
Izem and McCarter ﻿
Orphanet Journal of Rare Diseases          (2021) 16:491  
https://doi.org/10.1186/s13023-021-02124-5

REVIEW

Randomized and non‑randomized designs 
for causal inference with longitudinal data 
in rare disorders
Rima Izem*   and Robert McCarter 

Abstract 

In the United States, approximately 7000 rare diseases affect 30 million patients, and only 10% of these diseases have 
existing therapies. Sound study design and causal inference methods are essential to demonstrate the therapeutic 
efficacy, safety, and effectiveness of new therapies. In the rare diseases setting, several factors challenge the use of 
typical parallel control designs: the small patient population size, genotypic and phenotypic diversity, and the com-
plexity and incomplete understanding of the disorder’s progression. Repeated measures, when spaced appropriately 
relative to disease progression and exploited in design and analysis, can increase study power and reduce variability in 
treatment effect estimation. This paper reviews these longitudinal designs and draws the parallel between some new 
and existing randomized studies in rare diseases and their less well-known controlled observational study designs. We 
show that self-controlled randomized crossover and N-of-1 designs have similar considerations as the observational 
case series and case-crossover designs. Also, randomized sequential designs have similar considerations to longitu-
dinal cohort studies using sequential matching or weighting to control confounding. We discuss design and analysis 
considerations for valid causal inference and illustrate them with examples of analyses in multiple rare disorders, 
including urea cycle disorder and cystic fibrosis.
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Introduction
Millions are affected by rare disorders and have an urgent 
need for therapy to save or improve their quality of life. 
Over 7000 rare diseases, disorders, illnesses, or condi-
tions impact 25 to 30 million people in the United States, 
most of them are children [1]. Many rare diseases cause 
death in infancy or early childhood, and about 90% have 
no approved treatment [2]. Despite the great need for 
effective therapies, evaluating evidence of efficacy and 
safety of novel therapies in the rare disease setting is 
challenging in the typical paradigm of parallel-group ran-
domized studies [3, 4].  In recognizing these challenges 
and the need for novel designs the US Food and Drug 

administration published several guidance documents in 
2019 [5–7].

This paper gives an overview of study designs that 
rely on or exploit repeated measures for causal infer-
ence. These randomized or observational designs, when 
appropriately conducted and used, can alleviate some 
challenges in estimating treatment effects in rare disor-
ders. Moreover, this review draws a parallel between ran-
domized longitudinal designs and their less well known 
controlled observational studies counterpart. While ran-
domized studies sit atop of the hierarchy of evidence, 
rigorously designed, well-controlled, and analyzed obser-
vational studies using causal inference methods can be 
adequate to assess the safety and effectiveness [8] of ther-
apies in rare disorders [8]. In this paper,  the treatment 
effect is the measure of efficacy or safety in a randomized 
clinical trial and the measure of effectiveness or safety in 
a comparative observational study.
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When possible, we will illustrate different considera-
tions with existing clinical trials or observational studies 
in rare disorders, most often with urea cycle disorders 
(UCD) and cystic fibrosis (CF) disorders, as they repre-
sent a broad spectrum of rare disorders from ultra-rare 
to rare.

The case for longitudinal studies in rare disorders
We focus in this section on two challenges particularly 
salient in clinical study design in rare disorders: small 
population size and heterogeneity of clinical outcomes. 
Then, we discuss how planning and using repeated 
assessments of these outcomes has the potential to allevi-
ate these challenges.

Challenges in clinical development in rare disorders 
related to sample size and heterogeneity of outcomes
Designing studies with sufficient statistical power to 
evaluate treatment effect is challenging in rare diseases 
because of limited population size and high variability 
of outcomes. Clinical study sample sizes in rare diseases 
typically range from a handful of subjects to less than 
a few hundreds, based on disease prevalence [9]. The 
prevalence threshold defining ‘rare’ varies by country 
or organization and is in the range of 40 to 50 cases per 
100,000 people [10]. This range includes incidences of 
CF on the higher end, with one case for every 3000–4000 
births among Caucasians [11], and of ultra-rare UCD 
mutations on the lower end, with one case in a million 
births [12].

Several factors contribute to between-subject variabil-
ity in outcome measurements in clinical studies. First, 
at any given time potential participants in clinical stud-
ies represent a cross-section of the population varying in 
ages and stage of disease progression. Even if age is con-
trolled in the study, the timing of diagnosis often varies 
with implications for variability of medical history. For 
example, whereas CF is likely to be diagnosed at birth, 
as part of newborn screening [13], the timing of diag-
nosis of UCD ranges from the first few days after birth 
to adulthood. The timing varies due to multiple factors, 
including family medical history (e.g., diagnosis of family 
members), and varying age of presentation of symptoms 
such as hospitalization for hyperammonemia. Treatment 
of UCD disorders starts after diagnosis, and delay in 
therapy has downstream effects on the brain and general 
health.

