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Do some types of information spread faster, broader, or further
than others? To understand how information diffusions differ,
scholars compare structural properties of the paths taken by con-
tent as it spreads through a network, studying so-called cascades.
Commonly studied cascade properties include the reach, depth,
breadth, and speed of propagation. Drawing conclusions from
statistical differences in these properties can be challenging, as
many properties are dependent. In this work, we demonstrate
the essentiality of controlling for cascade sizes when studying
structural differences between collections of cascades. We first
revisit two datasets from notable recent studies of online diffusion
that reported content-specific differences in cascade topology:
an exhaustive corpus of Twitter cascades for verified true- or
false-news content by Vosoughi et al. [S. Vosoughi, D. Roy, S.
Aral. Science 359, 1146–1151 (2018)] and a comparison of Twitter
cascades of videos, pictures, news, and petitions by Goel et al.
[S. Goel, A. Anderson, J. Hofman, D. J. Watts. Manage. Sci. 62,
180–196 (2016)]. Using methods that control for joint cascade
statistics, we find that for false- and true-news cascades, the
reported structural differences can almost entirely be explained
by false-news cascades being larger. For videos, images, news, and
petitions, structural differences persist when controlling for size.
Studying classical models of diffusion, we then give conditions
under which differences in structural properties under different
models do or do not reduce to differences in size. Our findings
are consistent with the mechanisms underlying true- and false-
news diffusion being quite similar, differing primarily in the basic
infectiousness of their spreading process.

information diffusion | network analysis | social media | misinformation

From the diffusion of ideas, content, and innovations in so-
cial networks to the propagation of epidemics, computer

viruses, and bank defaults, understanding spreading processes in
interconnected systems is of utmost importance in many diverse
settings. The recent dramatic increase in the scale at which be-
havioral data can be gathered and analyzed has provided unique
opportunities to compare how different kinds of content spread
among users of social media platforms. By studying the propa-
gation patterns of online content, scholars hope to understand
the basic principles underlying their spread. Do some types of
content spread faster than others? Does visual content reach a
larger audience than written content? If so, how come? And how
can we design platforms to control or attenuate the spread of
potentially unwanted content?

The quantitative study of diffusion has a long history (1–3),
while the large-scale analysis of the structure of diffusion has its
modern origins in the study of the spread of blog links (4–6),
word-of-mouth product recommendations (7), and the propaga-
tion of online chain letters (8, 9). Since these pioneering studies,
the scale of data has increased tremendously, and the spreading
dynamics of a wide range of content types have been analyzed.
These include differences in how videos, images, news, and pe-
titions spread on the social media platform Twitter (10), verified
true and false news spreading on Twitter (11, 12), invitations to

join the networking platform LinkedIn (13), photos on Facebook
(14), cross-platform comparisons of cascades (15), and more
(16–19).

In this fast-growing field of diffusion research, the analysis of
the diffusion structure begins by mapping the branching paths
that the content takes through the underlying network as it
spreads. The resulting rooted, directed, time-stamped tree that
records the spread of a single diffusion event is commonly re-
ferred to as a “cascade.” Usually, a large collection of individual
cascades are collected into a single dataset, labeled as associ-
ated with different kinds of content. By quantifying statistical
properties of these cascade populations—for example, their max-
imum depth and breadth—one hopes to discover clues as to
how different contents diffuse differently. For example, if news
cascades typically have high breadth and low depth, while petition
cascades have low breadth and high depth, this could indicate
how the mechanisms underlying the spreading dynamics of news
and petitions differ.

In the present work, we examine how conclusions stemming
from this style of analysis can be complicated by tight dependen-
cies between structural features of cascades. Informally, these
dependencies can be thought of as correlations or collinearities,
though we emphasize that these relationships are rarely linear.
Most significantly, almost all features of cascades are known to
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vary with the size of the cascade, both in data (6, 14, 20) and
in models of such data (21). To better understand the role of
size in the analysis of various cascade properties, we present a
matching procedure that constructs paired corpuses of cascades
while controlling for size.

