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Preface

Polygenic risk scores (PRS), often aggregating results from genome-wide association studies, 

can bridge the gap between the initial discovery efforts and clinical applications for disease risk 

estimation using genetics. However, there is remarkable heterogeneity in the application and 

reporting of these risk scores, hindering the translation of PRS into clinical care. The ClinGen 

Complex Disease Working Group, in a collaboration with the Polygenic Score (PGS) Catalog, 

have updated the Genetic Risk Prediction (GRIPS) Reporting Statement to reflect the current 

state of the field. Drawing upon experts in epidemiology, statistics, disease-specific applications, 

implementation, and policy, this 22-item reporting framework defines the minimal information 
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needed to interpret and evaluate PRS, especially with respect to downstream clinical applications. 

Items span detailed descriptions of study populations, statistical methods for PRS development 

and validation, and considerations for potential limitations of the PRS. Additionally, we emphasize 

the need for data availability and transparency, encouraging researchers to deposit and share PRS 

via the PGS Catalog to facilitate reproducibility and comparative benchmarking. By providing 

these criteria in a structured format that builds upon existing standards and ontologies, the use of 

this framework in publishing PRS will facilitate translation into clinical care and progress towards 

defining best practices.

The predisposition to common diseases and traits arises from a complex interaction between 

genetic and nongenetic factors. In the past decade there has been enormous success at 

discovering disease-associated genetic variants, facilitated by many collaborative consortia 

and large cohorts of well-phenotyped individuals with matched genetic information.1-5 In 

particular, genome-wide association studies (GWAS) have yielded summary statistics that 

describe the magnitude (effect size) and statistical significance of association between an 

allele and the outcome of interest.4,6 GWAS have been applied to many complex human 

traits and diseases, including height, blood pressure, cardiovascular disease, cancer, obesity, 

and Alzheimer’s disease.

The associations identified via GWAS can be combined to quantify genetic predisposition 

to a heritable trait, and this information can be used to conduct disease risk stratification 

or predict prognostic outcomes and response to therapy.7,8 Typically, information across 

many variants is combined via a weighted sum of allele counts, where the weights reflect 

the relative magnitude of association between variant alleles and the trait or disease. These 

weighted sums can include millions of variants, and are frequently referred to as polygenic 
risk score(s) (PRS), or genetic or genomic risk score(s) (GRS), if they refer to risk 

estimates of disease outcomes; or, more generally, polygenic score(s) (PGS) when referring 

to any outcome (see Box 1). While there is active development of algorithms to decide 

how many and which variants to include and how to weigh them so as to maximize the 

proportion of variance explained or disease discrimination, there is emerging consensus that 

inclusion of variants beyond those meeting stringent GWAS significance levels can boost 

predictive performance.9,10 Methodological research has also established theoretical limits 

of PGS/PRS performance based on the trait’s genetic architecture and heritability.11-15

In the last decade, the landscape of genetic prediction studies has transformed. Over 900 

publications mention PGS/PRS with significant developments in how PRS are constructed 

and evaluated, as well as many new proposed uses. The data available in the current era 

of biomedical research is larger and more consolidated than ever before. Biobanks and 

large-scale consortia have become dominant, yet frequently researchers have limited access 

to individual-level data. Since individual data is unavailable, most PRS risk predictions are 

developed from summary-level data (e.g. GWAS summary statistics) in secondary datasets, 

each of which come with their own specific methodological considerations.16-18 At the same 

time, there has been a push towards open data sharing as outlined in the FAIR (Findable, 

Accessible, Interoperable and Reusable) Data Principles 3,19, with an emphasis on ensuring 

that research is reproducible by all.
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The capacity of PRS to quantify genetic predisposition for many clinically relevant traits 

and diseases has begun to be established, with multiple potential clinical uses in settings 

related to disease risk stratification as well as proposed prognostic uses (e.g., predicting 

response to intervention/treatment). Readiness for implementation varies by outcome, with 

only a few diseases, like coronary heart disease (CHD) and breast cancer, having mature 

PRS with potential clinical utility (Boxes 2 and 3, respectively). There has also been a rapid 

rise of direct-to-consumer assays and for-profit companies (23andMe, Color, MyHeritage, 

etc.) providing PGS/PRS results to customers outside of the traditional patient-provider 

framework. These concomitant developments have resulted in healthcare systems developing 

new infrastructures to deliver genetic risk information.20 Individually and combined, these 

advances have raised significant challenges for PRS reporting standards; from the very basic 

(e.g. reporting performance metrics on an external validation dataset) to the complicated 

(e.g. making raw variant and weight information for a PRS available), necessitating the 

updating of existing standard for reporting genetic risk prediction studies to convey the 

increased scope of PRS and complexity for their clinical applications.

