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Abstract

Background

COVID-19 mortality risk stratification tools could improve care, inform accurate and rapid triage decisions, and guide family
discussions regarding goals of care. A minority of COVID-19 prognostic tools have been tested in external cohorts. Our objective was
to compare machine learning algorithms and develop a tool for predicting subsequent clinical outcomes in COVID-19.

Methods

We conducted a retrospective cohort study that included hospitalized patients with COVID-19 from March 2020 to March 2021. 712
consecutive patients from University of Washington (UW) and 345 patients from Tongji Hospital in China were included. We applied
three different machine learning algorithms to clinical and laboratory data collected within the initial 24 hours of hospital admission to
determine the risk of in-hospital mortality, transfer to the intensive care unit (ICU), shock requiring vasopressors, and receipt of renal
replacement therapy (RRT). Mortality risk models were derived, internally validated in UW and externally validated in Tongji Hospital.
The risk models for ICU transfer, shock and RRT were derived and internally validated in the UW dataset.

Results

Among the UW dataset, 122 patients died (17%) during hospitalization and the mean days to hospital mortality was 15.7 +/- 21.5
(mean +/- SD). Elastic net logistic regression resulted in a C-statistic for in-hospital mortality of 0.72 (95% Cl, 0.64 to 0.81) in the
internal validation and 0.85 (95% Cl, 0.81 to 0.89) in the external validation set. Age, platelet count, and white blood cell count were the
most important predictors of mortality. In the sub-group of patients > 50 years of age, the mortality prediction model continued to
perform with a C-statistic of 0.82 (95% CI:0.76,0.87). Mortality prediction models also performed well for shock and RRT in the UW
dataset but functioned with lower accuracy for ICU transfer.

Conclusions

We trained, internally and externally validated a prediction model using data collected within 24 hours of hospital admission to predict
in-hospital mortality on average two weeks prior to death. We also developed models to predict RRT and shock with high accuracy.
These models could be used to improve triage decisions, resource allocation, and support clinical trial enrichment.

Introduction

The ongoing COVID-19 pandemic, caused by human infection with SARS-CoV-2, has been a major cause of mortality worldwide[1]. A
robust public health and biomedical response to a pandemic is contingent on timely and accurate information, including rapid
diagnosis and assessment of patients at risk for severe disease[2]. A clinical model, incorporating recognized risk factors and clinical
features, that could effectively identify individuals at risk for severe disease and adverse clinical outcomes could greatly assist with
rational triage and resource allocation|[3].

Sequential Organ Failure Assessment (SOFA) score has been widely used to assist with triage of patients with COVID-19. However, the
accuracy of SOFA for predicting mortality in COVID-19 is poor (AUC of 0.59 (95% Cl, 0.55 - 0.63), possibly because SOFA was
developed in patients with various and alternative forms of sepsis[4]. While multiple papers have focused on the development of
prognostic models to predict mortality risk using demographic and clinical data, these papers have had limited validation in external
patient cohorts[5—9]. For example, one prediction model that used three blood biomarkers initially reported a 90% accuracy to predict
mortality. However, when this model was tested in an external cohort, reported accuracy declined to only 40-50%[10, 11]. Previous
COVID-19 prediction models have been limited in reporting how features were selected, timing of variable collection and outcomes and
calibration performance of the model[5, 6].

To date, COVID-19 prediction models have largely focused on mortality[5, 12, 13], rather than risk for specific organ dysfunction, such
as hypotension requiring vasopressors (shock), renal failure requiring renal replacement therapy (RRT), or hypoxemic respiratory
failure requiring invasive mechanical ventilation. An accurate means to predict risk for specific organ injury in severe COVID-19 would
greatly assist clinical decision-making. Studies have attempted to assess such risks by grouping several outcomes of interest together
and building a predictive model[13—16]. Despite the success of this kind of model, grouping the outcomes together is less useful for
resource allocation and triage, as patients will require different equipment and staffing expertise depending on their disease course
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and complications[3, 17]. To address this concern, we created separate models to predict risk of in-hospital mortality, ICU transfer,
shock, and renal replacement therapy (RRT) based on demographic and clinical information collected on the first day of hospital
admission. We then used an open source COVID-19 dataset to validate our mortality prediction model. Additional outcomes, such as
ICU transfer, shock and need for RRT, were not available in the external validation set.