We apply this matching methodology to reanalyze the data
from two recent landmark studies: an analysis of the spread of
true and false news on Twitter by Vosoughi et al. (11) and a
comparison of the spread of videos, images, news, and petitions
on Twitter by Goel et al. (10). In their analysis, Goel et al. found
that cascades of different content types had several structural
differences, while Vosoughi et al. found that false news spreads
“farther, faster, deeper, and more broadly than the truth.” Using
our matching approach, we show that when controlling for cas-
cade size, differences in depth and structural virality of images,
videos, news, and petitions largely persist, whereas differences
in the depth, breadth, structural virality, and speed of false- and
true-news cascades disappear. This observation leads us to the
conclusion that, although false-news and true-news cascades are
structurally distinguishable online, the observed structural differ-
ences can be explained almost entirely by a significant, but one-
dimensional, difference in size. In combination with theoretical
results and simulations, we argue that this latter finding suggests
that the deeper, broader, and faster propagation of false news can
be addressed by targeting a single thing: the higher person-to-
person infectiousness of the information. We similarly find that
reported differences in the spread of political news and news on
other topics also collapse when controlling for size.

If the observed structural differences between real-world cas-
cades of false and true news can be explained by size differences,
does this explanation mean that false and true news spread
according to the same underlying statistical rules? This type of
question is extremely difficult to answer well without a complex,
randomized experiment that would control for the timing, topic,
and network origination of a cascade, randomizing the truth of
the story being shared. A more approachable question is whether
spreading according to the same underlying statistical rules is suf-
ficient to cause the observed size-induced differences in cascade
statistics. To investigate this question, we turn to modeling.

Many models of cascade growth have size as an explicit/
exogenous parameter, e.g., the preferential attachment (22,
23), copy (24), fitness (25), and random recursive tree (26,
27) models. For such models, controlling for size means
choosing the size. For other models, notably, the widely studied
Susceptible–Infectious–Recovered (28) (SIR) and Independent
Cascade (29, 30) (IC) models of diffusion, cascade size is an

implicit/endogenous feature. For these latter two model families,
we rigorously characterize a theoretical analog to our empirical
observation. We show how, controlling for size, differences in all
other cascade statistics collapse when one compares collections
of cascades generated by the SIR or IC model. More specifically,
we find that the distribution over labeled trees induced by
different instances from the same model family (e.g., two SIR
models with different parameter settings) are identical when
controlling for size. As a result, any summary statistics of the
two collections are also identical when controlling for size. The
observed collapse is, however, far from generic and does not
occur if comparing cascade collections from different model
families (e.g., SIR vs. IC).

Online Information Diffusion Data
True and False News. In recent years, much focus has been given
to the influence of online misinformation, disinformation, and
“fake news” (11, 12, 31, 32), particularly in political elections
and international conflicts (33–35). Already in 2013, massive
digital misinformation was listed as a global risk by the World
Economic Forum, which stated that it was “conceivable that
a false rumor spreading virally through social networks could
have a devastating impact before being effectively corrected”
(36). Understanding the spread of false news is clearly central
to understanding how such risks can be mitigated.

The work of Vosoughi et al. (11) constitutes a landmark study
in the analysis of false- and true-news cascades. To recapitu-
late their analysis, the authors collected and analyzed retweet
cascades of all fact-checked true or false content that spread
on Twitter in its history from 2006 to 2017, as verified by six
independent fact-checking organizations. They then analyzed
structural and temporal properties of the 24,409 verified-true-
news cascades and 82,605 verified-false-news cascades and com-
pared them to each other. In Fig. 1 A–E, we reproduce four
statistical quantities that were compared in that important work:
the cascade size (number of retweets), cascade depth (maximal
distance of a node from the root), cascade maximal breadth
(maximal number of nodes located the same distance from the
root), cascade “virality” [a normalized version of what is also
known as the Wiener index (10), the average pairwise distance
of nodes in the cascade, when converting all directed edges into
undirected edges], and the geometric mean of the time it takes
a cascade to be retweeted by a number of unique users. The
first four plots compare the complementary cumulative distri-
bution function (CCDF) of these statistical quantities for the
two datasets. Based on these plots, the authors concluded that