Poorly designed and/or described studies call into question the validity of some PRS to 

predict their target outcome 21,22, and relatively few studies have externally benchmarked 

multiple scores’ performance. At present, there are no uniformly agreed best practices for 

developing PRS, nor widely adopted standards or regulations sufficiently tailored to assess 

the eventual clinical readiness of a PRS. There are emerging applications of PRS that 

further compound the heterogeneity in reporting, e.g. using PRS as tools for testing gene x 
environment interactions or shared etiology between diseases. 23-26 The rapid evolution in 

both methodological development and applications of PRS make it challenging to compare 

or reproduce claims about the predictive performance of a PRS for a specific outcome 

when studies are not properly documented. These deficiencies are barriers to PRS being 

interpreted, compared, and reproduced, and must be addressed to enable the application of 

PRS to improve clinical practice and public health.

Frameworks have been developed to establish standards around the transparent, 

standardized, accurate, complete, and meaningful reporting of scientific studies. In 2011, 

an international working group published the Genetic Risk Prediction Studies (GRIPS) 

Statement, a reporting guideline for risk prediction models that include genetic variants, 

from genetic mutations to gene scores.27 This guideline is analogous to those developed 

for observational epidemiological studies (STROBE28) and genome-wide association studies 

(STREGA29), and is in line with the reporting guideline for multivariate prediction models 

(TRIPOD30). Adherence to reporting statements has been low, and the same holds for 

GRIPS. One potential reason might be that researchers feel that GRIPS inadequately 

addresses PRS. Researchers are frequently uncertain as to what precisely should be reported 

for a PRS study to be assessed as rigorous, reproducible, and ultimately translatable, 

especially with the increased push for data availability and transparency. Most PRS studies 

follow a prototypical process (Figure 1) that can be used as a template for standardizing 

reporting and benchmarking in the field.

Here, the Clinical Genome Resource (ClinGen) Complex Disease Working Group and 

the Polygenic Score (PGS) Catalog (Supplemental Note 1) jointly present the Polygenic 
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Risk Score Reporting Standards (PRS-RS), an expanded reporting standard for PRS that 

addresses current research environments with advanced methodological developments to 

inform clinically meaningful reporting on PRS development and validation in the literature 

with an emphasis on reproducibility and transparency throughout the development process. 

Additional methods are detailed in Supplemental Note 2.

The Polygenic Risk Score Reporting Standards (PRS-RS)

The PRS-RS is a set of standard items specifying the minimal criteria that need to be 

described in a manuscript in order to accurately interpret a PRS and reproduce results 

throughout the PRS development process, briefly illustrated in Figure 1. 31 It applies to 

both PRS development and validation studies that aim to predict disease onset, diagnosis, 

and prognosis, as well as response to therapies; however, other research uses of PRS have 

overlapping steps that should be reported similarly. Table 1 presents the full PRS-RS, with 

reporting items organized into key components along the developmental pipeline of PRS for 

clear interpretation and to encourage their documentation from the inception of the study 

well before publication.

Reporting on risk score background:

The development and validation of a PRS tests a specific hypothesis with a defined 

outcome and study population. Therefore, authors should define a priori the study type (e.g. 

development and/or validation), purpose (e.g. risk prediction vs. prognosis) and predicted 
outcome (e.g. CHD) in enough detail to understand why the study population and risk model 

selected are relevant (e.g. the value for CHD risk stratification and primary prevention is 

highest in younger individuals compared to those over 80 with lifetime accumulated risk). 

As the PRS-RS is focused on clinical validity and implementation, authors must outline the 

study and appropriate outcomes to understand what risk is measured, what the purpose of 

measuring risk would be, and why this purpose may be of clinical relevance. To establish the 

internal validity of a study, authors should use the appropriate data for the intended purpose 

(e.g. prediction of incident disease vs. prognosis), with adequate documentation of dataset 

characteristics to understand nuances in measured risk.

