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Air pollution is a reversible cause of significant global mortality
and morbidity. Epidemiological evidence suggests associations
between air pollution exposure and impaired cognition and
increased risk for major depressive disorders. However, the neural
bases of these associations have been unclear. Here, in healthy
human subjects exposed to relatively high air pollution and con-
trolling for socioeconomic, genomic, and other confounders, we
examine across multiple levels of brain network function the
extent to which particulate matter (PM2.5) exposure influences
putative genetic risk mechanisms associated with depression.
Increased ambient PM2.5 exposure was associated with poorer rea-
soning and problem solving and higher-trait anxiety/depression.
Working memory and stress-related information transfer (effec-
tive connectivity) across cortical and subcortical brain networks
were influenced by PM2.5 exposure to differing extents depending
on the polygenic risk for depression in gene-by-environment inter-
actions. Effective connectivity patterns from individuals with
higher polygenic risk for depression and higher exposures with
PM2.5, but not from those with lower genetic risk or lower expo-
sures, correlated spatially with the coexpression of depression-
associated genes across corresponding brain regions in the Allen
Brain Atlas. These converging data suggest that PM2.5 exposure
affects brain network functions implicated in the genetic mecha-
nisms of depression.

major depressive disorder j polygenic risk j fine particulate matter j
PM2.5 j gene–environment interaction

More than 90% of the world’s population live in places
with atmospheric exposures exceeding World Health

Organization air quality guidelines (1). Ambient air pollution is
a major but potentially reversible cause of global morbidity and
mortality (2). Empirical evidence suggests there may also be
neurotoxic effects of air pollution, especially fine particulate
matter (e.g., PM2.5) (3) that, over exposure periods of several
months or more, is associated with increased risk for major
depressive disorders (4, 5). These exposures have also been
observed to affect cognition (6). Moreover, gene-by-environ-
ment interactions are implicated in air pollution and genetic
risk for neurodegenerative disorders, potentially involving
inflammatory processes (7, 8). Air pollution and inflammation
may both affect mood regulation in major depression (9, 10),
and indeed, inflammatory processes are implicated in putative
risk genes associated with depression (11). These observations
raise the possibility that air pollution may interact with
depression-associated genes in influencing stress-related brain
network function. While these associations at multiple levels of
in vivo brain network function have yet to be reported, familial
vulnerability to depression may be influenced by genetic inter-
actions with environmental stressors (12, 13).

In this study, we examine the putative effects of recent
months of relatively high air pollution exposures on cognitive

(14) and emotional risk factors (trait anxiety/depression) of
depressive illness (15–17) and, subsequently, pollution effects
on underlying cognitive and stress-related brain network func-
tion in relation to genetic risk for major depression (11). In the
latter, we focus on cognition during emotional stress as a para-
digm to engage frontal and cortical–subcortical networks, which
have been shown to be sensitive to disruption by stress and are
also implicated in depressive disorders (18). Of note, the dys-
function of prefrontal and parietal cortex circuitry during work-
ing memory (WM) occurs in patients with depression and in
healthy individuals with high polygenic risk for depression (14,
18, 19). Here, we aim to further define how exposure to recent
months of air pollution may affect WM, social stress, and asso-
ciated brain connectivity in the context of polygenic risk for
depression.

We examine the behavioral risk factors for depression and
associated brain networks engaged during WM under varying
social stress levels in a community sample from Beijing, who
were exposed to relatively high levels of air pollution (e.g.,
PM2.5). These exposures varied across the study period, during
which pollution levels were moderated some 33% by policy
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interventions on industrial emissions (20), thus providing a
unique opportunity to examine demographically and genomi-
cally well-matched individuals living in similar communities
with varying (but still relatively high) pollution exposures. As
poorer cognition was previously associated with higher levels of
air pollution exposures over 3 mo to 3 y in an independent East
Asian study (6) and adverse environments over recent months
may affect emotional traits associated with depression (21) and
indeed air pollution exposures over similar time periods have
been associated with depression (4, 5), we examined the effects
of recent 6 mo PM2.5 exposure on these behavioral characteris-
tics, the effects of exposure on brain connectivity networks, and
their interaction with polygenic risk for depression (11). We
then leveraged recent developments linking live functional
brain network data with postmortem gene expression data
across the same brain regions (22, 23), made possible by the
unique Allen Brain Atlas resource that has densely sampled
genome-wide expression at multiple brain regions. Here, we
surveyed spatial coexpression of depression-related genes
across the human brain in the Allen Brain Atlas and the extent
to which the spatial correlation of coexpression with cognitive
and stress-related connectivity may differ in individuals based
on levels of depression genetic risk and PM2.5 exposure.