Fig. 1. (A–E) Structural and temporal statistics of false-news and true-news cascades diffusing on Twitter, as presented in ref. 11. Cascades in the two
datasets have different size distributions (A). (F–J) The same analyses as the plots directly above, carried out for two subsampled datasets with matched size
distributions. Controlling for size collapses statistical differences in these properties. Insets depict each statistic on a simple cascade.
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cascades of fact-checked false news are bigger, broader, more
viral, and spread faster than the cascades of fact-checked true
news.

Images, Videos, News, and Petitions. A broader line of research has
studied the diffusion patterns of different content types and on
different media platforms. Notable in this broader literature is
the analysis of Goel et al. (10), which investigated the extent to
which online diffusion was mostly driven by a few large “broad-
cast” events or a more decentralized “viral-like” process. The
authors analyzed a large dataset consisting of all tweets posted
on Twitter between July 2011 and July 2012 that contained URLs
pointing to one of a selected set of domains. Based on the URL,
each tweet was taken to belong to a content category: images,
videos, news, or petitions. The total dataset included 1.2 billion
posts of ∼622 million unique pieces of content.

In Fig. 2 A–C, we reproduce the main empirical analysis of
Goel et al., showing the cascade size, depth, and structural virality
for the content types (only size and structural virality were plotted
in the original paper), again in the form of CCDFs, for the differ-
ent content types. From these plots, the authors concluded that
cascades of popular petitions are “substantially more structurally
viral than any other type of content, followed by videos, images,
and news stories.”

Size-Controlled Cascade Comparisons
Cascade size, depth, and max breadth are not necessarily in-
dependent from each other: If a cascade doubles in size, one
would expect it to increase in depth and maximum breadth. In
the same way, one would imagine that speed of propagation is
not independent of cascade size either: The very largest cascades
will probably reach 1,000 adoptions faster than cascades of more
moderate size. As a result, size differences visible in Figs. 1A and
2A are expected to influence the distributions of other properties
in Figs. 1 B–E and 2 B and C.

Investigating the extent to which the observed statistical differ-
ences between cascade properties in Figs. 1 and 2 are not merely
a result of differences in cascade sizes requires controlling for
cascade size in our analysis. Because cascade properties such as
size, depth, and breadth are intertwined in subtle ways, we adopt
a matching framework (37) that makes minimal assumptions
about the relationship between properties (as opposed to, say,
regression controls in a linear model). Without loss of generality,
we focus our description on comparing false-news and true-news
cascades. To create a size-matched corpus of cascades, we con-

Fig. 2. (A–C) Structural statistics of videos, images, news, and petitions on
Twitter, as presented by ref. 10. Note that only cascades containing at least
100 posts are included in the analysis. Cascades in the four categories of
content have different size distributions (A). (D–F) The same analyses as the
plots directly above, carried out for subsampled datasets with matched size
distributions. Controlling for size does not collapse statistical differences in
these properties. Insets depict each statistic on a simple cascade.

sider each true-news cascade and randomly sample a matching
cascade of false news, uniformly at random with replacement,
from the set of false-news cascades of the same size. If no false-
news cascade of the same size exists (an occurrence affecting
only a relatively small fraction of cascades in both datasets, but
not necessarily in a more general setting), the true cascade is
not included in the subsampled cascade corpus. We refer to
this process as matching false cascades to true cascades. The
result is two subsampled cascade corpuses with the exact same
distribution of sizes; the included cascade sizes are a subset of
the cascade sizes in the original datasets.