Also, variability in genetic, geographic, and environ-
mental factors contributes to heterogeneity in clinical 
outcomes. In most rare disorders, a mutation disrupts a 
biochemical pathway, leading to various signs and symp-
toms downstream. The extent and clinical impact of 
these disruptions vary by mutation and environmental 

factors. For example, some genetic mutations in the UCD 
reduce while others eliminate enzyme activities related 
to nitrogen waste disposal in the urea cycle [14–16]. For 
the same mutation, disease progression varies by several 
geographic and calendar time factors including age at 
diagnosis, medical practice, diet, and access to health ser-
vices. Thus, the clinical outcome in UCD vary in severity 
and over time from death shortly after birth, to different 
degrees of physical or cognitive impairment, to no symp-
toms until later in life.

Lastly, varying instruments used to assess biological, 
motor, or mental function across age groups can add, 
for each endpoint, between-instrument variability or 
instrument-specific measurement errors. For example, 
the UCD longitudinal study measures intelligence with 
several instruments, including the Wechsler preschool 
and primary scale intelligence [17] and the Wechsler 
Intelligence Scale for Children [18]. While age-sex stand-
ardization of each score ensures internal consistency, 
it does not guarantee comparability of scores between 
these two instruments in a study with preschoolers and 
adolescents.

The benefits of designs with repeated measures
The role of rare disorder natural history studies or reg-
istries in informing clinical trials is well established [7]. 
Understanding the symptomatology and management of 
a rare disease over time and its natural history, informs 
multiple critical study design attributes. These attrib-
utes include the population inclusion and exclusion cri-
teria, the study endpoints, and the times of initiation of 
a new therapy. They also inform the pre-specification of 
meaningful treatment effect size, frequency and timing 
of outcome assessments, and potential duration of fol-
low-up. For example, the US CF Foundation registry has 
over 30,000 subjects, with extended follow-up for up to 
20 years since 1986 [19]. The UCD consortium has also 
collected rich longitudinal data since 1996 with historical 
and prospective data on over 800 subjects covering the 
period from birth to adulthood [20]. As annual reports 
from these registries indicate, these epidemiologic natu-
ral history studies have informed the design of multiple 
prospectively planned studies investigating new therapies 
in CF and UCD.

Beyond understanding the natural history, longitudinal 
data collection or repeated assessments on the same indi-
vidual enhance the ability to evaluate a disorder’s impact 
over time. In a longitudinal, repeated measures design, 
the unit of analysis, whether randomized or observa-
tional, is a time period or a time point within a subject. 
In contrast, in a typical parallel-arm clinical study, a sub-
ject is the typical unit of analysis. Thus, when the popula-
tion size is limited, the accruing of units of analyses with 
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repeated measures can substantively enhance statistical 
power relative to between-subject comparisons, as dis-
cussed and illustrated by many authors [21–26].

Outcome measures on the same subjects are typically 
less variable than across subjects when the repeated 
measures are suitably spaced relative to disease progres-
sion and time of exposure to novel therapies (see “Con-
siderations, advantages and limitations of longitudinal 
designs” section). Thus, in many situations longitudinal 
studies incorporating within-subject comparisons can 
estimate treatment effects more precisely than between-
subject comparison in a parallel-arm or comparative 
cohort design.

Lastly, longitudinal observational designs are less 
prone to unmeasured confounding bias because they 
can control for non-time varying confounding, whether 
measured or unmeasured. Such non-time varying con-
founding includes important risk factors such as genetic 
mutation and medical history before diagnosis. In con-
trast, adjusting for confounding in cohort studies is only 
possible for measured characteristics.

Randomized and observational study designs 
with repeated measure
This section reviews first those longitudinal designs rely-
ing solely on self-control to assess treatment effect, fol-
lowed by designs augmenting external comparison with 

self-controlled comparisons. All these designs and analy-
ses strategies are illustrated by examples in CF, UCD, or 
other rare disorders. For novel randomized or observa-
tional study designs, hypothetical examples are used.

Self‑controlled designs: relying on within‑subject 
comparisons to estimate the causal effect
A randomized, or observational, self-controlled study 
(Fig.  1) exploits time and controls for between-subject 
heterogeneity. These designs are feasible and meaningful 
when subjects can receive therapies in multiple distinct 
periods, and outcomes are responsive to change within a 
short time relative to treatment initiation.

Randomized self-controlled studies are well-known 
in rare disorders [22, 27]. In the randomized crosso-
ver trial, subjects contribute at least two time periods 
for outcome assessment and receive the novel therapy 
in one of these periods, in random order. For example, a 
pilot crossover study in CF compared pulmonary func-
tion improvements after treatment with different inhaled 
therapies, each for 3  weeks [28]. In the randomized 
N-to-1 time-series designs, one subject contributes 
multiple periods for outcome assessment, with a ran-
domly assigned therapy in each period. For example, 
this design compared the efficacy of L-arginine capsules 
ingested weekly on reducing glutamine levels, a favora-
ble outcome in UCD [29].  The observation periods in 

Self- Controlled 
Randomized Study Designs

Self-Controlled
Observa�onal Study Designs

Fig. 1  Self-controlled study design
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follow-up or look-back are of equal duration, typically. 
For example, in the CF case-crossover study, 3 weeks of 
treatment were separated by a 3-week washout period. In 
the UCDC 1-N study, periods were of the same duration 
of 1 week.