Reporting on study populations:

The applicability of any risk prediction to an external target population (the “who, where, 

and when”) depends on its similarity to the original study populations used to derive the 

risk model. Therefore, authors need to define and characterize the details of their study 

population (study design and recruitment), and describe participant demographics for key 

variables (most often age and sex) and ancestry. Importantly, there are often inconsistent 

definitions and levels of detail associated with ancestry, and the transferability of genetic 

findings between different racial/ethnic groups can be limited.1,9,32 It is therefore essential 

for authors to provide a detailed description of participants’ genetic ancestry - including how 

ancestry was determined – using a common controlled vocabulary where possible (e.g. the 

standardized framework developed by the NHGRI-EBI GWAS Catalog1). Authors should 

provide a sufficient level of detailed criteria for defining all the factors used in the risk 

model (non-genetic variable(s)) and relevant to the outcome of interest. This is particularly 
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important if they are included in the final risk model and should accompany information 

about how the population was genotyped (genetic data), including assays and all quality 

control measures.

Reporting on risk model development:

There are currently several commonly used methods to select variants that constitute the 

PRS and fine-tune their weights.7,16-18,31 Methods using GWAS summary statistics should 

clearly cite the relevant GWAS (preferably using unique and persistent study identifiers 

from the GWAS Catalog [GCSTs] 33). As the performance and limitations of the combined 

risk model are dependent on methodological considerations, authors must provide complete 

details including the method used and how variants are combined into a single PRS (PRS 
construction & estimation). Apart from genetic data, authors should also describe the 

defining criteria for other demographic and non-genetic predictors (non-genetic variables) 

included in the model. Often authors will iterate through numerous models to find the 

optimal fit. In addition to the estimation methods, it is important to detail the integrated risk 
model fitting procedure, including the measures used for final model selection. Translating 

the continuous PRS distribution to a risk estimate, whether absolute or relative, is highly 

dependent on assumptions and limitations inherent to the specific data set utilized. When 

describing the risk model type, authors should detail the time scale employed for prediction 

or the study period/follow-up time for a relative hazard model. Additionally, if relative risk 

is estimated, the reference group should be well described. These details should be described 

for the training set, as well as validation and sub-group analyses.

Reporting on risk model evaluation:

Authors should report estimates for all evaluated models (including the methods used 

to derive them) to equip readers with the information necessary to evaluate the relative 

value of an increase in performance against other trade-offs. We recommend that authors 

provide summary information of the risk score distribution to aid in model interpretation. 

The risk model’s predictive ability, calibration, and discrimination should also be assessed 

and described with common descriptions including the risk score effect size, variance 

explained (R2), reclassification indices, and metrics like sensitivity, specificity, positive 

predictive value (PPV), and negative predictive value (NPV). The risk model calibration 
and discrimination should be described for all analyses, although their estimation and 

interpretation are most relevant for the PRS validation sample. It is imperative for the PRS 

and integrated risk models to be evaluated on a population that is external (e.g. independent, 

non-overlapping) to the individuals in the study population. The ability of the risk model 

to classify individuals of interest (risk model discrimination) can commonly described and 

presented in terms of the area under the receiver operating characteristic (AUROC) or 

precision-recall curve (AUPRC), or the concordance statistic (C-index). Any differences in 

variable definitions or performance discrepancies between the training and validation sets 

should be described.

Reporting on interpretation:

By explicitly describing the risk model’s interpretation and outlining potential limitations to 

the generalizability of their model, authors will empower readers and the wider community 
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to better understand the risk score and its relative merits. Authors should justify the clinical 

relevance and risk model intended uses, such as how the performance of their PRS compares 

to other commonly used risk models, or previously published PRS. This may also include 

comparisons to other genetic predictors of disease (e.g. mutations in high/moderate risk 

genes associated with Mendelian forms of the disease), family history, simple demographic 

models, or conventional risk calculators (see Boxes 2 and 3 for disease-specific examples). 

What indicates a “good” prediction can differ between outcomes and intended uses, but 

should be reported with similar metrics to those described in the evaluation section.

Reporting on model parameters:

The underlying PRS (variant alleles and derived weights) should be made publicly available, 

preferably through direct submission to an indexed repository such as the PGS Catalog, 

to enable others to reuse existing models (with known validity) and facilitate direct 

benchmarking between different PRS for the same trait (data transparency and availability). 