Methods

Study design and patient population

The University of Washington (UW) dataset includes demographic and clinical data from COVID-19 positive patients who were
admitted to two hospitals at the UW (Montlake and Harborview campuses) between March, 2020 and March, 2021.

The COVID-19 dataset at Tongji Hospital dataset has been previously reported[6]. In brief, patients from the Tongji COVID-19 dataset
were enrolled from January 10™ to February 18™, 2020. Patients from the Tongji dataset made the external validation cohort for the
mortality model. In the UW and Tongji datasets, mortality prediction models were developed using clinical data collected on the first
day of hospital admission.

The University of Washington institutional review board (IRB) approved the study protocol (STUDY10159). All clinical investigations
were conducted based on the principles expressed in the declaration of Helsinki. Written informed consent was waived by the IRB due
to the retrospective nature of our study of routine clinical data.

Outcomes

The primary outcome was in-hospital mortality. We developed and internally validated a prediction model for in-hospital mortality and
externally validated the model in the Tongji dataset. Secondary outcomes were ICU transfer, shock and receipt of RRT. These
secondary outcomes were missing in the Tongji dataset and so we developed and cross-validated prediction models for secondary
outcomes using the UW dataset.

Feature Selection

The following steps were taken for feature selection. First, features were dropped if >10% of the values were missing. Second, near-
zero variance features were removed, as these features almost exclusively had one unique value. Third, pair-wise correlations between
all the features were calculated. If two features had a correlation larger than 0.8, the feature with a larger mean absolute correlation
was dropped. Fourth, missing values were replaced by the mode if the variable was categorical or by the median otherwise. Finally, all
the continuous variables were standardized.

Twenty features overlapped between the UW and Tongji Hospital datasets, and these 20 features were used for the mortality
prediction model. All clinical and laboratory data were abstracted from the medical record within the first day of hospital admission,
and patients were included in the analysis for each outcome only if the patients did not have the outcome on the first day of
hospitalization. An individual prediction model was developed for each of the outcomes.

Data partitioning, UW dataset

We randomly split the UW dataset into development and internal validation sets by stratified sampling. The training set included 475
patients, and the internal validation set included 237 patients. First, we trained models on the training set, and then selected the best
model by its performance on the internal validation set. Top models for in-hospital mortality were then tested in the external validation
set. We performed cross validation in the internal validation set for the three prediction models for ICU transfer, shock and RRT. We
used the UW dataset as follows (1) patients were randomly split into 10 folds in a stratified fashion using the outcome variable; (2) the
model was trained using nine of the ten folds and validated on the remaining fold. The procedure was repeated ten times until each
fold had been used as a validation fold exactly once; (3). Steps 1 and 2 were repeated ten times.

Machine learning_ models
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Least absolute shrinkage and selection operator (LASSO) logistic regression is a logistic regression approach with L1 penalties[18].
The L1 penalty terms encourage sparsity, thus preventing overfitting and yielding a small model. A weighted LASSO logistic regression
was used to handle the imbalanced data. The hyperparameter lambda was selected by stratified 10-fold cross validation.

Elastic net logistic regression (LR) is an approach that combines (LASSO LR and ridge logistic regression, incorporating both L1 and
L2 penalties[19]. It can generate sparse models which outperform LASSO logistic regression when highly correlated predictors are
present. The hyperparameters alpha and lambda were selected by stratified 10-fold cross validation.

eXtreme Gradient Boosting (XGBoost). XGBoost is a gradient boosted machine (GBM) based on decision trees that separate patients
with and without the outcome of interest using simple yes-no splits, which can be visualized in the form of decision trees[20]. GBM
builds sequential trees, such that each tree attempts to improve model fit by more highly weighting the difficult-to-predict patients. The
following hyperparameter settings were applied: nrounds =150, eta = 0.2, colsample_bytree = .9, gamma = 1, subsample=.9 and
max_depth=4.