This procedure is only one of several possible approaches
that could be taken to size-match two cascade populations. One
could equally well match the true cascades to the false cascades
(where sampling with replacement would play a greater role) or
match both populations to a third distribution of sizes (e.g., the
overall size distribution of news cascades, regardless of true/false
labels). Our choice of procedure amounts to a choice of tar-
get population, the natural distribution of true-news cascade
sizes.

In Fig. 1 F–J, we show the analyses of Vosoughi et al. (11)
repeated on the matched datasets, where each panel corresponds
to the unmatched analysis directly above. We see that all the
observed structural differences do not persist when controlling
for size. Examining Fig. 1 E and J closely, one might even argue
that true news diffuses slightly faster than false news when cas-
cade sizes are comparable. SI Appendix, Figs. S2 and S3 provide
a supplementary visualization of the pairwise joint distribution
of these cascade statistics. Further exploring the statistics jointly,
in SI Appendix, section S-I, we train a logistic regression model
to predict veracity of cascades from their depth, size, virality,
and max breadth. When using a size-matched balanced dataset,
the accuracy of the resulting model is consistent with random
guessing (≈ 50%). Because we draw random false-news cascades
to include in the subsampled dataset, our matched false-news
corpus is only one instance out of a large number of possible sub-
sampled false-news datasets. In SI Appendix, Table S1, we repeat
the subsampling a large number of times and provide details on
the distribution of test statistics obtained across 104 realizations.

Beyond their headline comparison of true and false news,
Vosoughi et al. (11) also found that that political false news
spread deeper, more broadly, more virally, and reached more
people than false news about other topics diffusing on Twitter.
When we compare the spread of false political news and false
news on other topics using our subsampling procedure to control
for size, matching on the nonpolitical news sizes, we find no
significant difference in the statistical properties of the size-
matched cascade datasets (SI Appendix, section S-I).

Turning to the analysis by Goel et al. (10) of content types,
we are faced with four categories of diffusion cascades: images,
videos, news, and petitions. In order to make all four cascade
datasets comparable at once, we match all four datasets to the
same set of cascade sizes. We choose to match all four categories
to a target distribution defined by the intersection of sizes present
in all four datasets. Fig. 2 D–F show the analysis of Goel et al. re-
peated on the matched datasets, where each panel corresponds to
an unmatched analysis in the panel directly above. In these data,
the differences in cascade structure persist after size matching.
In SI Appendix, section S-I, a logistic regression model is again
used to predict the cascade category from depth, size, virality, and
max breadth. When using a size-matched balanced dataset, the
accuracy of the resulting model is ≈ 43%, significantly exceeding
random guessing (25%). We again present test statistics obtained
across 104 matching realizations in SI Appendix, section S-I. As
a supplementary analysis, in SI Appendix, section S-I, we also
perform our size-matching analysis on all pairwise combinations
of types (six in total), where similar differences in structure again
persist.
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Size Collapse in Models of Diffusion
Having seen that controlling for size can make otherwise-clear
structural differences in structural features disappear, as in the
case of true- and false-news cascades above, it is natural to
ask what such an observation can tell us about the possible
underlying diffusion dynamics. In models of diffusion, when can
the structural differences between resulting cascades be reduced
to differences in size?

The two most widely studied models of spreading processes
on networks, the SIR and IC models, are both parameterized
principally by a single contact-level infectiousness parameter. In
the IC model, an infectious node i gets to infect each of its suscep-
tible neighbors j with independent probability pij (30). Defining
pij = p for all node pairs makes p a single adjustable parameter
governing infectiousness. In the SIR model, an infectious node
infects each of its susceptible neighbors with rate rI and recovers
with rate rR. A recovered node cannot infect or get infected. The
ratio R0 = rI /rR is the basic reproduction number and is a single
adjustable parameter for the infectiousness of an SIR process.