The current mathematical form of most PRS—a linear combination of allele counts—

facilitates clear model description and reproducibility. Future genomic risk models may have 

more complex forms, e.g. allowing for explicit non-linear epistatic and gene-environment 

interactions, or deep neural networks of lesser clarity. It will be important to describe these 

models in sufficient detail to allow their implementation and evaluation by other researchers 

and clinical groups.

Supplemental Note 3 provides explanations of reporting considerations in addition to 

the minimal reporting framework in Table 1. Authors intending downstream clinical 

implementation should aim for the level of transparent and comprehensive reporting 

covered in both Table 1 and Supplemental Notes, especially those related to discussing 

the interpretation, limitations, and generalizability of results. The proper reporting of PRS 

development and performance can also have implications for seeking regulatory approval of 

the PRS as a clinical test. Though not a comprehensive list of regulatory requirements, we 

highlight aspects of PRS-RS that would be considered evidence of analytical and clinical 

validity from the College of American Pathologists (CAP) and the Clinical Laboratory 

Improvement Amendments (CLIA) perspective (Supplemental Table 1). CAP and CLIA 

approvals are additional incentives for reporting adherence of researchers wishing to 

translate their work, as well as a caution for researchers wishing to avoid unintended uses of 

their findings. Lastly, we reiterate the need for both methodological and data transparency 

and encourage deposition of PRS (variant-level information necessary to recalculate the 

genetic portion of the score) in the PGS Catalog (www.PGSCatalog.org; 34), which provides 

an invaluable resource for widespread adoption and distribution of a published PRS. The 

PGS Catalog provides access to PGS and related metadata to support the FAIR principles of 

data stewardship 19, enabling subsequent applications and assessments of PGS performance 

and best practices (see Supplemental Table 2 for a description of the metadata captured in 

the Catalog and it’s overlap with the PRS-RS).
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Improving PRS research and translation

We surveyed 30 publications (selecting for a diversity of disease domains, risk score 

categories, and populations) to understand how the information in the PRS-RS is presented 

and displayed as part of the larger iterative process to clarify and improve minimal reporting 

item descriptions. For 10 of these publications, we provide detailed annotations using the 

final minimal reporting requirements (Supplemental Table 3) and use these annotations to 

illustrate the detail necessary for each PRS-RS item (further described in Supplemental 

Note 3). The heterogeneity in the PRS reporting we observed in this pilot highlights a 

series of challenges. Critical aspects of PRS studies, including ancestry, predictive ability, 

and transparency/availability of information needed to reproduce PRS, were frequently 

absent or reported in insufficient detail. This underscores the need for PRS-RS to clearly 

and specifically define meaningful aspects of PRS development, testing, and intended 

clinical use. However, these deficits in reporting are not unique to PRS; previous reports of 

underreporting have found that 77% of GWAS publications in 2017 did not share summary 

statistics35 and 4% of GWAS do not report any relevant ancestry information1. In line with 

the push towards a culture of reproducibility and open data in genomics, we as the ClinGen 

Complex Disease Working Group and PGS Catalog joined to create this set of reporting 

standards (Table 1) specifically tailored to PRS research based on multidisciplinary and 

international expert opinion for tailoring previous standards.

Researchers using PRS-RS may identify fringe cases that are inadequately captured by 

these reporting items, as we have modeled our guideline on prototypical steps for PRS 

development (Figure 1). While we anticipate the field may further change as novel methods 

and technologies are generated, the PRS-RS items can be further expanded and adapted 

to encompass novel considerations. By updating previous standards, drawing upon current 

leaders in the field, and tailoring the framework to common barriers observed in recent 

literature, we aim to provide a comprehensive and pragmatic perspective on the topic. 

In line with previous standards, PRS-RS includes elements related to understanding the 

clinical validity of PRS and consequent risk models. Items such as predicted outcome and 

intended use bookend our guideline with the intended clinical framing of PRS reporting. In 

addition, we have modeled the guideline by steps in experimental design, from hypothesis 

to interpretation, to more clearly emphasize the significance of the intended use case in 

defining what needs reported and inform documentation throughout the process. As a 

reference, we have included a guide to where PRS-RS items should be reported in a 

manuscript in Supplemental Table 4. These expansions will further facilitate the curation and 

expert annotation of published PRS as we move towards widespread clinical use.