Results
Effects of PM2.5 Exposure on Cognition and Trait Anxiety/Depression.
We recruited 352 healthy adults living in Beijing whose demo-
graphics are summarized in SI Appendix, Table S1. Subjects
performed the MATRICS Consensus Cognitive Battery
(MCCB) (24, 25); we assessed personality characteristics asso-
ciated with risk for depression (15, 16, 26) using a validated
translation of the trait anxiety–depression (neuroticism) sub-
scale of the Eysenck personality questionnaire (26–28). Subjects
underwent genome-wide genotyping to derive each individual’s
polygenic risk score for depression (see SI Appendix for the
details of methods). We estimated each subject’s PM2.5 expo-
sure in the 6 mo immediately prior to study participation using
data from the nearest air monitoring station to their residence
address. The mean distance from the residence of each subject
to the nearest air quality monitoring station was 4.49 6 4.8 kilo-
meters. The 12 monitoring stations were well distributed across
Beijing (SI Appendix, Fig. S1 and Table S2). Controlling age,
sex, and education that may confound the association between
cognition and exposure to air pollution (6), we found that PM2.

5 exposure was associated with reduced reasoning and problem
solving (r = �0.196, P < 0.001, and P < 0.05 with Bonferroni
correction across the seven cognitive domains of the MCCB)
and nominally associated with poorer social cognition (r =
�0.106 and P = 0.05) as well as with increased trait anxiety/
depression (r = 0.116 and P = 0.033) (Fig. 1A). On the other
hand, there was an absence of gene–environment correlation in
that PM2.5 exposure was not correlated with polygenic risk for
depression (r = �0.005 and P = 0.932). Given the epidemiologi-
cal links between similar periods of PM2.5 exposure and risk for
major depression (4, 5), we then followed up the above associa-
tions between exposure and behavioral risks of depression, by
interrogating across multiple levels of cognitive and emotional
brain network function, and genes associated with depression.

Behavioral Performance during Functional MRI WM Task under
Varying Stress Contexts and PM2.5 Exposure. Subjects performed
an event-related functional MRI (fMRI) WM task under vary-
ing social threat stress contexts in a 3-Tesla MRI scanner (29,
30) (Fig. 1B). At each trial in the WM task, subjects encoded a
pair of integer numbers, followed by a jittered maintenance
interval between 3 and 5 s. In the WM maintenance trials, sub-
jects then responded to a probe as to which number was larger

or smaller. In the WM manipulation trials, subjects performed
a subtraction of 2 or 3 from one number before responding to a
probe as to which result was larger or smaller. In social stress
contexts (stress+), subjects were shown a photograph of an
age- and gender-matched “competitor” who they were not
acquainted with but against whom their WM task performance
would be compared. About 70% of stress+ trials were subse-
quently fed back with “You lost” relative to “You won.” In
noncompetition contexts (stress�), subjects were shown an
equivalent scrambled photograph representing no competitor,
and the feedback provided was “Block completed.”

During WM maintenance and manipulation across stress
contexts (SI Appendix, Table S1), there were significant interac-
tions between stress and WM task in relation to accuracy
[F(1, 351) = 45.96 and P < 0.001] and reaction time [F(1, 351) =
5.31 and P = 0.022]. Here, WM maintenance at stress+ had
higher accuracy than maintenance at stress� (P < 0.001) (SI
Appendix, Fig. S2), while the stress-induced advantage was mod-
erated in WM manipulation. A similar pattern of stress-induced
advantage at WM maintenance but less so at WM manipulation
was observed for reaction time. These stress-induced biases
against WM manipulation in favor of maintenance are consistent
with canonical disease and stress-related effects on these constit-
uent WM tasks (14, 31–33).

In relation to PM2.5 exposure, and consistent with the associ-
ation between pollution and cognition (above), PM2.5 exposure
was associated with a slower reaction time across the WM tasks
[F(1, 350) = 5.14 and P < 0.05; SI Appendix, Fig. S3]. The expo-
sure effects appeared more prominent under stress+ than at
stress�, at least at WM manipulation [exposure-by-stress inter-
action, F(1, 350) = 3.87 and P = 0.05; SI Appendix, Fig. S3].
The interaction effect was not significant at WM maintenance.

Effective Connectivity Networks Engaged during WM Tasks across
Stress Contexts. As there were behavioral associations with
PM2.5 exposure across cognitive and stress-related information
processing (Fig. 1A and SI Appendix, Fig. S3), we then exam-
ined their potential network connectivity underpinnings in
fMRI. During WM encoding, maintenance, or manipulation
events under stress+ or stress� contexts, bilateral dorsolateral
prefrontal cortex, inferior prefrontal cortex, parietal cortex,
temporal cortex, striatum, thalamus, and hippocampus were
robustly engaged, accompanied by a deactivation of bilateral
medial cortical regions (whole brain P < 0.05 voxel-wise, fam-
ily-wise-error correction; Fig. 1C and SI Appendix, Table S3).