Observational studies using within-subject compari-
son are less well-known and potentially useful in rare 
disorders. The self-controlled case-series design is the 
non-randomized study parallel to the case-crossover or 
N-of-1 designs [30]. A self-controlled case-series is a rel-
evant design for consideration to rare disease investiga-
tors because, compared to cohort studies, it has shown 
a remarkable ability to control for confounding in phar-
macoepidemiology and comparative safety [31, 32]. This 
design only uses subjects who received both treatment 
and comparators at different periods and anchors the 
observation period to a subject’s initial treatment period. 
Thus, hypothetically, one could investigate l-arginine 
capsules’ impact on reducing glutamine levels in UCD 
with an observational study of a sample of subjects with 
intermittent treatment with L-arginine and glutamine 
measurements in on and off exposure periods.

The case-crossover design is another potentially use-
ful observational study design for consideration in rare 
disorders. It is nested in a case-series design and is par-
ticularly useful and cost-effective in investigating causes 
for rare dichotomous outcomes [33, 34]. This design 
investigates “the timing” of events rather than “the 
characteristics” of subjects with an event investigated 
in parallel-group designs. In this design, all subjects in 
the observational sample experienced the outcome, and 
exposure is ascertained in a hazard period immediately 
preceding the outcome and in control periods either 
preceding or following the hazard period. For example, 
hypothetically, if one wanted to investigate the benefit 
of a 4-week therapy in CF for prophylaxis of pulmonary 

exacerbations, one could recruit CF subjects after they 
experienced a pulmonary exacerbation and retrospec-
tively collect exposure to therapies in a hazard period 
of 4  weeks preceding exacerbation compared to control 
periods, each of 4 weeks, before that.

Sequential designs: augmenting between‑group 
comparison with within‑group comparisons
Sequential designs adapt their operating characteristics, 
such as therapy initiation or discontinuation time, inves-
tigated therapies, or study stopping time. Adaptation 
happens at sequential looks, based on information avail-
able at each look. Among these designs, we discuss those 
that augment between-subject comparison with within-
subject comparisons. Although these designs’ flexibil-
ity and efficiency are promising, most are novel in rare 
diseases or not as well established. Thus, few case studies 
exist of their successful application.

Sequential treatment initiation designs (Fig.  2) 
include delayed treatment and stepped-wedged. In these 
designs, all subjects receive a new treatment, and the 
time of initiation is randomized. The delayed treatment 
design randomizes each subject to a specific initiation 
time. For example, the Phase III study of vestronidase 
alfa in patients with mucopolysaccharidosis VII [35] 
randomized participants to initiate treatments at week 
1, week 9, week 17, or week 25 and followed subjects 
for 48  weeks. In a randomized sequential withdrawal 
(Fig.  2) study, all subjects initiate therapy, then discon-
tinue therapy at a randomized time. For example, the 
Phase III study investigating the efficacy of pegvaliase in 
treating Phenylketonuria [36] randomized responders to 
therapy, determined after an assessment period, to either 
discontinue or continue therapy for 8 weeks.

The stepped wedged design (Fig. 2) randomizes each 
cluster of subjects to consecutive initiation times, where 

Sequen�al designs

Randomized designs Observa�onal designs

Fig. 2  Sequential designs
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the cluster groups similar participants (e.g., geographic-
based similarity) [37].  Clusters in stepped-wedged 
designs typically simplify the logistics of randomization. 
For example, a cluster-randomized study investigated 
the impact of a clinic-based behavioral intervention on 
adherence to medication in CF patients using each CF 
center as a cluster for randomization purposes [38].

The sequential multiple assignment randomized 
trial (SMART) adapts therapies or doses, as information 
about each subject’s response to therapy accumulates, at 
pre-specified interim analyses. Examples of their use exist 
in oncology and behavioral research [39, 40]. For exam-
ple, the studies can start with multiple doses and change 
the investigated therapies at interim looks as information 
on subject’s response to treatment accumulates. Changes 
include dropping ineffective doses, adding a second-line 
therapy, or switching therapy of non-responders. Pre-
planned sequential designs have the main advantage of 
allowing the study to stop early for efficacy or futility 
while calibrating these decisions for uncertainty at each 
look. One disadvantage of this approach is the increase in 
complexity of study planning and conduct.

The longitudinal cohort study can also leverage 
repeated measures on the same subject when the follow-
up of each subject includes time on multiple treatments 
of interest, validated measures for the outcomes of inter-
est, and time of initiation or duration of exposure or fol-
low-up vary across subjects. When using this design for 
comparative safety or effectiveness, it can be re-imagined 
as the observational counterpart of a randomized study 
where the treatment decision is sequential, albeit not 
randomized [41].

For example, Li et  al. [42] re-purposed the interstitial 
cystitis database as a design with sequential time from 
diagnosis to surgery initiation, cystoscopy, and hydrodis-
tension. A recent comparative effectiveness study used 
this approach within the UCD Consortium longitudi-
nal study to investigate liver transplantation’s effective-
ness on mortality and quality of life [43]. This approach 
divides the follow-up for each subject into multiple peri-
ods. Then, sequentially, in each period, subjects receiving 
the treatment are matched, on their medical history up to 
the start of each period, to eligible subjects who did not 
receive the treatment. Thus, a subject’s off-therapy period 
can serve as the control for on-therapy periods.