Class imbalance handling

A weighted version of each of the three above methods was used to handle imbalanced data. For example, if there were 90 positives
and 10 negatives, then a weight of 10 over 90 was assigned to a positive sample and a weight of one was assigned to a negative
sample.

Probability calibration

Isotonic regression was used to calibrate the probabilities outputted by the machine learning models[21]. The calibration model was
fitted on the training samples only.

Model comparison

We tested the three machine learning methods (LASSO LR, elastic net LR, and XGBoost) independently to predict each outcome. Model
performance was compared using the area under the receiver operatory characteristic curve (AUC) and 95% CI[22,23]. Top performing
models for in-hosptial mortality in the internal validation cohort were then carried forward to the external validation cohort. Two-sided
p-values <0.05 were considered statistically significant. All models were developed using R.

Results

Patient characteristics

Atotal of 1,057 patients were included in the analysis, 712 from UW and 345 from Tongji Hospital. Baseline characteristics for
patients who died vs survived are shown in Table 1. In the UW cohorts, patients who died were older (median [IQR] age 66 [54-75] vs.
55 [41-66] years), more likely to be male (70% vs. 61%), had lower platelet count (median [IQR] 155 [114 -234] vs. 200 [155 - 265]), and
higher white blood cell counts (median [IQR] 9.85 [7.01 — 14.44] vs. 7.87 [5.64 — 11.37]. In the Tongji cohort there was a similar
difference in baseline characteristics between patients who died and survived during hospitalization.

Machine learning_ model for in-hospital mortality

Among 712 patients in the UW dataset, 122 (17%) died. The mean length of hospital stay was 15.7 (standard deviation 21.5) days for
all patients and 14.8 (standard deviation 13.7) days for those that died. Among 328 patients from the Tongji Hospital dataset, 159
(46%) died. [24]. We applied three machine learning methods (LASSO LR, elastic net LR and XGBoost) to the training set and evaluated
the model performance in the interval validation set. Elastic net LR model had the highest AUC in the internal validation set (0.72, 95%
Cl: 0.64 to 0.81) for in-hospital mortality. Next, we tested the elastic net LR model in the external validation cohort, and obtained an
AUC of 0.85 (95% Cl: 0.81 to 0.89) for in-hospital mortality (Figure 1A and 1B and Table 2A). The top 3 variables in the in-hospital
mortality prediction model included, age, minimum platelet count, and maximum white blood cell count (Figure 2A).

Partial dependence plots for the most important continuous variables in elastic net LR are shown in Figure 3A. Older age was
associated with a linear increase in mortality. In contrast, platelet count showed a relatively flat risk profile up to 500 x 10°/L after
which risk of death increased linearly with lower platelet counts. The predicted risk of in-hospital mortality compared with the observed
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risk was well calibrated in the test set (Supplement Figure 1). In Table 3A, we provide the sensitivity, specificity, positive predictive
values (PPV) and negative predictive values (NPV) across the three different cohorts for in-hospital mortality. We found that the model
thresholds can be personalized to either maximize PPV or NPV. We found in the external validation cohort that the in-hospital mortality
models had a maximum PPV and NPV of 0.84 or higher. Model coefficients are provided in Table S1 for future validation in diverse
patient cohorts.

To better understand the association between clinical features and in-hospital mortality, we concentrated on patients > 50 years of age
and re-trained the models excluding age. Elastic net LR model had the highest AUC in the internal validation set (0.73, 95% Cl: 0.61 to
0.84) for in-hospital mortality. Next, we tested the elastic net LR model in the external validation cohort and obtained an AUC of 0.82
(95% Cl1:0.76,0.87) for in-hospital mortality (Figure 4A and 4B and Table 2B). In Table 3B, we provide the sensitivity, specificity, positive
predictive values (PPV) and negative predictive values (NPV) across the three different cohorts for in-hospital mortality in patients > 50
years of age. Partial dependence plots for the most important continuous variables in elastic net LR are shown in Figure 3B. Platelet
count, blood nitrogen urea, haematocrit and white blood cell count were the top 4 variables that predicted in-hospital mortality in the
patients > 50 years of age.