While the scope of our work encompasses clinical validity, it does not address the additional 

requirements needed to establish the clinical or public health utility of a PRS, such as 

randomized trials with clinically meaningful outcomes, health economic evaluations, or 

feasibility studies. 36 In addition, the translation of structured data elements into useful 

clinical parameters may not be direct. One example is that the case definitions utilized in 

training or validation in any particular PRS study may deviate (sometimes substantially) 

from those utilized in any specific health system. CHD symptoms commonly include angina 

(chest pain), whereas PRS are frequently trained on stricter definitions excluding angina. 
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Another example is that the definitions used for race/ancestry as outlined in the PGS and 

GWAS Catalog1 may differ from structured terms used to document ancestry information 

in the clinic. Consistent mappings and potentially parallel analyses may be necessary to 

translate from genetically-determined ancestries to those routinely used in clinical care. 

Such translation issues potentially limit generalizability to target populations and warrant 

further discussion, and we reiterate the need for authors to be mindful of their intended 

purpose and target audience when discussing their findings. Authors’ understanding of 

potential translational barriers can be aided by considering current CAP/CLIA analytical 

and clinical validity evidence requirements of peer-reviewed literature to ensure PRS-RS 

has value in informing later steps of the clinical translation spectrum, including clinical 

utility (Supplemental Table 1). Finally, while the principles of this work are clear, its scope 

does not include the complex commercial restrictions, such as intellectual property, that 

may be placed on published studies regarding the reporting or distribution of PGS, or 

the underlying data thereof. We hope this work will inform downstream regulation and 

transparency standards for PRS as a commercial clinical tool.

The coordinated efforts of the ClinGen Complex Disease Working Group and PGS Catalog 

provide a set of compatible resources for researchers to deposit PGS/PRS information. The 

PGS Catalog (www.PGSCatalog.org) provides an informatics platform with data integration 

and harmonization to other PGS as well as the source GWAS study through its sister 

platform, the GWAS Catalog.34 In addition, it provides a structured database of scores 

(variants and effect weights) that can be reused, along with metadata requested in the 

PRS-RS. With these tools, PRS-RS can be mandated by leading peer-reviewed journals 

and, consequently, the quality and rigor of PRS research will be elevated to a level which 

facilitates clinical implementation. We encourage readers to visit the ClinGen website 

(https://clinicalgenome.org/working-groups/complex-disease/) for any future changes or 

amendments to our reporting standards.

While we have provided explicit recommendations on how to acknowledge study design 

limitations and their impact on the interpretation and generalizability of a PRS, future 

research should attempt to establish best practices to guide the field. Moving forward, 

supplemental frameworks should be developed for the reporting of new methods, such as 

deep learning, as well as requirements for clinical utility and readiness. Taken together, 

PRS-RS facilitates the rapid emergence of polygenic risk scores as potentially powerful 

tools for the translation of genomic discoveries into clinical and public health benefits, and 

provides a framework for PRS to transform multiple areas of human genetic research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1.

Definitions of relevant genetic risk prediction terms

Polygenic Score(s) (PGS):

a single value that quantifies an individual’s genetic predisposition to a trait. Typically 

calculated by summing the number of trait-associated alleles in an individual weighted 

by per-allele effect sizes from a discovery GWAS, and normalized using a relevant 

population distribution. Sometimes referred to as a genetic score.

Polygenic Risk Score(s) (PRS):

a subset of PGS which is used to estimate risk of disease or other clinically relevant 

outcomes (binary or discrete). Sometimes referred to as a genetic or genomic risk score 

(GRS). See categories below.

Integrated Risk Model:

a risk model for the outcome of interest which combines PRS with other risk factors, 

such as demographics (often age and sex), anthropometrics, biomarkers, and clinical 

measurements.

Categories of use for PRS and/or integrated risk models

The addition of PRS to existing risk models has several potential applications, 

summarized below. Each aims to improve individual or subgroup classification such that 

there is clinical benefit.

Disease Risk Prediction –: estimate an individual’s risk of developing a disease, based 

on certain genetic and/or clinical variables.