Similarly, Hernan et  al. re-imagined data from the 
Nurses’ Health Study [44] as a sequence of nested trials 
for hormone replacement therapy where the therapy ini-
tiation was sequential.

In this approach, subjects are dynamically weighted 
over time using the propensity score, defined as the prob-
ability of receiving treatment or control at a given time 
conditional on medical history at that time. Thus, the 

more similar the controls are to the treated subjects at a 
given time, the higher their weights. The treatment effect 
estimation incorporates these weights in the analysis.

Considerations for valid causal inference 
with longitudinal data
Causal inference, framework, and assumptions
Causal inference provides the framework for quantify-
ing a new therapy’s effect by comparing the observed 
outcomes under treatment received to the potential 
outcomes had the same subjects received an alternate 
therapy. The gold standard design for estimating a new 
therapy’s treatment effect, including in rare diseases, is 
the randomized clinical trial. Because randomization 
ensures that patient groups are comparable or exchange-
able before randomization, any differences in outcomes 
observed at the end of the trial can be causally attributed 
to treatment.

In observational studies, causal inference methods aim 
to minimize bias and confounding to ensure that differ-
ences in outcomes result from differences in treatment 
[45, 46]. These methods produce reliable treatment effect 
estimates under the assumptions of positivity (likelihood 
or propensity of receiving any treatment, is neither zero, 
nor one), exchangeability of treatments (comparability of 
characteristics between treatment groups), and consist-
ency (equality of observed and potential outcomes). Prac-
tically, these assumptions apply to the units of analyses 
and ensuring that they are met or are plausible is design-
specific as we describe in the next section.

Design and analyses considerations with longitudinal 
studies for valid causal inference
Considerations, advantages and limitations of longitudinal 
designs
All studies considered in this paper have several advan-
tages relative to the typical parallel-arm, placebo-
controlled, randomized or cohort study. The main 
advantages of longitudinal studies, discussed in “The 
benefits of designs with repeated measures” section, are 
increasing the units of analyses, potentially reducing vari-
ability and confounding, and thus increasing study power 
to detect change. The longitudinal information can be 
in the follow-up or in the rich medical history. An addi-
tional advantage for randomized studies is that having 
all eligible subjects receive the new therapy reduces the 
ethical or recruitment concerns with having a placebo 
arm. While randomized studies can have strict inclusion 
and exclusion criteria, observational studies typically 
include a broader, more representative population with 
the potential for more generalizable findings. However, 
potential gains in study power from repeated measures 
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are only possible when the causal inference assumptions 
above are met.

Of the three assumptions for valid causal inference, 
exchangeability of periods has broad implications on the 
feasibility and the specifications of longitudinal stud-
ies. In purely self-controlled studies, exchangeability is 
within-subjects, whereas, in longitudinal studies that 
combine person-time information across subjects and 
periods, exchangeability is relevant within and between 
subjects.

Randomization of subjects to different groups or 
therapies to different periods within the same subject 
guarantee positivity, some exchangeability, and lack of 
association of an outcome with future therapies. These 
three criteria are typically assumed in non-randomized 
studies comparisons and are more plausible in studies 
incorporating self-control than typical cohort studies. 
First, having a subset of subjects exposed to the treat-
ment of interest and comparators guarantees positiv-
ity in observational studies. Second, by design, studies 
automatically control for non-time varying confound-
ing, whether measured or unmeasured, when each sub-
ject serves as their control. Thus, the remaining threats 
to within-subject exchangeability include the carry-over 
effect of treatment in one period to the outcome on 
another period, time-varying confounding, time-varying 
treatments, or time-varying severity.

In practice, choosing short periods in longitudinal 
studies relative to age of participants and their disease 
progression, make the study feasible and exchangeability 
more plausible. For example, to investigate the effect of a 
novel therapy administered in the first few weeks of life 
in preventing brain injury, a study incorporating within-
subject comparison would be more feasible for a brain 
function endpoint measured in the first few weeks of 
life (e.g., lab measurement or imaging) rather than later 
in life (e.g., neuropsychological tests after 3 years of age). 
Adding a short gap between treatment and control peri-
ods can also lessen concerns of the carry-over effect. For 
simplicity, periods are most often of the same duration. 
They typically start on the same day of the week and end 
on the same day of the week, or in the same season, to 
reduce the day of the week bias and seasonality.

Another challenge in using longitudinal observations 
for causal inference is determining a relevant index date 
for each subject that anchors pre-intervention medical 
history and post-intervention follow-up. An emerging 
approach in rare diseases is to use birth date or time of 
diagnosis as the index date. For example, in the earlier 
example investigating liver transplant effectiveness in 
patients with neonatal diagnosis in the UCD Consortium 
database [47], the index date was the birth date.

When selecting an observational database for longi-
tudinal cohort studies, accuracy in timing is essential 
for multiple factors such as age, time of onset of symp-
toms, time of diagnosis, and developmental or therapeu-
tic intervention milestones. The frequency of repeated 
measures is ideally compatible with exposure patterns, 
outcome natural history, and clinical visits pattern to 
increase adherence and minimize missing values in pro-
spective studies.

