and data curation.55–57 To help 

address this issue, Mansouri et al.58 have developed a KNIME workflow to curate and 

correct errors in the structure and harmonise chemical identity (such as name, CAS number, 

and any other respective identifiers) by using environmental fate data sets. Gadaleta et al.59 

developed a workflow for retrieving chemical structures from several web-based databases. 

The workflow automatically compares these data and performs structural cleaning. The 

developers of many publicly accessible databases have made substantial efforts to ensure 

that chemical structures in their databases are correct. For example, ChemSpider has 

promoted a crowdsourced collaboration to curate chemical structures derived from public 

compound databases.60 More recently, the US EPA CompTox Chemistry Dashboard52 

performed curation of the substances linked to chemical structures and integrated with other 

diverse types of publicly available data from multiple sources.

The recent efforts to provide curated chemical databases do facilitate the curation process for 

modelling purposes. However, it is essential to emphasise that different curation levels may 

be needed for data storage/management compared to data modelling. Many data points are 

related to substances that are not, in principle, suitable for regular QSAR modelling, such 

as mixtures, macromolecules, some organometallics, inorganics and counterions. Although 

mixtures can be modelled,61 they require unique modelling and model validation techniques. 

Also, leaving many duplicate compounds in the modelling data sets can lead to artificially 

high reported accuracies.25 By eliminating duplicates, imputed data, or data evaluated as 

‘not reliable’ before embarking on QSAR model development, more reliable predictions 

with a higher impact on both experimental toxicological studies or regulatory decision 

support can be achieved.

Considerable advances have been made in implementing the best practices to support 

both the wider acceptance and understanding of QSAR model-based predictions and 

their limitations. A decade ago, Fourches et al.54 highlighted major steps for chemical 

curation, followed by biological data curation steps for QSAR modelling.41 However, 
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chemogenomics data sets have grown, and some of the steps proposed in the original 

study, such as manual data curation, have become impractical. To this day, many essential 

aspects of data preparation and modelling are not available in a single standalone program. 

Data curation pipelines have been implemented in KNIME58,62 and RDKit/Python.63 The 

recent RDKit pipeline63 helps with curating chemical structures, but it does not address the 

3 biological curation essential for QSAR modelling. The KNIME workflow proposed by 

Neves et al.62 is the first attempt to combine all critical steps of both chemical and biological 

data curation within a single tool. This workflow helps automate data curation for large data 

sets, flagging mixtures and conflicting replicates. However, flagged data 7 points still need 

manual curation, a challenging step to overcome. As data sets grow, losing a few data points 

might not be critical to the success of QSAR modelling. Still, when working with a small 

data set, especially when associated with a ‘neglected’ disease (e.g. schistosomiasis64 or 

leishmaniasis65), every data point counts.

In the papers by Fourches et al.,41,54 the authors describe the first step of chemical curation 

as the “removal of mixtures and inorganics”. Although this is still valid as the first step, it is 

worth noting that the current chemical standardisation packages usually blindly remove the 

smaller fragments. If the smaller components are small organic solvents or counterions, this 

automatic step is acceptable. However, in the case of mixtures, the user might be keeping 

the mixture’s datapoint as its largest component. Therefore, we highlight the importance 

of identifying the mixtures before chemical standardisation. The open-source Indigo’s 

Component Separator node66 available for KNIME46 can be used to separate chemical 

components.

When identifying duplicates, SMILES strings should not be used.41,54 InChIKey can be 

used, but only after the structures are standardised (i.e. all specific chemotypes such as 

aromatic rings and nitro groups are represented in the same way).67 Two-dimensional 

chemical descriptors, such as the commonly used Morgan fingerprints68 or MACCS keys,69 

do not differentiate enantiomers by default. Different chemicals (stereoisomers) will not 

be identified as duplicates by SMILES or InChIKey without chemical standardisation 

and removing the stereocentres. However, stereoisomers will appear as duplicates when 

using two-dimensional descriptors. In this case, if the experimental activity associated with 

both chemicals is the same, the model’s predictivity will be overestimated; but if the two 

compounds have different activity, the model accuracy will decline. If the modeller opts 

to use two-dimensional descriptors, only one enantiomer should be kept if the biological 

response agrees. If they disagree, both enantiomers should be removed. Conversely, the user 

should use descriptors that differentiate enantiomers.

When collecting data from large repositories such as ChEMBL70 or PubChem,71 it is 

crucial to avoid combining data derived from different experimental protocols. These data 

should be curated independently and only employed together in a QSAR campaign when a 

high concordance has been established between both assays. However, data from different 

protocols can be utilised to develop an in silico framework that hierarchically addresses an 

endpoint’s prediction, usually with higher accuracy. This is particularly interesting, not only 

to make better use of all data available for one endpoint, but also to improve a model’s 

predictive power.