To elucidate how the information transfer (effective connectiv-
ity) across these brain regions were influenced by the constituent
WM tasks (encoding/stress+, encoding/stress�, maintenance/
stress+, maintenance/stress�, manipulation/stress+, and manipu-
lation/stress�), time series extracted from 20 cortical and three
subcortical regions of interest (ROIs) were modeled with deter-
ministic bilinear dynamic causal models (DCMs; Fig. 2A) (31,
34). Herein, all six tasks robustly modulated effective connectivity
across the network of 23 brain regions (P < 0.05 with false dis-
covery rate [FDR] correction, SI Appendix, Table S4).

Interaction between PM2.5 Exposure and Polygenic Risk for
Depression on Effective Connectivity. We used partial least square
regression (PLSR) as a dimensionality reduction strategy to
define orthogonal effective connectivity networks across the
WM tasks (encoding, maintenance, and manipulation) and
stress contexts (stress� versus stress+), in which these networks
were influenced by PM2.5 exposure, polygenic risk for depres-
sion, and their interaction (35). The top four PLSR compo-
nents explained 45.76% variance of PM2.5 exposure, polygenic
risk for depression, and their interaction [P < 0.001 nonpara-
metric permutation test (35)]. These PLSR components, each
comprising orthogonal connectivity networks engaged across
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the WM tasks, were associated with the interaction between
PM2.5 exposure and polygenic risk for depression (P < 10�4; SI
Appendix, Fig. S4; see SI Appendix, Fig. S5 for factor loadings
on each stress-related connectivity). Here, component WM
network responses to PM2.5 exposure diverged in relation to
polygenic risk for depression. The largest PLSR component,
contributing 12.8% to the explained variance, was associated
with opposing stress-related effects during WM manipulation
and maintenance (SI Appendix, Fig. S5), and these effects were
disproportionately accentuated by PM2.5 exposure in those with
higher polygenic risk for depression (interaction P < 10�5; Fig.
2B and SI Appendix, Fig. S4).

In analyses complementary to broad connectivity networks
across WM tasks in the gene-by-environment interactions
above, we asked if there were also discernable interaction
effects in specific task-related connectivity across specific brain
regions. We engaged a principled search by initially ranking the
relative importance of individual brain regions across the top
four PLSR components in each WM task and subsequently
testing for interaction effects in effective connectivity engaged
by the most important nodes to and from the other brain
regions. Specifically, we considered the weighted degree of
each node (brain region) as weighted by their task-specific
effective connectivity to and from all the other 22 brain regions
and the respective task-specific loadings on connectivity across
the top four components. Herein, p9-46v (central part of the
dorsolateral prefrontal cortex) during WM manipulation was
associated with the highest weighted degree (SI Appendix, Table

S6). Across task-modulated effective connectivity engaging
p9-46v to and from other brain regions, PM2.5 exposure inter-
acted with polygenic risk for depression in augmenting the
stress-related changes in effective connectivity during WM
manipulation from IP1 to p9-46v (P < 0.001, with P < 0.05
FDR correction across connectivity engaging p9-46v; Fig. 3 A
and B). Similar effects were observed at POS2 to p9-46v effec-
tive connectivity (P < 0.001 and P < 0.05 FDR corrected; SI
Appendix, Fig. S6). Other nominally significant interaction
effects (P < 0.05) implicated in all brain regions are detailed in
SI Appendix, Table S7).

Validation Tests. While we regressed out the effects of age, sex,
and education to control for potential socioeconomic confound-
ers influencing PM2.5 exposure (6), we are cognizant that there
could be confounding by other unmeasured geographic factors
associated with subjects’ residence location and by the spatial
imprecision of each individual’s exposure estimate (36). We
therefore performed several further sensitivity tests to examine
these potential confounders. First, we replaced our pollution
exposure variable with average pollution exposure measured in
the day, week, and month after experimental participation. We
reasoned that unmeasured factors associated with each
subject’s residence, behavior, or social situations would never-
theless remain stable in this time frame and that if these were
driving our findings rather than the PM2.5 exposure prior to
participation, then this test would still yield positive findings.
However, we found that the deleterious effects of PM2.5
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Fig. 1. Cognitive and emotional behavioral tasks. (A) Correlations between PM2.5 exposure and poorer reasoning and problem solving (blue, n = 352)
and higher trait anxiety/depression (orange). (B) WM task across stress contexts: In stress+ trials, subjects were shown their photograph alongside that of
a similar age and sex competitor. Feedback at the end of each WM maintenance or manipulation task was such that the competitor tended to perform
better (“You lost” 70% of the time versus “You won”). In the stress� trials, a scrambled competitor image was shown instead, and no relative perfor-
mance feedback was provided. In the WM tasks, subjects first encoded a pair of numbers that they maintained or manipulated in WM. In the mainte-
nance task, they then responded to a probe as to which number was larger or smaller. In the manipulation task, they performed a subtraction of 2 or 3
from one number before responding to a probe as to which result was larger or smaller. (C) Brain activation engaged by the WM tasks with lateral and
medial views of right hemisphere (n = 352, P < 0.05 family-wise error corrected at the whole-brain voxel level). Color bars: green to blue denotes deacti-
vation T-values, while green to red denotes activation T-values.
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exposure on behavior and their brain network connectivity
interactions with polygenic risk for depression were no longer
significant after replacing the exposure variable with future
exposures (SI Appendix, Fig. S7). Further adding a regressor of
each subject’s time living in Beijing prior to the study resulted
in similar behavioral and brain network effects of PM2.5 expo-
sure (SI Appendix, Supplementary Results and Discussion). We
therefore suggest that our findings more likely relate with PM2.5