Analysis considerations
Estimating a treatment effect in any of the above designs 
can vary in complexity based on the causal question and 
the study design. Reviews of analytical considerations in 
the rare diseases setting abound for randomized stud-
ies, for example in publications by these authors [48, 49]. 
Similar analytical considerations apply for observational 
studies with the added complexity of controlling for 
confounding when necessary. We summarize these con-
siderations in this section based on the following charac-
teristics: whether the study solely uses self-control or also 
uses between-subject comparison to estimate treatment 
effect, what confounding is adjusted for by design, and 
whether any time-varying or sequential adjustments are 
needed.

In self-controlled designs such as the crossover, N-of-
1, or case series designs, estimating the treatment effect 
involves comparing outcomes during the treatment peri-
ods to outcomes in control periods. In a case-crossover 
design, one estimates the treatment effect by comparing 
treatments received during the hazard period immedi-
ately preceding the outcome to treatments received dur-
ing control periods [33]. Under exchangeability, analyses 
estimating the treatment effect in purely self-controlled 
designs are paired analyses. They include paired t-tests or 
an F-test for continuous outcomes and a McNemar’s test 
for dichotomous outcomes. More complex analyses, such 
as hierarchical mixed effect models or conditional regres-
sion models, can adjust for order effect, time-varying 
confounding such as age, or outcome change over time, 
under additional assumptions [30, 50].

Sequential designs rely on longitudinal data collection 
to augment between-subject comparison with within-
subject comparison from those that used more than one 
therapy. Randomized studies typically use hierarchical 
modeling or mixed effect modeling with a random effect 
accounting for correlation between repeated measures 
on the same subject [39]. With parametric models, use of 
hierarchical Bayesian models can also incorporate expert 
opinion and beliefs in prior distributions. Those update 
the model-based likelihood as data accrue and result in a 
treatment effect poster distribution [51].
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In longitudinal cohort studies, analysis methods vary 
by the approach used to control for confounding includ-
ing stratification, matching, weighting, or regression. 
They account for the correlation of multiple measure-
ments from the same subject, weighting, and matching 
by including a random effect for subjects and using sand-
wich estimators, or bootstrap to derive standard errors. 
Using G-estimation or marginal structural models can 
handle time-varying treatment and control for time-var-
ying confounding in the inference [52, 53]. For example, 
these methods have been used in secondary analyses of 
previously collected randomized clinical trials to evaluate 
an intervention that was not randomized [54]. In the rare 
disease setting, marginal structural models were used 
to evaluate a new therapy’s efficacy and safety in severe 
juvenile dermatomyositis [55].

Discussion
This paper gives an overview of randomized and obser-
vational study designs that exploit repeated measures in 
rare diseases to answer causal inference questions eval-
uating new or existing therapies. This paper illustrated 
some considerations for using these designs with case 
studies in the rare disease areas. While the focus of this 
paper is on rare disorders, many considerations and chal-
lenges apply broadly to causal inference methods in small 
samples. With the advent of genetic testing and personal-
ized medicine, understanding how we can best estimate 
causal effects in small population subsets will be broadly 
relevant.

The longitudinal study designs we reviewed include 
self-controlled design and sequential designs. Ideally, the 
follow-up for each subject in these longitudinal studies 
would be long enough for observing exposure to therapy, 
in a critical time for therapeutic intervention on the out-
comes of interest, and short enough to lessen the concern 
of time-varying confounding.

These designs have different operating character-
istics than simple parallel designs that can make their 
conduct more feasible or information collection more 
efficient. Several algorithms exist to identify which ran-
domized study design in rare diseases is useful based 
on the outcome severity, the rapidity of response to 
therapy, and ethical considerations around using a pla-
cebo arm [27, 56]. Based on our review in this paper, 
we argue that when it comes to using self-controlled 
observational studies or augmenting between-sub-
ject comparison with within-subject comparison, the 
same feasibility and adequacy principles developed 
for randomized studies apply for observational study 
designs. Additional complexities arise in observational 
studies to control for confounding between subjects 
and over time in the design and analysis. Control for 

confounding is achieved using weighting or matching 
methods developed for causal inference. Comparing 
how these methods perform in small samples based on 
different operating characteristics and, more specifi-
cally, the amount of confounding relative to within and 
between-subject variability would be valuable for rare 
diseases.

Rare disease networks show a great promise in accel-
erating our understanding of natural history and sup-
porting the development of therapies in rare diseases 
[57]. The CF Foundation Therapeutics Development 
Network in the United States is the poster child of how 
such networks, when successful, can improve the lives 
of the patients they serve [23]. Several disease spe-
cific networks exist across the globe and include in the 
United States the National Institute of Health Rare Dis-
eases Clinical Research Network [58] and the National 
Organization of Rare Diseases [59]. Novel sources for 
rare diseases data also include large electronic health-
care data networks such as the Patient-Centered Out-
come Research Network [60]. Design considerations 
are possible to address in networks where the exchange 
of ideas and the economy of scale can lead to consen-
sus clinical guidelines and standardizing data collection 
and capture.

Acknowledgements
We thank our colleagues for helpful questions and discussions during our 
presentations of some of these designs at the annual meetings of the Urea 
Cycle Disorder Consortium in July 2019 and April 2020. We thank the rare 
diseases working group in the Berkeley forum for collaborative research for 
helpful discussions about challenges in randomized study designs in rare 
disorders.