Disease Diagnosis –: classify whether an individual has a disease, or a disease subtype, 

based on certain genetic and/or clinical variables.9,37

Disease Prognosis –: estimate the risk of further adverse outcome(s) subsequent to 
diagnosis of disease.38

Therapeutic –: predict a patient or subgroup’s response to a particular treatment.39
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Box 2:

Current CHD PRS and their potential uses

Many PRS have been developed for CHD, varying in the computational methods 

used, number of variants included (50–6,000,000), and cohorts used for PRS training. 

For example, many of the latest CHD PRS use GWAS summary statistics from the 

CardiogramPlusC4D study40, and differ by the method of selecting and weighting 

individual variants (including LDpred41,42, lassosum43, and meta-scoring approaches44) 

and how they are used in an integrated risk model. These PRS may provide useful 

information for predicting CHD risk that is largely orthogonal to conventional risk factors 

(age, sex, hypertension, cholesterol, BMI, diabetes, smoking) as well as family history. 

Clinical applications may include:

• Improved risk prediction for future adverse cardiovascular events when added 

to conventional risk models (such as the Framingham Risk Score 45, Pooled 

Cohort Equations 43,44, QRISK 43).

• Reclassification of risk categories often leading to recommendations for risk

reducing treatments like statins.45-47

While the data for these clinical applications strongly suggest CHD PRS may improve 

patient outcomes, clinical utility through randomized clinical trials has yet to be 

established; however, a number of clinical trials are underway.48
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Box 3:

Current breast cancer PRS and their potential uses

Many of the most recent and most predictive PRS for breast cancer include a smaller 

number of variants (usually 100-1,000s), possibly owing to a less polygenic architecture 

and more low-frequency variants having greater effect; however, scores composed of 

millions of variants also exist. PRS construction typically includes GWAS summary 

statistics and data from the Breast Cancer Association Consortium (BCAC) then 

variants passing genome-wide significance (lead SNPs), stepwise regression, penalized 

regression on individual-level genotypes49, Clumping + Thresholding41, or Bayesian 

methods42,50. In contrast to CHD, genetics is commonly used to measure breast cancer 

risk vis-a-vis BRCA1/2 mutation testing; however, routine screening for breast cancer 

is often performed in older women using non-genetic risk prediction tools, such as 

mammography. Research into PRS for breast cancer include multiple potential clinical 

uses and considerations:

• Multiple PRS exist to predict risk for subtypes of breast cancer (e.g. ER 

positive/negative, luminal, and triple negative49,51), which could be used to 

stratify patients according to prognosis or for more beneficial treatments.

• Integrated risk models which combine PRS with non-genetic risk factors 

(such as age, family history, mammographic density, hormone replacement 

therapy).52-59

• PRS can provide important stratification of risk among carriers of pathogenic 

variants in genes already screened in clinical practice (e.g. BRCA1, 

BRCA2, PALB2, CHEK2, ATM)60 and thus could improve clinical decision 

making.42,50,57,61-64

Indeed, the BOADICEA breast cancer risk prediction model includes the effects of 

common variants (PRS31349) as well as other rare pathogenic genetic variants57 and has 

been implemented in the CanRisk Tool (www.canrisk.org), which has been approved for 

use by healthcare professionals in the European Economic Area. PRS utility has been 

studied via simulation65 and is being evaluated in risk-based breast cancer screening 

trials in the US66 and Europe (MyPeBS; https://mypebs.eu).
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Figure 1: Prototype of PRS development and validation process.
The prototypical steps for PRS construction, risk model development, and validation 

of performance are displayed with select aspects of the PRS-RS guideline (labeled in 

bold). During PRS development, variants associated with an outcome of interest, typically 

identified from a GWAS, are combined as a weighted sum of allele counts. Methods for 

optimizing variant selection (PRS construction & estimation) are not shown. To predict 

the outcome of interest the PRS is added to a risk model and may be combined with 

non-genetic variables (e.g. age, sex, ancestry, clinical variables; collectively referred to as 

risk model variables). After fitting procedures to select the best risk model, this model 

is validated in an independent sample. The PRS distribution should be described, and the 

performance of the risk model demonstrated in terms of its discrimination, predictive ability, 

and calibration. Though not displayed in the figure, these same results should also be 

reported for the training sample for comparison to the validation sample. In both training 

and validation cohorts, the outcome of interest criteria, demographics, genotyping, and 

non-genetic variables should be reported (Table 1).
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Table 1.