exposure rather than behavioral, social, or geographic factors
potentially linked to PM2.5 exposures.

Next, we considered that because government policy
appeared to reduce PM2.5 over the years we performed this
study (20) and PM2.5 is therefore negatively correlated with the

date when subjects participated in our study (r = �0.153 and
P = 0.004; SI Appendix, Fig. S9), it could be possible our find-
ings were driven instead by date of study enrollment and other
unmeasured variables associated with an earlier or later date of
participation. To test this, we replaced the PM2.5 exposure with
an index of the participation date of each individual and found
that the effects of participation date on cognition and the
connectivity interactions were not significant (SI Appendix,
Fig. S7).

Spatial Correlation between WM Network Connectivity and
Coexpression of Depression Genes. Brain connectivity networks
may reflect transcriptomic coexpression in the same networks
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Fig. 2. Brain connectivity networks engaged by the WM tasks and in the gene-by-environment interaction. (A) Brain rendering of the locations of the
subcortical ROIs (caudate, putamen, and hippocampus) from the Automated Anatomical Labeling atlas and 20 cortical ROIs from the Human Connectome
Project parcellation (POS2: dorsal part of parieto-occipital sulcus area, SFL: superior frontal language area, STV: superior temporal visual area, d23ab: dor-
sal part of posterior cingulate cortex, 5mv: ventral part of mid-cingulate cortex, p32pr: dorsal part of anterior cingulate cortex, 8BL: lateral part of frontal
eye fields, 10d: dorsal part of frontopolar prefrontal cortex, 45: anterior part of frontopolar prefrontal cortex, p9-46v: central part of dorsolateral pre-
frontal cortex, a10p: anterior part of frontopolar prefrontal cortex, OFC: orbitofrontal cortex, 43:supplementary and cingulate eye field, OP1:posterior
part of posterior opercular cortex, TE1p: posterior part of middle temporal gyrus, TPOJ3: part of temporo-parieto-occipital junction, IP1: posterior part of
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Bayesian model averaging: black arrow denotes intrinsic effective connectivity, blue arrow denotes task input, and red arrow denotes modulatory effect
of task stimuli on effective connectivity. (B) PLSR component across WM tasks with the largest variance explained and with a significant gene-by-environ-
ment interaction (n = 352 and P < 0.0001). The engagement of brain networks in this component was disproportionately accentuated by PM2.5 exposure
in those with higher polygenic risk for depression. While significant in the entire sample, this interaction is shown in a subset of individuals with relatively
higher polygenic risk for depression (orange, >0.5 SD and n = 98) and a subset of individuals with relatively lower polygenic risk (blue, <0.5 SD and
n = 111). (C) To the extent the WM networks engaged in the PLSR component was implicated in the effects of gene-by-environment interactions, we
found that the coexpression of depression-related genes in the orthogonal Allen Brain dataset spatially correlated with the corresponding connectivity
weighted according to this PLSR component only in the group with relatively higher (>0.5 SD) polygenic risk score (PRS) and higher-PM2.5 exposure. Spa-
tial correlations between coexpression and connectivity were not significant in groups with relatively lower (<0.5 SD) PRS or lower-PM2.5 exposure.
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(23, 35). We thus reasoned that if PM2.5 exposure and polygenic
risk for depression interacted to putatively influence
depression-related connectivity networks, these networks, at
least in networks engaged by the first PLSR component, might
be reflected in the spatial coexpression of depression-associated
genes. Specifically, we tested if indeed the spatial coexpression
of depression risk–associated genes across the same brain net-
works in the Allen Brain Atlas correlated differently with the
connectivity network architectures depending on levels of
genetic risk and PM2.5 exposure in our research volunteers. We
examined the coexpression of 49 genome-wide association
study (GWAS) associated depression genes (11) with expres-
sion data in the Allen Brain Atlas across the same cortical brain
regions examined in the fMRI effective connectivity analysis.
Across pairs of these brain regions, we then examined the spa-
tial correlation between coexpression and effective connectivity
weighted according to the first PLSR component. This
weighted connectivity comprised the sum of the WM task-
related effective connectivities across the paired regions,