Authors’ contributions
The ideas in this manuscript grew from several design and analyses collabora-
tions between RI and RM with the Urea Cycle Disorder Consortium, as well as 
discussions between co-authors relative to study designs in rare disorders. RI 
wrote this review manuscript and is the corresponding author, RM provided 
comments and edits on this manuscript. RM also helped with revisions to the 
manuscript. Both authors read and approved the final manuscript.

Funding
Author’s time working on this manuscript was supported by funding from 
two grant awards by the National Institute Health: 5U54HD061221 (Principal 
Investigator: Andrea Gropman), and 5UL1TR001876-03 (Principal Investigator: 
Lisa Guay-Woodford).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.



Page 8 of 9Izem and McCarter ﻿Orphanet Journal of Rare Diseases          (2021) 16:491 

Received: 1 February 2021   Accepted: 6 November 2021

References
	1.	 National Institutes of Health. FAQs about rare diseases. 2020; Available 

from https://​rared​iseas​es.​info.​nih.​gov/​disea​ses/​pages/​31/​faqs-​about-​
rare-​disea​ses.

	2.	 IQVIA Institute for Human Data Science, Orphan Drugs in the United 
States: Exclusivity, Pricing and Treated Populations. December 2018. 
https://​www.​iqvia.​com/​insig​hts/​the-​iqvia-​insti​tute/​repor​ts/​orphan-​
drugs-​in-​the-​united-​states-​exclu​sivity-​prici​ng-​and-​treat​ed-​popul​ations. 
Accessed Nov 2021.

	3.	 Kempf L, Goldsmith JC, Temple R. Challenges of developing and conduct-
ing clinical trials in rare disorders. Am J Med Genet A. 2018;176(4):773–83.

	4.	 Fonseca DA, et al. Orphan drugs: major development challenges at the 
clinical stage. Drug Discov Today. 2019;24(3):867–72.

	5.	 The Food and Drug Administration. Pediatric rare diseases—a collabora-
tive approach for drug development using Gaucher disease as a model; 
draft guidance for industry. 2017 Dec 2017; Available from https://​www.​
fda.​gov/​regul​atory-​infor​mation/​search-​fda-​guida​nce-​docum​ents/​pedia​
tric-​rare-​disea​ses-​colla​borat​ive-​appro​ach-​drug-​devel​opment-​using-​
gauch​er-​disea​se-​model-​draft.

	6.	 The Food and Drug Administration. Rare diseases: common issues in 
drug development guidance for industry, draft guidance for industry. 
2019; Available from https://​www.​fda.​gov/​regul​atory-​infor​mation/​search-​
fda-​guida​nce-​docum​ents/​rare-​disea​ses-​common-​issues-​drug-​devel​
opment-​guida​nce-​indus​try.

	7.	 The Food and Drug Administration. Rare diseases: natural history studies 
for drug development, guidance document. 2019; Available from https://​
www.​fda.​gov/​regul​atory-​infor​mation/​search-​fda-​guida​nce-​docum​ents/​
rare-​disea​ses-​natur​al-​histo​ry-​studi​es-​drug-​devel​opment.

	8.	 The Food and Drug Administration. Framework for FDA’s Real-World 
Evidence Program. 2018 Dec 2018; Available from https://​www.​fda.​gov/​
media/​120060/​downl​oad.

	9.	 Bell SA, Tudur SC. A comparison of interventional clinical trials in rare 
versus non-rare diseases: an analysis of ClinicalTrials.gov. Orphanet J Rare 
Dis. 2014;9:170.

	10.	 Richter T, et al. Rare disease terminology and definitions—a systematic 
global review: report of the ISPOR rare disease special interest group. 
Value Health. 2015;18(6):906–14.

	11.	 O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 
2009;373(9678):1891–904.

	12.	 Summar ML, et al. The incidence of urea cycle disorders. Mol Genet 
Metab. 2013;110(1–2):179–80.

	13.	 Merritt JL 2nd, et al. Newborn screening for proximal urea cycle disorders: 
current evidence supporting recommendations for newborn screening. 
Mol Genet Metab. 2018;124(2):109–13.

	14.	 Brusilow SW, Valle DL, Batshaw M. New pathways of nitrogen excretion in 
inborn errors of urea synthesis. Lancet. 1979;2(8140):452–4.

	15.	 Maestri NE, Clissold D, Brusilow SW. Neonatal onset ornithine transcarba-
mylase deficiency: a retrospective analysis. J Pediatr. 1999;134(3):268–72.

	16.	 Batshaw ML, et al. Cerebral dysfunction in asymptomatic carriers of 
ornithine transcarbamylase deficiency. N Engl J Med. 1980;302(9):482–5.

	17.	 Wechsler D. Wechsler preschool and primary scale of intelligence—
fourth edition. San Antonio: The Psychological Corporation; 2012.

	18.	 Wechsler D. WISC-III: Wechsler intelligence scale for children. San Antonio: 
Psychological Corporation, Harcourt Brace Jovanovich; 1991.

	19.	 Cystic Fibrosis Foundation Patient Registry. Annual data report 2018. 
2019. Bethesda.

	20.	 Waisbren SE, et al. Improving long term outcomes in urea cycle disorders-
report from the Urea Cycle Disorders Consortium. J Inherit Metab Dis. 
2016;39(4):573–84.