To examine the joint evolution of size and structural features,
we start with simulations of the IC and SIR models. We perform
simulations on different underlying network topologies, ranging
from empirical social networks to the stylized setting of an infinite
clique. We focus on results for the infinite clique here, as these
dialogue directly with later theoretical results; simulations on
other network topologies are shown in SI Appendix, section S-III.
All simulations start with a single infectious node (chosen uni-
formly at random), and we run the simulation until new infections
no longer occur. We keep track of who infects whom in the
simulation and save the resulting directed, rooted tree. For each
parameter setting, we collect 30,000 cascades.

As discussed in SI Appendix, section S-II, the SIR and IC
models on the infinite clique are both instances of Galton–
Watson processes (38): They can be realized as probabilistic
processes where the number of children are independent and
identically distributed, natural-numbered, random variables.
When performing IC simulations on an infinite clique, we take
advantage of the fact that the cascade out-degree distribution
approaches a Poisson distribution with mean value R0 = Np for
large network size N and small edge probability p. Consequently,
this setting is equivalent to simulating a Galton–Watson
branching process with a Poissonian offspring distribution.

Likewise, the SIR model on an infinite clique is equivalent to
simulating a Galton–Watson branching process with a geometric
offspring distribution. In both cases, R0 is the mean of the
distributions governing the number of children of infectious
nodes.

Fig. 3 A and B show the sizes and breadth obtained by sim-
ulations of the SIR model on an infinite clique. Comparing
datasets created with different values of R0, we see that a higher
R0 generally results in larger and broader cascades. To control
for the effect of size, we perform our size-matching procedure
on the simulated datasets, shown in Fig. 3 G and H. Here, we
see the statistical differences in structural properties disappear
after controlling for size. The same collapse happens for other
cascade features, such as depth and virality, both on infinite
cliques and for cascades grown on real-world network topolo-
gies (SI Appendix, section S-III). The fact that we observe the
same distributional collapse on real-world networks as on infinite
cliques suggests that the specific structure of the network may not
be crucial to the observed phenomenon (39).

Fig. 3 C and D show the sizes and breadth obtained by simu-
lations of the IC model on an infinite clique. Again comparing
datasets created with different values of R0, we see that typical
sizes and breadths increase with R0. Fig. 3 I and J show that the
observed differences disappear when controlling for size using
our subsampling procedure. Again, a similar collapse happens for
other cascade features, such as depth and virality, both on infinite
cliques and for cascades grown on empirical network topologies
(SI Appendix, section S-III).

The fact that all distributions of the examined structural statis-
tics seem to be exactly the same for datasets created under the
same model and different values of R0 raises a very interesting
question about the generality of this phenomenon. The following
theorem, proven in SI Appendix, section S-II, clarifies that the
distribution of cascades of a given size s created under an SIR
or IC model on an infinite clique is independent of the value
of R0. In other words, no matter what structural feature we
compare, the conditional distributions, conditional on size s, will
come out identical if the datasets were created using the same
model, even if the parameter settings were different. The proof
of this theorem follows from a more general result we establish
for Galton–Watson processes, of which the SIR and IC model on
an infinite clique are both special cases.

Fig. 3. (A–F) Structural statistics of datasets of cascades simulated using the SIR and IC models. (A and B) Size and maximum breadth of SIR cascades with
two different values of the infectivity parameter R0. (C and D) Size and maximum breadth of IC cascades with two different values of R0. (E and F) Size and
maximum breadth of SIR vs. IC cascades with the same choice of R0 = 0.8. (G–L) The same analyses as the plots directly above, carried out for two subsampled
datasets with matched size distributions. Controlling for size collapses statistical differences in structural properties when simulations come from the same
underlying model (IC or SIR), even for different choices of infectivity R0. The collapse does not happen if the underlying models are different. Insets again
depict each statistic on a simple cascade. Only size and breadth are shown here due to space constraints; the collapses of the remaining statistical quantities
are shown in SI Appendix, Figs. S14, S18, and S22.
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Theorem 1 (SIR and IC Model). Let PSIR(T |s,R0) and
PIC(T |s,R0) denote the probability of obtaining the tree T when
growing a self -terminated cascade of size s on the infinite clique
using the SIR model with parameter R0 = rI /rR or the IC model
with parameter R0, respectively. Then, both PSIR(T |s,R0) and
PIC(T |s,R0) are independent of R0.