weighted by the corresponding WM task loading from the first
PLSR component. The weighted connectivity thus represented
the composite WM effective connectivity associated with the
first PLSR component of any given group of individuals. We
examined four groups of individuals according to relatively
higher (>0.5 SD) or lower (<0.5 SD) polygenic depression risk
and PM2.5 exposures (see SI Appendix, Table S8 for the sample
size and demographics of the four subgroups) and, accordingly,
the spatial correlation between coexpression and weighted
effective connectivity in each group. To the extent the WM net-
works engaged in the PLSR component was implicated in the
effects of gene-by-environment interactions, we found that the
coexpression of depression-related genes in the Allen Brain
dataset spatially correlated with the corresponding connectivity
weighted according to this PLSR component but only in the
group with relatively higher polygenic risk and higher-PM2.5

exposure (380 coexpression–connectivity data points, r = 0.15,
and P < 0.004; Fig. 2C). The spatial correlation between coex-
pression and connectivity was not significant in groups with
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Fig. 3. Specific WM task-related effective connectivity engaged in the gene-by-environment interaction. (A) Effective connectivity from IP1 to p9-46v
during WM manipulation/stress� (mean 6 SD) and manipulation/stress+ (mean 6 SD) were significant and differed across stress (***P < 0.001). IP1:
posterior part of inferior parietal cortex; p9-46v: central part of dorsolateral prefrontal cortex. (B) PM2.5 exposure disproportionately increased the
stress-related effect (stress� versus stress+) on connectivity from IP1 to p9-46v in individuals with higher polygenic risk for depression in a significant
gene-by-environment interaction (P < 0.001, in the entire sample n = 352) and plotted in a subsample of individuals with relatively higher polygenic risk
of depression (>0.5 SD and n = 98, orange), compared to those with relatively lower polygenic risk (<0.5 SD and n = 111, blue). (C) To explore the extent
to which the interaction effects could also correspond to the coexpression of depression-associated genes, in the context of p9-46v connectivity with
other brain regions, we examined if the spatial coexpression correlated differently with corresponding stress-related connectivity in vivo depending on
polygenic risk score (PRS) and PM2.5 exposure levels. Across subjects with relatively higher (>0.5 SD) exposures or higher PRS, the coexpression of depres-
sion genes in these brain regions spatially correlated with connectivity. However, this spatial correlation was not present in subjects with lower PRS for
depression and lower PM2.5 exposure.
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relatively lower polygenic risk or lower-PM2.5 exposure (differ-
ence in correlations between the former and the latter groups,
P < 0.027, using Fisher’s r-to-z transformation).

In complementary analyses focused on specific WM task-
related connectivity, p9-46v engagement during WM manipula-
tion was associated with the highest weighted degree, wherein
PM2.5 exposure and polygenic risk for depression interacted to
putatively influence stress-related IP1 to p9-46v effective con-
nectivity (Fig. 3A). We then sought to explore the extent to
which these effects could also correspond to coexpression of
depression-associated genes in the context of p9-46v connectiv-
ity with other brain regions. Specifically, we examined if the
spatial coexpression correlated differently with corresponding
stress-related connectivity in vivo depending on polygenic risk
and PM2.5 exposure levels. Here, we found that across subjects
with relatively higher (>0.5 SD) exposures or higher polygenic
risk, coexpression of depression genes in these brain regions
spatially correlated with connectivity [subjects with lower poly-
genic risk for depression and higher-PM2.5 exposure (161
coexpression–connectivity data points, r = 0.382, and P <
0.001), subjects with higher polygenic risk for depression and
lower-PM2.5 exposure (r = 0.222 and P = 0.005), and subjects
with higher polygenic risk for depression and higher-PM2.5

exposure (r = 0.181 and P = 0.022)]. However, this spatial
correlation was not present in subjects with lower polygenic
risk for depression and lower PM2.5 exposure (r = 0.095 and
P = 0.23; difference in correlations between the former and the
latter groups, P < 0.001, using Fisher’s r-to-z transformation)
(Fig. 3C). In a follow-up exploratory analysis, we further clus-
tered the depression-associated genes to define subsets of genes
enriched in driving the connectivity spatial coexpression pat-
terns across genetic and environmental risk profiles (SI
Appendix, Fig. S8). These enrichment analyses suggest that a
subset of genes including RBFOX1, ENOX1, and others (SI
Appendix, Supplementary Results and Discussion) implicated in
mitochondrial and neuroinflammatory processes may be partic-
ularly salient in driving the connectivity–coexpression patterns
across genetic and air pollution risks.