	21.	 Diggle P, et al. Analysis of longitudinal data. Oxford: Oxford University 
Press; 2002.

	22.	 Korn EL, McShane LM, Freidlin B. Statistical challenges in the evalu-
ation of treatments for small patient populations. Sci Transl Med. 
2013;5(178):178sr3.

	23.	 Smith CT, Williamson PR, Beresford MW. Methodology of clinical trials for 
rare diseases. Best Pract Res Clin Rheumatol. 2014;28(2):247–62.

	24.	 Chow S-C, Chang Y-W. Statistical considerations for rare diseases drug 
development. J Biopharm Stat. 2019;29(5):874–86.

	25.	 Van der Lee J, et al. Efficient ways exist to obtain the optimal sample size 
in clinical trials in rare diseases. J Clin Epidemiol. 2008;61(4):324–30.

	26.	 Senn S. Sample size considerations for n-of-1 trials. Stat Methods Med 
Res. 2019;28(2):372–83.

	27.	 Cornu C, et al. Experimental designs for small randomised clinical trials: 
an algorithm for choice. Orphanet J Rare Dis. 2013;8:48.

	28.	 Ballmann M, von der Hardt H. Hypertonic saline and recombinant human 
DNase: a randomised cross-over pilot study in patients with cystic fibro-
sis. J Cyst Fibros. 2002;1(1):35–7.

	29.	 Hackett A, Gillard J, Wilcken B. n of 1 trial for an ornithine transcarbamyl-
ase deficiency carrier. Mol Genet Metab. 2008;94(2):157–61.

	30.	 Whitaker HJ, et al. Tutorial in biostatistics: the self-controlled case series 
method. Stat Med. 2006;25(10):1768–97.

	31.	 Schneeweiss S, Sturmer T, Maclure M. Case-crossover and case-time-
control designs as alternatives in pharmacoepidemiologic research. 
Pharmacoepidemiol Drug Saf. 1997;6(Suppl 3):S51–9.

	32.	 Madigan D, Schuemie MJ, Ryan PB. Empirical performance of the case-
control method: lessons for developing a risk identification and analysis 
system. Drug Saf. 2013;36(Suppl 1):S73-82.

	33.	 Maclure M. The case-crossover design: a method for studying transient 
effects on the risk of acute events. Am J Epidemiol. 1991;133(2):144–53.

	34.	 Maclure M. “Why me?” versus ‘why now?’—differences between 
operational hypotheses in case-control versus case-crossover studies. 
Pharmacoepidemiol Drug Saf. 2007;16(8):850–3.

	35.	 Harmatz P, et al. A novel Blind Start study design to investigate vestroni-
dase alfa for mucopolysaccharidosis VII, an ultra-rare genetic disease. Mol 
Genet Metab. 2018;123(4):488–94.

	36.	 Harding CO, et al. Pegvaliase for the treatment of phenylketonuria: a 
pivotal, double-blind randomized discontinuation phase 3 clinical trial. 
Mol Genet Metab. 2018;124(1):20–6.

	37.	 Copas AJ, et al. Designing a stepped wedge trial: three main designs, 
carry-over effects and randomisation approaches. Trials. 2015;16:352–352.

	38.	 Quittner AL, et al. Clustered randomized controlled trial of a clinic-based 
problem-solving intervention to improve adherence in adolescents with 
cystic fibrosis. J Cyst Fibros. 2019;18(6):879–85.

	39.	 Kidwell KM. SMART designs in cancer research: past, present, and future. 
Clin Trials. 2014;11(4):445–56.

	40.	 Kidwell KM, Hyde LW. Adaptive interventions and SMART designs: 
application to child behavior research in a community setting. Am J Eval. 
2016;37(3):344–63.

	41.	 Hernan MA, et al. Observation plans in longitudinal studies with time-
varying treatments. Stat Methods Med Res. 2009;18(1):27–52.

	42.	 Li YFP, Propert KJ, Rosenbaum PR. Balanced risk set matching. J Am Stat 
Assoc. 2001;96(455):870–82.

	43.	 Ah Mew N, et al. Comparing treatment options for urea cycle disorders. 
Washington: Patient Centered Outcome Research; 2020.

	44.	 Hernan MA, et al. Observational studies analyzed like randomized 
experiments: an application to postmenopausal hormone therapy and 
coronary heart disease. Epidemiology. 2008;19(6):766–79.

	45.	 Imbens G, Rubin D. Causal inference for statistics, social, and biomedical 
sciences: an introduction. Cambridge: Cambridge University Press; 2015.

	46.	 Hernan MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & 
Hall/CRC; 2020.

	47.	 Patient Reported Outcome Research Institute. Comparing treatment 
options for urea cycle disorders. 2015; Available from https://​www.​
pcori.​org/​resea​rch-​resul​ts/​2015/​compa​ring-​treat​ment-​optio​ns-​urea-​
cycle-​disor​ders#:​~:​text=​Urea%​20cyc​le%​20dis​orders%​2C%​20or%​20UCD​
s,damage%​2C%​20dis​abili​ty%​2C%​20or%​20dea​th.