Moving beyond Theorem 1, what happens when the diffu-
sion models behind two datasets are not the same? Can size
collapse be used to distinguish sets of cascades created under
different diffusion rules? In Fig. 3 E and F, we compare sizes
and breadths obtained by simulations of the IC and SIR mod-
els on an infinite clique and identical choices of R0. We see
that the size distributions differ, even though their means are
the same, and we see that SIR cascades have a higher max
breadth. Fig. 3 K and L show the corresponding plots when
controlling for size. Interestingly, no collapse of the breadth
distributions takes place: SIR cascades still have higher max
breadth. The distributions of depth and structural virality also
do not collapse (SI Appendix, Figs. S22 and S23). Unlike com-
parisons within a single model family (IC or SIR), here, the
different diffusion rules manifest themselves in how often a
cascade with a given topology is created. That the cascade distri-
butions are different under the models can be proven rigorously
(SI Appendix, section S-II, Theorem 2). Differences in the shape
of the offspring distributions of Galton–Watson processes, Pois-
son for the IC model and geometric for the SIR model, create
differences in cascade structure that go beyond cascade size.

In order to understand whether two size-matched datasets
are likely to create similar cascade topologies, Theorems 1 and
2 suggest that it is natural to investigate the offspring distri-
bution of the cascades, also known as the out-degree distribu-
tion. For two cascade datasets from Galton–Watson processes
matched on size, the shape of the offspring distributions deter-
mines everything about the other structural statistics. Return-
ing to the Vosoughi et al. dataset of true and false news (11),
Fig. 4A shows the out-degree distributions of the true-news and
false-news cascades, while Fig. 4D shows the out-degree distri-
butions for two subsampled datasets with matched size distri-
butions. The out-degree distributions of the matched datasets

Fig. 4. (A) CCDF of out-degree distributions in the Vosoughi et al. dataset
(11) of false-news and true-news cascades on Twitter. (B) CCDF of out-degree
distributions in SIR cascades with two different values of the infectivity
parameter R0. (C) CCDF of out-degree distributions in SIR cascades and
IC cascades with the same choice of R0 = 0.8. (D–F) The same analyses as
the plots directly above, carried out for two subsampled datasets with
matched size distributions. Controlling for size collapses statistical differ-
ences in structural properties for the datasets of true and false news and
the simulated data created under the same model with different parameter
settings. The collapse does not happen if the underlying models differ.
We show KS-test statistics for 1,000 instances of size-matched datasets in
SI Appendix, section S-I.

are indistinguishable. Meanwhile, Fig. 4 B and C show the off-
spring distributions of cascades generated by SIR and IC models:
Poisson and geometric, respectively. When the cascades from
these models are matched on size, Fig. 4 E and F show the
offspring distributions of the matched cascades. Extending the
observations in Fig. 3, we see that the offspring distributions
collapse for model instances within the SIR family, but do not
collapse when matching between SIR and IC instances.

Discussion
In recent years, significant attention has been paid to the struc-
ture of online diffusion cascades. Studies have compared the
structure of cascades for different types of content, but it has been
difficult to discern whether diffusion mechanisms of the different
content types differ or not. Here, we have shown that juxtaposing
size-matched datasets of cascades provides one way to reject, or
not, differences in diffusion mechanisms.

We find that previously reported structural and temporal dif-
ferences between true- and false-news cascades can be explained
almost entirely by differences in cascade size, whereas the ob-
served differences persist when comparing size-matched cas-
cades of videos, images, news, and petitions. The observation
that differences were absent in size-matched true-news and false-
news cascades can explain why recent efforts to use machine-
learning techniques to resolve differences between false- and
true-news cascades based on structural properties alone have had
limited success (40). To accurately classify the veracity of Twit-
ter cascades, these studies use additional metadata about net-
work nodes, highlighting the importance of graph-representation
learning (41) methods capable of ingesting rich data types in such
endeavors.