Discussion
In a healthy community sample in Beijing exposed to relatively
high levels of PM2.5, we found that PM2.5 exposure over 6 mo
was associated with higher trait anxiety/depression, with rela-
tively reduced reasoning and problem solving, and with behav-
ioral effects during WM tasks across social stress contexts.
These behavioral associations were then interrogated at the
level of brain network connectivity and genetic risk for depres-
sion. Individuals with higher-PM2.5 exposure and higher poly-
genic risk for depression had disproportionately augmented
effects on network connectivity engaged across WM and social
stress contexts in significant gene-by-environment interactions.
Dorsolateral prefrontal cortex effective connectivity was criti-
cally implicated in these processes. These gene-by-environment
interaction findings are independent of those in previous work
from our group on the effects of childhood urbanicity (29) (SI
Appendix, Supplementary Results and Discussion). Moreover,
higher-PM2.5 exposures and higher polygenic risk for depres-
sion were selectively associated with network connectivity that
were correlated spatially with the coexpression of depression-
associated genes across similar human brain regions in the
orthogonal Allen Brain Atlas dataset. This spatial correlation
of gene coexpression and connectivity was less apparent in indi-
viduals with lower PM2.5 exposures or lower polygenic risk.

Extending previous associations between months or more of
air pollution and depressive illness (4, 5), our findings suggest
links between the deleterious effects of PM2.5 exposure on cog-
nitive and emotional brain function that are also implicated in

the genetic mechanisms of depressive illness. Consistent with
significant negative life stress over a period of months having
deleterious effects on measures of trait anxiety/depression (21),
we found that PM2.5 exposures over 6 mo may potentiate the
higher emotional reactivity manifest in higher trait anxiety.
Consistent with the association between air pollution and cog-
nitive deficits (6), we found that PM2.5 exposure was associated
with effects on reasoning, problem solving, and WM. Moreover,
PM2.5 exposure selectively slowed the reaction time of WM
manipulation under stress, consistent with the greater vulnera-
bility of WM manipulation, relative to maintenance processes,
to disruption under stress and disease processes (14, 31, 32).

Building on the behavioral associations, we examined bio-
physical models of effective connectivity (34) engaged during
WM (31, 37). WM has been shown to be sensitive to stress and
depression risk (14, 18, 38) and also to air pollution (6). How-
ever, the putative mechanistic links across these disease and
environmental associations on human brain networks have
been unclear, especially in terms of how these networks may be
influenced by the interaction between depression genetic risk
and air pollution. In examining the overlapping environmental,
genetic, and brain–behavior relationships, we engaged a PLSR
strategy to address interrelationships across connectivity net-
works engaged in the constituent WM tasks across social stress
contexts (35). We canvassed using PLSR, effective connectivity
networks across these WM processes, to identify orthogonal
brain networks through which the genetic risk for depression
putatively influenced the behavioral and emotional impact of
air pollution. Within brain networks with these gene-by-envi-
ronment interactions, we found divergent loadings at WM
manipulation relative to maintenance processes (SI Appendix,
Fig. S5), consistent with our behavioral data, and other data,
suggesting differing effects of physiological stress on these WM
processes (14, 29, 31). In the context of these component
patterns of network engagement, increased genetic risk for
depression disproportionately augmented the effects of PM2.5

exposure on these networks (Fig. 2B), suggesting that these
networks may be physiologically susceptible to PM2.5 effects,
at least in part through genetic mechanisms implicated in
depression.

To further test the extent of how WM networks, as defined
by the largest PLSR component, were implicated in the effects
of gene-by-environment interactions, we showed that connectiv-
ity metrics from groups of individuals with higher genetic risk
and higher exposures, but not others from lower risk groups,
selectively predicted the coexpression of depression-related
genes across the same brain regions in the Allen Brain dataset.
These findings extend recent observations that interrelated net-
works across levels of neuroimaging investigation reflect tran-
scriptomic coexpression relationships across corresponding
brain regions in the human and primate brains (23, 35). We
adapted this approach to study a more specific set of genome-
wide associated depression genes, analogous to earlier work on
Alzheimer’s disease (39). The spatial correlations between con-
nectivity and coexpression linking these orthogonal datasets
thus provide converging evidence supportive of our hypothesis
that genetic risk mechanisms of depression interacted with air
pollution exposures to affect stress-related information process-
ing brain networks.

To the extent brain networks across WM tasks were impli-
cated in the gene-by-environment interactions, we then asked if
there were also discernable interaction effects within specific
task-related connectivity in specific brain regions. Using a prin-
cipled search through brain regions with the highest weighted
network degree, p9-46v during WM manipulation emerged as a
key node, and therein, the strongest interaction occurred in
which stress-induced effects on effective connectivity from IP1
to p9-46v were disproportionately augmented in individuals
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with higher polygenic risk for depression and higher-PM2.5

exposure (Fig. 3A). These results, implicating the rapid updat-
ing of new information in WM manipulation, are consistent
with their stronger engagement in prefrontal circuits than sim-
pler WM maintenance processes (30, 40). These higher-order
WM processes have also been postulated to be vulnerable to
disruption by neuroinflammation (41) associated with stress,
depression (14, 42), and genetic risk for depression (11).