Machine learning_ models for secondary outcomes

We next developed and cross-validated prediction models for ICU transfer, shock and receipt of RRT. For the outcome of ICU

transfer, 419 patients from the UW dataset were included in the training set, with 45 (11%) patients being transferred to the ICU within
28 days of admission. Patients were excluded from this analysis who were transferred to the ICU within the first day of hospitalization.
The mean length of time to be transferred to ICU was 7.6 (standard deviation 9.1) days. Lasso LR achieved the highest AUC (0.60, 95%
Cl: 0.52,0.68) for prediction of ICU transfer compared with the other two methods (elastic net LR, XGBoost) (Figure 5A and Table 4).
The two predictors that most strongly correlated with subsequent ICU transfer were age and minimum SpO,.

For the outcome of shock, 606 patients from the UW dataset were included in the training set, with 67 patients developing shock within
28 days of admission. Patients were excluded from this analysis who had shock within the first day of hospitalization. The mean
length of time to develop shock was 7.0 +/- 6.5 days (mean +/- SD). Elastic net LR achieved the highest AUC of the three methods
(0.76,95% Cl: 0.69 to 0.82) (Figure 5B and Table 4). The three predictors that were most highly correlated with subsequent
development of shock were ICU admission, minimum mean arterial blood pressure and minimum Glasgow coma scale score.

For the outcome of receipt of RRT, 671 patients from the UW dataset were included in the training set with 24 patients receiving RRT
within 28 days of admission. Patients were excluded from this analysis who received RRT within the first day of hospitalization. The
mean length of time to receive RRT was 5.8 +/- 7.2 days (mean +/_ SD). As shown in Figure 5C and Table 4, Lasso LR achieved a
slightly higher mean AUC compared with the other two methods (0.88, 95% Cl: 0.79 to 0.98). The predictor that most strongly
influenced need for RRT was minimum serum creatinine. Variable importance plots for all the secondary outcomes can be found in
Figure S2. Model calibration plots for each of the secondary outcomes are provided in Figure S1. Coefficients for variables are
provided in Tables S2-S4.

Discussion

In this derivation, internal validation and external validation study of adult hospitalized patients with COVID-19, we developed and
validated an in-hospital mortality prediction tool using variables that are routinely collected within 24 hours of hospital admission. We
found the mortality prediction model had high accuracy to predict mortality with a 2-week lead-time. We also found that elastic net
logistic regression had the highest performance and best calibration of the machine learning models tested. In addition, we derived
models for ICU transfer, shock and RRT. Our results provide a simple bedside tool and highlight clinical variables that can inform triage
decisions and clinical care in hospitalized patients with COVID-19.

The mortality prediction tool was derived using 20 variables and exported to an external dataset. The model had higher discrimination
in the external dataset, demonstrating the generalizability of the model. Variables that informed model development included age,
white blood count, and platelet count. These variables have been individually shown to be previously prognostic in COVID-19
hospitalization as well as in sepsis[25-27]. A machine learning study in Germany for mortality prediction in COVID-19, also found that
age and markers of thrombotic activity were predictive of ICU survival[28]. An advantage of our model to other studies is that we
included not only patients admitted to the ICU but all patients presenting to the hospital. This broad inclusion criteria improves
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generalizability of our findings. We found that elastic net regression was the most accurate algorithm for predicting in-hospital
mortality in our datasets. The value of elastic net regression machine learning algorithms is that it is interpretable. We provide the
variables and the coefficients for each model to ease future testing in diverse patient cohorts.

The present machine learning models show that a reliable prediction can be made for hospital mortality and organ failure in
hospitalized patients with COVID-19. The AUC for our model had a performance in the external validation set comparable to or
improved than alternative COVID-19 prediction models[12,29-31]. One benefit of our model is that it was developed and internally
validated in a US population and externally validated in a population from China. This is in contrast to other prediction models
developed in COVID-19 that are specific to patients admitted to one healthcare system or hospitalized in one
country[12,13,28,29,32,33]. The ability to validate our model in a healthcare system outside the US shows the generalizability of the
model and the reproducibility of our findings. Our findings also demonstrate the inherent similarities in the patient response to
infection and the clinical variables that are associated with poor outcomes.