	48.	 Hilgers RD, et al. Design and analysis of clinical trials for small rare disease 
populations. J Rare Dis Res Treatment. 2016;1(1):53–60.

	49.	 Hilgers R-D, et al. Lessons learned from IDeAl—33 recommendations 
from the IDeAl-net about design and analysis of small population clinical 
trials. Orphanet J Rare Dis. 2018;13(1):1–17.

	50.	 Maclure M, Mittleman MA. Case-crossover designs compared with 
dynamic follow-up designs. Epidemiology. 2008;19(2):176–8.

	51.	 Hampson LV, et al. Bayesian methods for the design and interpretation of 
clinical trials in very rare diseases. Stat Med. 2014;33(24):4186–201.

	52.	 Robins JM, Hernan MA, Brumback B. Marginal structural models and 
causal inference in epidemiology. Epidemiology. 2000;11(5):550–60.

https://rarediseases.info.nih.gov/diseases/pages/31/faqs-about-rare-diseases
https://rarediseases.info.nih.gov/diseases/pages/31/faqs-about-rare-diseases
https://www.iqvia.com/insights/the-iqvia-institute/reports/orphan-drugs-in-the-united-states-exclusivity-pricing-and-treated-populations
https://www.iqvia.com/insights/the-iqvia-institute/reports/orphan-drugs-in-the-united-states-exclusivity-pricing-and-treated-populations
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pediatric-rare-diseases-collaborative-approach-drug-development-using-gaucher-disease-model-draft
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pediatric-rare-diseases-collaborative-approach-drug-development-using-gaucher-disease-model-draft
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pediatric-rare-diseases-collaborative-approach-drug-development-using-gaucher-disease-model-draft
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pediatric-rare-diseases-collaborative-approach-drug-development-using-gaucher-disease-model-draft
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-common-issues-drug-development-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-common-issues-drug-development-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-common-issues-drug-development-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-natural-history-studies-drug-development
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-natural-history-studies-drug-development
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-natural-history-studies-drug-development
https://www.fda.gov/media/120060/download
https://www.fda.gov/media/120060/download
https://www.pcori.org/research-results/2015/comparing-treatment-options-urea-cycle-disorders#:~:text=Urea%20cycle%20disorders%2C%20or%20UCDs,damage%2C%20disability%2C%20or%20death
https://www.pcori.org/research-results/2015/comparing-treatment-options-urea-cycle-disorders#:~:text=Urea%20cycle%20disorders%2C%20or%20UCDs,damage%2C%20disability%2C%20or%20death
https://www.pcori.org/research-results/2015/comparing-treatment-options-urea-cycle-disorders#:~:text=Urea%20cycle%20disorders%2C%20or%20UCDs,damage%2C%20disability%2C%20or%20death
https://www.pcori.org/research-results/2015/comparing-treatment-options-urea-cycle-disorders#:~:text=Urea%20cycle%20disorders%2C%20or%20UCDs,damage%2C%20disability%2C%20or%20death


Page 9 of 9Izem and McCarter ﻿Orphanet Journal of Rare Diseases          (2021) 16:491 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	53.	 Mansournia MA, et al. Handling time varying confounding in observa-
tional research. BMJ. 2017;359:j4587.

	54.	 Farmer RE, et al. Application of causal inference methods in the analyses 
of randomised controlled trials: a systematic review. Trials. 2018;19(1):23.

	55.	 Deakin CT, et al. Efficacy and safety of cyclophosphamide treatment in 
severe juvenile dermatomyositis shown by marginal structural modeling. 
Arthritis Rheumatol. 2018;70(5):785–93.

	56.	 Gagne JJ, et al. Innovative research methods for studying treatments for 
rare diseases: methodological review. BMJ. 2014;349:g6802.

	57.	 Jansen-Van Der Weide MC, et al. Rare disease registries: potential 
applications towards impact on development of new drug treatments. 
Orphanet J Rare Dis. 2018;13(1):1–11.

	58.	 Krischer JP, et al. The Rare Diseases Clinical Research Network’s organiza-
tion and approach to observational research and health outcomes 
research. J Gen Intern Med. 2014;29(Suppl 3):S739–44.

	59.	 Putkowski S. National Organization for Rare Disorders (NORD): 
providing advocacy for people with rare disorders. NASN Sch Nurse. 
2010;25(1):38–41.

	60.	 Canterberry M, et al. The patient-centered outcomes research network 
antibiotics and childhood growth study: implementing patient data link-
age. Popul Health Manag. 2020;23(6):438–44.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Randomized and non-randomized designs for causal inference with longitudinal data in rare disorders
	Abstract 
	Introduction
	The case for longitudinal studies in rare disorders
	Challenges in clinical development in rare disorders related to sample size and heterogeneity of outcomes
	The benefits of designs with repeated measures

	Randomized and observational study designs with repeated measure
	Self-controlled designs: relying on within-subject comparisons to estimate the causal effect
	Sequential designs: augmenting between-group comparison with within-group comparisons

	Considerations for valid causal inference with longitudinal data
	Causal inference, framework, and assumptions
	Design and analyses considerations with longitudinal studies for valid causal inference
	Considerations, advantages and limitations of longitudinal designs
	Analysis considerations


	Discussion
	Acknowledgements
	References