In the context of connectivity and coexpression involving
p9-46v with other cortical regions, we found that the spatial
coexpression of depression-associated genes predicted prefron-
tal connectivity at higher PM2.5 exposures or genetic risk but
not connectivity when exposures and genetic risk were both
low. The spatial correlation between stress-related connectivity
with coexpression of depression-associated genes is remarkably
consistent with the sensitivity of these prefrontal-associated net-
works to chronic stress and depression (38) and, indeed, consis-
tent with the mapping of these genome-wide signals to the
expression of genes enriched in the prefrontal cortex (11).
Moreover, genes such as RBFOX1, ENOX1, and others impli-
cated in neuroinflammatory processes in depression (11)
appear enriched in these spatial correlations (SI Appendix,
Supplementary Results and Discussion). These findings thus pro-
vide converging evidence supportive of the conceptualization
that air pollution exposures interact with prefrontal cortical
genetic risk mechanisms of depression and may engage neuro-
inflammatory processes.

In the present study, we have controlled for age, sex, educa-
tion, and genetic background that may confound the associa-
tions across cognition, stress, and exposure to air pollution (6).
We are also cognizant that gene–environment correlations may
cause artifactual interaction effects (12). However, a feature of
the study population is the geographically extensive air pollu-
tion exposures they experienced, which may minimize socioeco-
nomic (and related genetic) relationships with exposure.
Indeed, there were no correlations between pollution exposure
and depression genetic risk or between pollution and socioeco-
nomic factors. Furthermore, we suggest through several valida-
tion tests that the effects of unmeasured geographic and
personal factors (36) may not be driving our findings. While
our findings appear consistent with the impact of air pollution
on stress-related prefrontal networks implicated in depression
genetic risk, this may be specific to the higher exposures in our
study population, and it remains to be determined if similar
findings might generalize to other populations and at lower
levels of air pollution exposures. We also cannot exclude the like-
lihood that more spatially specific measurements (e.g., using por-
table monitors) could yield more individually specific results.

A number of limitations surrounding the complex genetics of
depression are pertinent in this study. Firstly, we have endeav-
ored to use extant genome-wide significant signals from large
GWAS of depression (11) in calculating the polygenic risk for
depression that converges subsequently in the definition of cog-
nate genes studied in the spatial correlation between coexpres-
sion and connectivity. Inevitably, there is significant missing
heritability not accounted for by these rarified signals, as the
cognate genes whose coexpression we have studied likely repre-
sent only a fraction of that implicated in depressive illness.
Future bioinformatic advances accounting for epigenetic and
tissue-specific regulatory mechanisms could augment the princi-
pled definition of cognate genes, including from selected, sub-
threshold genetic signals (43). Genes and genetic signals from
functional networks associated with genes enriched in the dif-
ferential spatial correlation across genetic and environmental
risks may also be considered. Our power to define ancestry-
specific effects is also necessarily limited (44) because we have
used genetic signals from a European sample (11) in the
absence of similarly powered East Asian data. Nevertheless,

the significant findings we report herein might, at least in part,
suggest the explanatory power of these large GWAS and the
cognate gene-level associations they implicate, extending
beyond their original ancestral populations (45, 46). The large
environmental exposure effects we examine could also have
mitigated the reduced genetic power of association. Moreover,
including signals from smaller East Asian GWAS (47) in our
data yielded consistent findings (SI Appendix, Supplementary
Results and Discussion). Still, the limited sets of genes we have
studied, and the limited samples in the Allen Brain Atlas, could
have constrained the brain networks we have implicated, albeit
to prefrontal networks also enriched in the expression of the
same genes we study (11), but possibly less so other key regions
and mechanisms implicated in depression (e.g., at hippocam-
pus). Extending our assay of brain networks across multiple
cognitive, resting state, and other neuroimaging modalities
could further augment the definition of these genetic and envi-
ronmental brain mechanisms. Finally, we have studied the
genes and brain networks within the context of recent air pollu-
tion exposures over 6 mo, a time frame suggested to affect risk
for depression (4, 5) and cognition (6). Differing exposure
durations in samples across neurodevelopment (e.g., different
stages of prenatal life, childhood, and aging), as well as long-
term cumulative effects, might well yield additional disease
mechanisms that should be targets of future work.