This study has several strengths, including its large sample size and a discovery and validation cohort. In addition, we developed
models for not only mortality but also organ specific failure. Another strength is that the model predicted outcomes up to 2 weeks prior
to the outcome occurring. This lead time is essential to help inform clinical care and provide a window when therapeutics can be
tested to change eventual outcomes. Finally, all prediction models were developed using routinely collected data that is available in
most electronic medical records. This allows the easy replication of our models to diverse patient cohorts. Since age is one of the
strongest predictors of mortality in COVID-19, we specifically developed in-hospital mortality prediction models in the population of
patients > 50 years of age. We found that clinical biomarkers, such as platelet count, blood urea nitrogen, white blood cell count and
blood urea nitrogen, in combination continued to accurately predict in-hospital mortality.

There are also several limitations to this work. First, although developed and validated in an external dataset, it is possible that our
findings may not generalize to other settings. Second, we restricted to clinical and laboratory variables collected within 24 hours of ICU
admission. We restricted to these variables to develop prediction models that could be run on electronic health record data. Moreover,
the variables used in the model are often not missing in the medical record and regularly collected.

Conclusions

We developed prediction models with high discrimination for mortality, shock and RRT. The in-hospital mortality model performed well
in the internal validation set and showed improved accuracy in the external validation set. Key variables that informed the in-hospital
mortality prediction model included age, white blood cell count and platelet count. The mortality prediction model on average was able
to identify future risk of mortality 2 weeks prior to the clinical outcome. All variables to develop the prediction models used clinical
variables collected within the first day of hospital admission. These machine learning derived prediction models could be used to
improve triage decisions, resource allocation, and support clinical trial enrichment in patients hospitalized with COVID-19.
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Tables

Table 1A. Features in the UW dataset stratified by survivors and non-survivors.

Total (n=712) Non-survivors (n=122) Survivors (n=590)

Age, years

Female, n (%)

Male, n (%)

Maximum Serum Creatinine, mg/dL

Minimum Serum Creatinine, mg/dL
Maximum White Blood Cell Count, per mm?3

Minimum White Blood Cell Count, per mm?
Maximum Glucose, mg/dL

Minimum Glucose, mg/dL

Maximum Serum Potassium, mmol/L

Minimum Serum Potassium, mmol/L
Maximum Platelet Count, 10%/L

Minimum Platelet Count, 10°/L
Maximum Serum Sodium, mmol/L
Minimum Serum Sodium, mmol/L
Maximum Serum Chloride, mmol/L
Minimum Serum Chloride, mmol/L
Maximum Hematocrit, %

Minimum Hematocrit, %

Maximum Blood Nitrogen Urea, mg/dL

Minimum Blood Nitrogen Urea, mg/dL

57 (44,69)

267 (38)

445 (62)

0.97 (0.73,1.5)
0.83 (0.64,1.19)
8.11(5.81,12.12)

6.72 (4.8,9.89)

138 (111,186.5)
108 (92,133)
4.1(3.8,4.6)
3.7 (3.44)
223.5 (176,302)

194 (148, 259)

137 (134,140)
135 (132,138)
103 (100,106)
100 (97,103)
38 (33,42)

35 (30,39)
19.5 (13,33)
16 (11,27)

66 (54.25,75)
37 (30)

85 (70)

1.16 (0.77,2.5)
1.05 (0.67,1.82)

9.85 (7.01,14.44)

7.34(5.28,11.17)

154.5 (118,236)
111.5 (95,138)

4.4 (4,4.8)
3.8(3.54.2)

190 (138.5,254.25)

155 (114, 234)

137 (134,140.25)
134 (132,138)

103 (98.75,107.25)
99 (95,104)

36 (32,41)

34 (29,38)

30 (17,54)

23 (15,39.25)

55 (41,66)
230 (39)

360 (61)
0.95(0.72,1.4)
0.8 (0.63,1.11)

787  (5.64,11.37)

6.53 (4.63,9.63)

135 (109,182)
106.5 (91,132)
4.1(3.8,4.6)

3.7 (3.4,4)

228.5 (183.75,312)

200 (155, 265)

137 (135,140)
135 (132,137)
103 (100,106)
100 (97,103)
38 (34,43)

35 (31,39)

19 (13,31)

15 (10,24)

All variables are median and interquartile range unless otherwise specified.