We emphasize that that the cascades of Vosoughi et al. (11)
are limited to true- and false-news cascades that have been fact-
checked. The structure of fact-checked true-news cascades is
likely not reflective of true-news cascades in general, and fact-
checked true-news cascades are plausibly much more similar
(than generic true-news cascades) to fact-checked false-news
cascades. But comparing these two populations of fact-checked
cascades, false fact-checked cascades are larger. Yet, we find that
the differences in diffusion can be explained by differences in
infectiousness alone. The focus on fact-checked cascades may be
viewed as a limitation, but by focusing on fact-checked content,
our analysis (and the analysis of Vosoughi et al.) focuses on the
boundary of veracity, where it is most important to understand
the effect on diffusion as stemming from the truth or falsity
of the content. Further, recent work has shown that directing
attention to accuracy of news on Twitter helps limit the spread
of misinformation (42). Through the lens of our analysis, that
recent work has the greatest effect at the boundary of veracity
and can be seen as an intervention that specifically targets the
further transmission of false information (the infectiousness),
which should then also organically limit the breadth and depth
of the diffusion.

Through our theoretical analysis of Galton–Watson processes,
we find that when two such processes have offspring distribu-
tions from the same family, differing only in their infectiousness
(correspondingly, their mean size), controlling for size elimi-
nates all structural differences between cascades generated by
those processes at different infectiousness. Meanwhile, when the
offspring distributions are from different families, controlling
for cascade size no longer necessarily collapses the distributions
of other structural properties. In the context of true and false
news, this result tells us that observing two cascade datasets that
differ only in size is consistent with similar underlying diffusion
processes. For videos, images, news, and petitions, our results
suggest that the diffusion mechanics for these more diverse
content types are more deeply different, though we note that the
persistent structural differences could also be explained by, e.g.,

Juul and Ugander
Comparing information diffusion mechanisms by matching on cascade size

PNAS 5 of 6
https://doi.org/10.1073/pnas.2100786118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100786118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100786118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100786118/-/DCSupplemental
https://doi.org/10.1073/pnas.2100786118


differences in the types of seed nodes, differences in the network
location of the seeds, or differences in when the cascades are
seeded.

Having seen that some content types show indistinguishable
cascade characteristics upon size matching, whereas the differ-
ences persist for others, we wonder: Can content types be di-
vided into “classes,” for which the collapse of structural property
distributions takes place upon size matching? How may this
collapse differ across platforms (e.g., Twitter vs. Facebook)? Do
measures exist that can reveal whether size-matching will lead
to a collapse of structural property distributions, even before
carrying out the size-matching? These are all natural directions
of future research.

As a limitation, our theoretical results apply only to infinite
cliques and only to diffusion processes that can be characterized
as Galton–Watson processes. But even in this limited setting,
we find the theoretical analysis instructive. We have not proven
a general result about how different diffusion rules may or
may not give rise to distributional collapses when matching for
size, and this question and further analytical results for more
general network topologies are important directions for further
research.

We have shown that the joint distributions of statistical prop-
erties of diffusion cascades, long known to be important in the
theory of random trees (43), can greatly impact the conclusions
of comparative data analyses. In the fast-moving field of diffusion
research, we hope that a careful consideration of joint statistical
distributions, particularly the joint distribution with size, can
diffuse quickly through the literature.

Materials and Methods
The main text describes our size-matching procedure and all details neces-
sary to replicate the work presented in this manuscript. SI Appendix provides
details of our theoretical results. It also includes supplementary data analysis
of both empirical datasets, Kolmogorov–Smirnov (KS) test statistics for Figs.
1–4, and a demonstration of our size-matching procedure for SIR and IC
processes simulated on empirical networks.

Data Availability. Previously published data (10, 11) were used for this
work.
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