Polygenic Risk Score Reporting Statement (PRS-RS)

Reporting Standard Description

Background

Study Type

Specify whether the study aims to develop and/or validate a PRS. 
When externally validating or combining previously published 
PRS or integrated risk model, include identifier(s) of original PRS 
(PMID, PGS Catalog ID).

Risk Model 
Purpose & 
Predicted 
Outcome

Specify what the risk model is intended to predict and the purpose. 
This includes intended use (risk prediction, diagnostic, prognostic, 
or therapeutic modalities), predicted outcome (if a clinical feature 
or endpoint within a specific disease), and the current models 
available for that outcome.

Study Population and DataMany risk score 
studies involve multiple populations and cohorts 
that can be used in different stages of PRS and 
risk score development and evaluation. Each of 
the populations used (e.g. training, validation, 
subgroup analysis samples) in the manuscript 
should be defined using this common set of 

descriptors.

Study Design & 
Recruitment

For each of the data sets describe the study design (e.g., cohort, 
case-control, crosssectional), eligbility criteria, recruitment period 
and setting (e.g. method and years), and follow-up. State whether 
the data are primary or secondary data. If secondary analysis, 
include the full reference to the original study.

Participant 
Demographic 
and Clinical 

Characteristics

Include the distribution of demographic information in each data 
set (and the combined total if relevant) used to generate a single 
risk model (whether a single sample set, or the summary of 
combined samples) including the mean, standard deviation and 
range. This should at minimum include age, sex and any other 
characteristics relevant to describe the study population or the 
performance of the model. Provide demographics stratified by 
case/control status, if applicable.

Ancestry

Include the ancestral background distribution of each sample 
population used during PRS development and validation (including 
those from any GWAS summary statistics that were included), 
and the data source of this ancestry information (e.g., self-report, 
genotyping). Ancestry information should be reported using the 
standardized framework developed by the NHGRI-EBI GWAS 
Catalog with detailed information beyond this when available. 
When combining samples from multiple studies, aggregate 
ancestral distribution information is sufficient. The method of 
ancestry inference should be provided.

Genetic Data

Provide method for acquiring genetic information (e.g. sequencing, 
genotyping) in each sample, including information about genome 
build and technical assay details. If imputed, specify the imputation 
panel and give ancestry information. Report any relevant quality 
control, including imputation quality filters to exclude low quality 
imputed SNPs. If parameters were selected from another study, 
include reference (PMID, GWAS Catalog ID).

Non-Genetic 
Variables

Define any non-genetic variables that were included in the risk 
model, provide variable definitions and measurement (e.g., assay, 
ICD codes, e-phenotyping algorithms, chart review, self-report). 
Indicate the scale of each variable, e.g. dichotomous, continuous, 
categorical, or ordinal. Explicitly state which variables are included 
in the final model.

Outcome of 
Interest

Define the predicted outcome(s) of interest and report distribution. 
If the predicted outcome is a clinical feature or endpoint within 
a specific disease, provide the criteria used to define that disease 
membership. Include details on how information was ascertained 
(e.g., ICD codes, e-phenotyping algorithms, chart review, self
report). Transformation of continuous data into binary, ordinal, or 
categorical outcomes should be detailed with justification. State 
whether the predicted phenotype of the polygenic score is the same 
or different than the predicted outcome of the risk model. Provide 
justification for differences, if applicable.

Missing Data

State explicitly how missing data were handled for all variables 
included in the model. If imputation was utilized, include detailed 
of the approach used and any subsequent filtering or post
processing.

Risk Model Development & Application 
Describe methods used to form the final 

Polygenic 
Risk Score 

Describe how genetic data were included in the PRS. Authors 
should detail criteria used to determine inclusion in the model for 
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Reporting Standard Description

PRS and/or risk model. Samples in this stage 
of the analysis should be denoted "Score 

Development" or "Training", and described in 
Study Populations.

Construction & 
Estimation

all variants. Define how the variants were selected, weighted and 
combined into a single score. If the PRS was derived from another 
study include the reference (PMID, PGS Catalog Score ID).