Table 1B. Features in the Tongji dataset stratified by survivors and non-survivors.
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Age, years

Female, n (%)

Male, n (%)

Maximum Serum Creatinine, mg/dL

Minimum Serum Creatinine, mg/dL

Maximum White Blood Cell Count, per mm?

Minimum White Blood Cell Count, per mm3

Maximum Glucose, mg/dL
Minimum Glucose, mg/dL
Maximum Serum Potassium, mmol/L

Minimum Serum Potassium, mmol/L
Maximum Platelet Count, 10%/L

Minimum Platelet Count, 10%/L
Maximum Serum Sodium, mmol/L
Minimum Serum Sodium, mmol/L
Maximum Serum Chloride, mmol/L
Minimum Serum Chloride, mmol/L
Maximum Hematocrit, %

Minimum Hematocrit, %

Maximum Blood Nitrogen Urea, mg/dL

Minimum Blood Nitrogen Urea, mg/dL

Total (n=345)
62 (46,70)

143 (41)

202 (59)

0.86 (0.66, 1.1)
0.86 (0.64, 1.1)
7.2 (4.75,12.89)

5.7 (4.08,9.09)

125 (104, 164)
124 (104, 163)
4.2 (3.9,4.6)
4.2 (3.8/4.6)
179 (134,231)

177 (134,231)

139 (136, 142)
139 (136,142)
101 (98,104)
101 (98,104)
37 (34, 41)

37 (34, 40)

15 (11, 25)

15 (11, 25)

Non-survivors (n=159)

69 (63,77.5)

43 (27)

116 (73)
1(0.79,1.29)

0.98 (0.76, 1.28)
10.75 (7.08, 15.97)

9.14 (6.07, 13.4)

151 (119, 204)
150 (118, 203)
4.3(3.94.8)
4.3(3.94.7)
149 (109,212)

149 (107,206)

139 (136, 144)
139 (136,144)
101 (97,106)
101 (97,105)
37 (34, 41)

36 (33, 41)

25 (16, 36)

25 (16, 36)

Survivors (n=186)
51 (37,62.75)
100 (54)

86 (46)

0.72 (0.6, 0.97)
0.72 (0.6, 0.97)
5.38 (4.15,7.59)

4.61(3.6,5.8)

109 (94, 138)
109 (94, 138)
4.1(3.8,4.5)
4.1(3.8,4.5)
201 (160, 254)

201 (160, 254)

139 (136, 141)
139 (136, 141)
101 (99, 103)
101 (99, 103)
37 (34, 40)

37 (34, 40)
11(9,15)
11(9,15)
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Table 2A. Model performance in the training, internal and external validation sets for in-hospital mortality.




Test Sets

Training

Internal validation

External validation

Statistics

Sensitivity (95% CI)

Specificity (95% CI)

AUC (95% CI)

Sensitivity (95% CI)

Specificity (95% CI)

AUC (95% CI)

Sensitivity (95% CI)

Specificity (95% CI)

AUC (95% CI)

Lasso LR

0.12 (0.06,0.22)

0.99 (0.98,1.0)

0.76 (0.71,0.81)

0.05 (0.01,0.17)

0.98 (0.95,0.99)

0.68 (0.59,0.77)

0.11 (0.06,0.16)

0.99 (0.97,1.0)

0.83 (0.78,0.87)

Elastic net LR

0.12 (0.06,0.22)

0.99 (0.98,1.0)

0.78 (0.73,0.83)

0.10 (0.03,0.23)

0.98 (0.95,0.99)

0.72 (0.64,0.81)

0.22 (0.16,0.28)

0.97 (0.94,0.99)

0.85 (0.81,0.89)

XGBoost

0.99 (0.93,1.0)

1.0 (0.99,1.0)

1.0 (1.0,1.0)

0.37 (0.22,0.53)

0.89 (0.84,0.93)

0.67 (0.59,0.76)

0.50 (0.42,0.57)

0.93 (0.89,0.97)

0.77 (0.72,0.82)
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Table 2B. Model performance in the training, internal and external validation sets for in-hospital mortality for patients over 50.