In conclusion, we find that in an otherwise healthy and
homogeneous volunteer sample in Beijing exposed to higher
levels of PM2.5 than their Western counterparts, PM2.5 expo-
sure affects cognition and levels of trait anxiety/depression.
These behavioral associations were reflected in changes at brain
network connectivity in which polygenic risk for depression
nonadditively augmented the neural impact of PM2.5 exposure.
Spatial correlation between brain network connectivity and the
coexpression of depression-associated genes was found in rela-
tion to higher exposures and higher genetic risk but not in rela-
tion to lower exposures or lower genetic risk. This study adds
to the mechanistic understanding of brain processes implicated
in how individuals with a relatively high genetic risk for depres-
sion may be particularly vulnerable to the brain effects of air
pollution. While our unique study context has minimized
gene–environment correlations, we might anticipate that corre-
lations between genetic and environmental risk factors (e.g.,
poverty, pollution, and genetic risk) could nevertheless, in other
study contexts, augment these interactions to cascade upon cog-
nitive and mood dysfunction.

Materials and Methods
Subjects. Subjects were part of a Peking University–Lieber Institute for Brain
Development research partnership on genes and the environment (29). A total
of 352 healthy adults with 3-Tesla MRI and air pollution exposure data were
included in this study, which was approved by the Institutional Review Boards
of the Peking University Institute of Mental Health and the Johns Hopkins Uni-
versity School of Medicine. Informed consent was given by each subject.
Details of themood and cognitionmeasurements, the stress-related numerical
WM task, the MRI sequences, the estimates of individual PM2.5 exposure, gen-
otyping quality control, and the calculation of the polygenic risk score for
depression are in SI Appendix.

Neuroimaging Data Analyses. Brain imaging data were processed and ana-
lyzed with SPM12 (Statistical Parametric Mapping 12, https://www.fil.ion.ucl.
ac.uk/spm). We examined biophysical models of effective connectivity using
DCM (34) as implemented in SPM12 (DCM10) to estimate the modulatory
effects of WM task stimuli on effective connectivity. We focused on DCMs
across a representative set of 20 cortical and 3 subcortical ROIs (SI Appendix).
To identify potential interactions through which PM2.5 exposure and poly-
genic risk for depression influenced effective connectivity networks across
WM tasks (encoding, maintenance, and manipulation) and stress contexts
(stress� versus stress+), we performed PLSR in MATLAB 2018b across all 1,518
cortical–subcortical task-modulated connections during these tasks (35). To
define interaction effects at specific task-related effective connectivity across
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specific brain regions, we ranked the relative importance of individual brain
regions based on the weighted degree of each brain region’s connectivity and
PLSR loadings; subsequently, from each of these brain regions, we examined
the effective connectivity to and from all the other brain regions in terms of
gene-by-environment interactions using generalized linear models. We visual-
ized interaction effects by plotting PM2.5 exposure and connectivity across
varying higher (>0.5 SD) or lower polygenic risks for depression. We also uti-
lized validation tests, replacing the exposure variable with variables sensitive
to geography and time, to putatively exclude their confounding effects on
our gene-by-environment interaction findings. Additional details of data anal-
ysis are in SI Appendix.

Spatial Correlation across Stress-Related Connectivity and the Coexpression
of Depression Genes. To the extent PM2.5 exposure may interact with depres-
sion genetic risk on brain connectivity, we then examined if spatial coexpres-
sion of depression-related genes across the human brain in Allen Brain Atlas
(https://human.brain-map.org/) may couple differently with corresponding
connectivity across polygenic risk for depression and PM2.5 exposure. Specifi-
cally, we examined the coexpression of the 49 GWAS-associated depression
genes (11) that also had quality-controlled expression data in the Allen Brain
Atlas (SI Appendix) across the same cortical brain regions examined in the
fMRI data. Across pairs of these brain regions, we then examined the spatial
correlation between coexpression and effective connectivity weighted accord-
ing to the first PLSR component. We examined four groups of individuals
according to relatively higher (>0.5 SD) or lower (<0.5 SD) polygenic

depression risk and PM2.5 exposures and, accordingly, the spatial correlation
between coexpression and weighted effective connectivity in each group.

In complementary analyses on specific WM task-related connectivity, we
focused on coexpression and stress-related WM manipulation connectivity
across the brain related to the p9-46v, implicated in our findings (see Results).
Effective connectivity involving p9-46v and 106 other ROIs that were engaged
by the task and sensitive to stress (161 connections, P < 0.05 FDR corrected)
were examined. The coexpression of 49 depression-associated genes (11)
across the 106 pairs of ROIs from human gene expression data in Allen Brain
Atlas (23) were computed. The spatial correlation across the same pairs of
brain regions in the coexpression and stress-related connectivity data were
then computed. To examine the extent to which this spatial correlation may
vary with polygenic risk for depression and PM2.5 exposure, subjects were
divided into four groups with relatively higher (>0.5 SD) or lower (<0.5 SD)
exposures (SI Appendix, Table S8) and polygenic risk. Further details are in SI
Appendix.

Data Availability. All study data in support of our findings are included in
the article and/or SI Appendix. Computing code and source data are available
on GitHub (https://github.com/psychlizhi/Air-pollution-interacts-with-genetic-
risk-to-influence-cortical-networks-implicated-in-depression.git).
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