Risk Model Type

Detail statistical methods used to estimate risk, either relative or 
absolute, from the continuous risk score distribution. Detail if 
risk is cumulative or cross-sectional, with appropriate comparison 
groups if relative risk presented. Report time until predicted risk 
(e.g. 5-year, 10-year, lifetime). In an absolute risk model, state 
the time until predicted event and the prevalence/incidence of the 
predicted outcome in the general population.

Integrated 
Risk Model(s) 

Description and 
Fitting

State the procedure utilized to develop the risk models that 
includes non-genetic and/or genetic variables other than the PRS. 
If the model(s) was selected for optimal performance, describe 
measures used to assess performance. Explicitly state all variables 
used in each risk model.

Risk Model Evaluation Outline results and 
procedures utilized to evaluate the risk model, 

specifying internal or external validation. 
Performance results should be described for both 
development and validation samples. Specify if 
the application of the risk model differs between 

the development and validation samples.

PRS Include a general description of the distribution of the PRS. This 
details the continuous

Distribution distribution output directly from the risk score calculation.

Risk Model 
Predictive Ability

Describe and report metrics of overall performance (proportion 
of variance explained; R2) and estimates of risk (such as odds 
or hazards ratios from regression models) used to evaluate the 
PRS and/or risk models. Describe the set of genetic/non-genetic 
variables included in the analysis.

Risk Model 
Discrimination

Describe and report metrics (such as ROC or Precision-Recall 
(AUROC/AUPRC) and the Concordance statistic (C-index) for 
survival models) used to assess the discrimination of evaluated 
risk models and whether any non-genetic variables were included 
beyond a PRS in this analysis. Evaluation of potential clinical 
utility of models requires evaluating tail-based measures, such as 
proportions of populations and cases exceeding specified clinically 
relevant risk thresholds and measures of reclassfications (e.g. NRI) 
at such thresholds for comparison of models.

Risk Model 
Calibration

Describe and report metrics used to assess the calibration of 
evaluated risk scores and models. Describe the set of genetic/non
genetic variables included in the analysis.

Subgroup 
Analyses

Subgroup size, demographics and clinical characteristics should 
be given. Relevant evaluation methods and measures (distribution, 
predictive ability, discrimination, calibration) should be described 
for each subgroup analysis.

Limitations and Clinical Implications Discuss 
the broader context of the study and risk model.

Risk Model 
Interpretation

Summarize the risk models in terms of what they predict, 
how well, and in whom. Explicitly mention the incremental 
performance of the PRS and/or combined risk model in 
comparison to conventional risk models, as well as the 
performance of the PRS and risk model alone. Conventional risk 
models might include demographic (age, sex), disease-specific risk 
factors, and/or family history of disease.

Limitations

Outline limitations of the study with relevance to the results, 
discuss the impact of these limitations on the interpretation of 
the risk model and any downstream replication efforts needed. 
Common considerations include: study design restrictions, use 
of a surrogate outcome, ascertainment biases, the distribution 
of participant-level traits (ancestry, age, comorbidities), accuracy/
specificity of outcome data, and any statistical considerations. Note 
and discuss the impact of any unknown reporting items from 
previous sections.

Generalizability

Discuss the intended target groups or populations this score may be 
applied to and explicitly address any issues with generalizability 
beyond the included populations. Discuss whether the study 
externally validates the score and/or model, or if the sample is 
limited with respect to ancestry, age, or other variables.

Risk Model 
Intended Uses

Discuss whether there is an intended clinical use or utility to the 
risk model. If so, discuss the “clinic readiness” and next steps with 
respect to the interpretation, limitations, and generalizability of the 
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Reporting Standard Description

model. Discuss how the predictive ability of the model is compared 
against current standard of care or other published work (such as 
existing PRS) on predicting the outcome of interest.

Data Transparency and Availability

Information sufficient to calculate the PRS and the risk model(s) 
on external samples should be made freely available. For genetic 
variables this would include information about the variants (e.g., 
rsID, chromosomal location, effect allele, and the effect weight) 
that comprise the score; PRS with this information should be 
deposited in the PGS Catalog for findability and to promote re-use 
and comparison with other established scores. Weights for non
genetic variables should also be provided to make the risk model 
calculable.

Further reporting considerations beyond the minimal reporting for PRS-RS items can be found in Supplemental Note 3. A reference of relevant 
manuscript sections for each item is provided in Supplemental Table 4.
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