Test Sets Statistics Lasso LR Elastic net LR XGBoost
Sensitivity (95% CI) 0.06 (0.02,0.14) 0.25 (0.16,0.36) 0.99 (0.93,1.0)

Training Specificity (95% CI) 0.98 (0.96,0.99) 0.95 (0.91,0.97) 1.0 (0.99,1.0)
AUC (95% CI) 0.68 (0.62,0.75) 0.7 (0.64,0.77) 1.0 (1.0,1.0)

Internal validation

External validation

Sensitivity (95% CI)

Specificity (95% CI)

AUC (95% CI)

Sensitivity (95% CI)

Specificity (95% CI)

AUC (95% CI)

0.05 (0,0.3)

1.0 (0.95,1.0)

0.66 (0.54,0.79)

0.05 (0.01,0.08)

0.97 (0.93,1.0)

0.8 (0.75,0.86)

0.15 (0.03,0.38)

0.97 (0.9,1.0)

0.73 (0.61,0.84)

0.27 (0.2,0.34)

0.95 (0.9,0.99)

0.82 (0.76,0.87)

0.45 (0.23,0.68)

0.91 (0.82,0.97)

0.72 (0.6,0.85)

0.43 (0.35,0.51)

0.89 (0.82,0.95)

0.71 (0.66,0.77)

Table 3A. Negative and positive predictive values for the Elastic net LR model and outcome of in-hospital mortality.

Performance Patients Above/Below Sensitivity Specificity PPV (95% NPV (95%

Goal Threshold (95% ClI) (95% ClI) Cl) Cl)
Training Maximizing 409/65 1(0.96,1.0) 0.17 0.2 1(0.94,1.0)

NPV (0.13,0.21) (0.16,0.24)

Maximizing 3/471 0.04 (0.01,0.1) 1.0(0.99,1) 1.0 0.83

PPV (0.29,1.0) (0.8,0.87)
Internal Maximizing 165/73 0.93(0.8,098) 0.36 0.23 0.96
validation NPV (0.29,0.43) (0.17,0.3) (0.88,0.99)

Maximizing 1/237 0.02 (0,0.13) 1.0(0.981.0) 1.0 0.83

PPV (0.03,1.0) (0.78,0.88)
External Maximizing 308/37 0.98 (0.95,1) 0.18 0.51 0.92
validation NPV (0.13,0.25) (0.450.56)  (0.78,0.98)

Maximizing 40/305 0.22 0.97 0.88 0.59

PPV (0.16,0.29) (0.94,0.99) (0.73,096)  (0.54,0.65)

Table 3B. Negative and positive predictive values for the Elastic net LR model and outcome of in-hospital mortality for patients over
50.
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Performance Patients Above/Below Sensitivity Specificity PPV (95% NPV (95%

Goal Threshold (95% CI) (95% ClI) Cl) Cl)
Training Maximizing 352/3 1(0.95,1) 0.01 (0,0.03) 0.22 1(0.29,1)

NPV (0.18,0.27)

Maximizing 5/350 0.04 0.99 (0.97,1) 0.6 0.78

PPV (0.01,0.11) (0.150.95)  (0.74,0.82)
Internal Maximizing 76/13 1(0.83,1) 0.19 (0.1,0.3) 0.26 1(0.75,1)
validation NPV (0.17,0.38)

Maximizing 1/88 0.05(0,0.25) 1(0.95,1) 1(0.03,1) 0.78

PPV (0.68,0.86)
External Maximizing 192/55 0.94 0.47 0.73 0.84
validation NPV (0.89,0.97) (0.37,0.58) (0.67,0.8) (0.71,0.92)

Maximizing 56/191 0.33 0.94 0.89 0.48

PPV (0.26,0.41) (0.87,0.98) (0.78,0.96) (0.4,0.55)

Table 4. Model performance by 10-fold cross validation for ICU transfer, shock, and RRT. The sensitivity and specificity were calculated
at the cut-off value of 0.5.