Alves et al. Page 8

Altern Lab Anim. Author manuscript; available in PMC 2021 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Integrative knowledge-driven experimental design for reducing animal 

testing

The challenge of reproducibility has been acknowledged in all areas of science.72–77 

To employ computational models as a reliable means to reduce animal testing, we 

need to ensure model transparency and reproducibility. To make computational models 

transparent and reproducible, all the curated data employed need to be made publicly 

available following the FAIR (Findability, Accessibility, Interoperability and Reusability) 

data principles.78 In the field of molecular modelling, this means that the chemical structures 

and associated data should be made available in a machine-readable format. The data 

must be well organised and structured in databases (e.g. Integrated Chemical Environment 

(ICE),44 Tox21,79 ToxCast,80 ChEMBL,70 PubChem71) and made publicly available.81 In 

addition, all of the scripts used to process or model the data should be available. In the 

context of the regulatory use of QSAR models, the harmonised template for summarising 

and reporting key information on QSAR models, namely the QSAR Model Reporting 

Format (QMRF), is recommended, especially when validation studies are available.

Figure 1 illustrates a knowledge-driven approach to enable highly accurate AI models for 

chemical toxicity prediction that can be used to reduce or replace animal testing. As more 

robust in vitro and organ-on-chip data become available, after validation and acceptance for 

regulatory use, these assays need to be scaled for highthroughput screening. All the data 

resulting from such screening campaigns, and all of the scripts used to process or model 

the data, need to be stored and managed, following the FAIR data principles,78 and curated 

based on the standard approaches described above. Subsequent cheminformatics analysis, 

as well as generation and validation of AI models, should be carried out following the best 

practices promoted by the OECD37 and universally accepted by the community. Only then 

should these models be used to predict biological responses and, potentially, be employed to 

design safer chemicals.

Towards a robust data ecosystem for toxicology

The main goal of this article is to discuss the importance of data curation in QSAR 

modelling. Data curation is the most critical step in guaranteeing predictive models. We 

reason that only those models that were built with data processed in strict compliance with 

mandatory curation protocols should be employed in regulatory toxicology. These models 

can then be used for the reliable toxicity assessment of compounds lacking experimental 

data.

In recent years, recognition of the need to develop a research data ecosystem that promotes 

FAIR data principles has grown, along with resources to foster the development of the 

ecosystem.82 Contributors, users and developers of this ecosystem must also recognise the 

critical need for curation and the role of curated data repositories. Data repositories must 

provide accurate records of deposited data sets, even if this leads to issues for modellers, 

such as duplicated records. Raising awareness of these issues within the users of these 

repositories should be emphasised. The deposition of curated data sets within repositories 

for further future use should also be promoted. Positive steps in this direction already exist, 
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e.g. PubChem and the Chemical Effects in Biological Systems (CEBS) database provide 

submitted study data, while repositories such as ICE and ToxRefDB are focused on data sets 

targeted at modellers.

Forming communities of best practice among users of data repositories to discuss, store, 

share and adopt common curation approaches will not only enable and facilitate data 

curation for QSAR modelling, but — more importantly — it will also ensure that 

researchers and regulatory agencies will be able to link and combine different sources of 

data easily. Successful implementation of a standardised toxicological data ecosystem would 

create an unprecedented ability to analyse historical data and employ modern data analytics 

to derive knowledge and generate smarter, faster and safer regulatory policies.

Conclusions

It is exciting that computational alternatives to animal testing have received a high level 

of media attention.83–85 We support further efforts in this direction. We expect that, as 

high-quality data accumulates and mechanistic understanding informs new experimental 

approaches, non-animal — especially computational — models, will reduce or replace 

animal testing. To achieve this goal, we posit that any new data sets should be generated and 

managed following FAIR principles, regardless of their size. However, chemogenomics data 

curation would still be necessary before computational modelling, since — as explained in 

this article — not all data points are suitable for QSAR modelling. We strongly caution 

against overinterpreting results from models built on non-curated data sets. Following 

the editorial requirements implemented by the ACS Journal of Chemical Information and 
Modeling, we suggest that all scientific journals should include a section on data curation 

in any manuscript submitted for publication.86 Any computational model must be consistent 

with the OECD principles for the validation, for regulatory purposes, of (Quantitative) 

Structure–Activity Relationship models.37 We hope that this article will help establish the 

mandatory practice of robust data curation in computational toxicology.
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Figure 1. 
Integrative knowledge-driven experimental design for reducing animal testing.
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Table 1.

Statistical characteristics of QSAR models for REACH skin sensitisation LLNA data and rabbit skin irritation 

data at the 24-hour timepoint, built with uncurated and curated data.

Skin Sensitisation Model

CCR Sensitivity PPV Specificity NPV

Uncurated data set 0.75 0.72 0.76 0.77 0.74

Curated data set 0.68 0.74 0.66 0.61 0.71

Skin Irritation Model

CCR Sensitivity PPV Specificity NPV

Uncurated data set 0.87 0.94 0.92 0.79 0.84

Curated data set 0.63 0.54 0.66 0.72 0.61

CCR = correct classification rate; PPV = positive predictive value; NPV = negative predictive value.
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