AUC (95% CI)

0.6 (0.52,0.68)

0.58 (0.5,0.66)

Outcome Statistics Lasso LR Elastic net LR XGBoost
Sensitivity (95% CI) 0 (0,0.08) 0.02 (0,0.12) 0.02 (0,0.12)
ICU transfer Specificity (95% CI) 1 (0.99,1) 1 (0.99,1) 0.92 (0.89,0.95)

0.51 (0.36,0.65)

Sensitivity (95% CI) 0.03 (0,0.1) 0.03 (0,0.1) 0.45 (0.33,0.57)
Shock Specificity (95% CI) 0.99 (0.98,1) 0.99 (0.98,1) 0.91 (0.89,0.94)
AUC (95% CI) 0.75 (0.68,0.83) 0.76 (0.69,0.82) 0.7 (0.58,0.82)
Sensitivity (95% CI) 0.25(0.1,0.47) 0.25 (0.1,0.47) 0.58 (0.37,0.78)
RRT Specificity (95% CI) 0.99 (0.98,1) 0.99 (0.98,1) 0.98 (0.97,0.99)
AUC (95% CI) 0.88 (0.79,0.98) 0.88 (0.78,0.98) 0.78 (0.6,0.95)
Figures
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Figure 1A. Internal validation Figure 1B. External validation
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Figure 1

Receiver operator characteristics curves for mortality prediction. A. The c-statistic for in-hospital mortality using Elastic net LR model
had an AUC of 0.72, 95% CI: 0.64 to 0.81 in the internal validation cohort. B. In the external validation cohort the model had an AUC of

0.85 (95% ClI: 0.8 to 0.89) for in-hospital mortality.
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Figure 3A. All patients
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Figure 3B. Patients over 50 years of age
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Variable importance plots for mortality in all patients and in patients over 50 years of age. A. Mean SHAP values are provided on the x-
axis, which shows that age, minimum platelet count, maximum white blood cell count, minimum blood urea nitrogen, maximum serum
sodium, minimum haematocrit, maximum hematocrit, minimum serum creatinine, sex and minimum glucose are the top-10 variables.

B. Mean SHAP values are provided on the x-axis for the mortality prediction model in patients over 50 years of age, which includes the

five selected variables: maximum platelet count, minimum blood urea nitrogen, maximum hematocrit, minimum white blood cell

count, and maximum glucose.
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Figure 4A. All patients
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Figure 4B. Patients over 50 years of age
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Partial dependence plots for mortality prediction model illustrating the relationship between mortality and the six top predictor
variables A. Risk of mortality increases with increasing age, platelets < 500 109/L, and increasing white blood cell count. Risk of
mortality increases with increasing blood urea nitrogen with an inflection point at 50 mg/dL. The risk of mortality increases with
decreasing haematocrit levels and increasing sodium levels. B. Risk of mortality increases with increasing age, platelets < 500 109/L,
and increasing white blood cell count. Risk of mortality increases with increasing blood urea nitrogen until 75 mg/dL and then levels
off. The risk of mortality increases with decreasing haematocrit levels
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Figure 2A. Internal validation Figure 2B. External validation
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Figure 4

Receiver operator characteristics curves for ICU transfer, shock, RRT A. Receiver operator characteristics for ICU transfer in the cross-
validation cohort. B. Receiver operator characteristics for shock in the cross-validation cohort C. Receiver operator characteristics for

RRT in the cross-validation cohort.

Figure 5A. ICU transfer Figure 5B. Shock Figure 5C. RRT
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Figure 5

Receiver operator characteristics curves for mortality prediction for patients over 50. A. The c-statistic for in-hospital mortality using
Elastic net LR in patients older than 50 had an AUC of 0.73,95% CI: 0.61 to 0.84 in the internal validation cohort. B. In the external

validation cohort the model had an AUC of 0.82 (95% CI: 0.7 t0,0.87)
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