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Abstract

Confidence judgments are typically less informative about one’s accuracy than they could be, a 

phenomenon we call “metacognitive inefficiency.” We review the existence of different sources of 

metacognitive inefficiency and classify them into four categories based on whether the corruption 

is due to (1) systematic or non-systematic influences, and (2) the input to or the computation of the 

metacognitive system. Critically, the existence of different sources of metacognitive inefficiency 

provides an alternative explanation for behavioral findings typically interpreted as evidence for 

domain-specific and against domain-general metacognitive systems. We argue that, contrary to 

the dominant assumption in the field, metacognitive failures are not monolithic and suggest that 

understanding the sources of metacognitive inefficiency should be a primary goal of the science of 

metacognition.
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Inefficiency in metacognition

Humans have the metacognitive ability (see Glossary) to estimate the accuracy of their 

decisions via confidence ratings [1]. Metacognitive ability is reflected by the extent to which 

a person’s confidence ratings predict their objective performance on a task [2]. However, 

metacognitive judgments are not always reliable indicators of objective performance. We 

call this phenomenon metacognitive inefficiency. Metacognitive inefficiency occurs when 

confidence judgments are less informative about the accuracy of a decision than they could 

be. Many studies have explored the nature of this inefficiency. For example, substantial 

progress has been made in revealing the neural correlates of metacognitive inefficiency 

[3–12] and in understanding whether there are stable individual differences in metacognitive 

inefficiency [8,13–17]. Nevertheless, little attention has been paid to whether these efforts 
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identify the same sources of metacognitive inefficiency or how the different sources should 

be classified.

Here we explore the different sources of metacognitive inefficiency and classify them into 

four different categories based on the distinctions between systematic vs. non-systematic 

corruption, as well as failures of input vs. computation. We argue that different tasks are 

likely dominated by different sources of inefficiency and that ignoring this fact can lead 

to incorrect conclusions. While this Opinion focuses on understanding the (in)efficiency in 

the monitoring function of metacognition [18,19], we note that metacognition has additional 

functions such as control and social communication [18–22] and, in some cases, inefficiency 

in monitoring may arise from the efficient function of these other functions of metacognition 

or even from processes that are well adapted to the real world but not to the lab. In addition, 

we focus on metacognition in perceptual decision making but our conclusions apply equally 

well to metacognition in other domains such as memory, social, and value-based decisions.

Evidence for metacognitive inefficiency

Before we examine the different sources of metacognitive inefficiency, we briefly review the 

evidence for metacognitive inefficiency. One can identify both model-based and model-free 
evidence for metacognitive inefficiency, that is, evidence that is or is not derived from a 

computational model. Model-based evidence stems primarily from 2-choice tasks that are 

well described by signal detection theory (SDT). SDT can provide a theoretical ideal 

for the maximum informativeness of confidence judgments for these types of tasks in 

the form of stimulus sensitivity, d’. Using SDT assumptions, one can derive a measure 

of the informativeness of confidence ratings, called meta-d’, that is in the same units as 

the stimulus sensitivity, d’ [23]. For observers with ideal metacognitive efficiency, meta­

d’ should equal d’, implying that confidence ratings are as informative as the primary 

decision. Therefore, observations of meta-d’ < d’ are typically taken as evidence for 

the presence of metacognitive inefficiency. Such observations are common [3,7,24–31], 

suggesting widespread metacognitive inefficiency. Critically, examining the data from 

individual subjects demonstrates that within the same task, some people are able to achieve 

metacognitive efficiency very close to meta-d’ = d’, whereas many others fall far below this 

ideal [3,32,33]. Such findings suggest that the ideal prescribed by SDT is indeed attainable, 

and therefore values of meta-d’ substantially lower than d’ are a sign of metacognitive 

inefficiency. (It should be noted that values of meta-d’ > d’ have also been observed but the 

reason behind them remain ill understood [34] and therefore are not further explored here.)

Beyond model-based demonstrations, there are many findings of confidence-accuracy 

dissociations that provide model-free evidence for metacognitive inefficiency. Indeed, a 

number of papers have demonstrated the existence of experimental conditions matched on 

accuracy but with different levels of confidence [28,35–41]. If metacognition were perfectly 

efficient, higher confidence should always be associated with higher accuracy and therefore 

such confidence-accuracy dissociations would not exist. Thus, the presence of metacognitive 

inefficiency is already well established with both model-based and model-free methods. 

What is less clear, however, is where this inefficiency comes from.
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Previously proposed sources of metacognitive inefficiency

Given the importance of understanding and improving the quality of confidence judgments, 

it is perhaps surprising that little attention has been paid to distinguishing and systematizing 

the sources of metacognitive inefficiency. What is worse, the lack of attention to this issue 

has resulted in an implicit assumption that metacognitive inefficiency is monolithic such that 

all failures of metacognition are effectively the same. Here, we first review the previously 

proposed sources of metacognitive inefficiency as they have been identified in the literature 

and then develop a new system for classifying these sources.

Random noise that selectively affects confidence judgements

Metacognitive inefficiency can occur when confidence is influenced by random noise that 

does not affect the perceptual decision. These noise sources can affect either the signal used 

for confidence or the confidence computation itself.

Noise in the signal for confidence.—Perhaps the most widely proposed source of 

metacognitive inefficiency is the existence of random noise in the information used for 

confidence computation [5,7,25,26,29,38,42–44]. For example, decreases in metacognitive 

efficiency due to transcranial magnetic stimulation have been theorized to arise from 

increased noise in the signal used to determine confidence [7,38,42]. Similarly, many models 

have accounted for metacognitive inefficiency by postulating signal decay [29,44–46] or 

random noise [26,29,33,43] in the signal used to generate metacognitive judgments.

Noise in the confidence computations.—A related source of metacognitive 

inefficiency is random noise in the confidence computations. One example is criterion 
jitter [47]: the inability of observers to maintain stable confidence criteria over trials [48]. 

This source of metacognitive inefficiency can be very difficult to distinguish from a noisy 

signal and sometimes the two sources of noise are mathematically equivalent [33]. Several 

cognitive factors like fatigue and multitasking may induce noisy confidence computations 

(or noisy signal for confidence) but the evidence for this is currently mixed [27,49,50].

Non-random, systematic factors that differentially affect confidence and accuracy

Metacognitive inefficiency can arise from systematic sources that differentially affect 

confidence and accuracy, thus decreasing the correspondence between the two judgements. 

Below, we discuss three possible scenarios by which such factors can cause inefficiency.

Factors that affect confidence judgements but not accuracy.—Many examples of 

confidence judgments being influenced by factors unrelated to accuracy exist. For instance, 

the confidence judgment on the current trial is affected by the confidence on previous trials 

[48,51,52]. This “confidence leak” phenomenon occurs even when the previous confidence 

was given for a different task [51] or when confidence judgments were not elicited explicitly 

[53]. Such previous confidence judgments have virtually no influence on the accuracy of the 

current trial and thus should have been ignored.

In addition, confidence has been found to be modulated by several other non-perceptual 

factors including physiological variables such as one’s level of arousal [54,55], highly 
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accessible perceptual cues such as the font size in which to-be-remembered words are 

printed [56], the contrast in which to-be-remembered pictures are presented [57], and the 

stimulus uncertainty in a dimension irrelevant to the current decision [40,58–63]. In all of 

these cases, the critical factor affected the confidence ratings but not the task accuracy.

Other examples of confidence incorporating factors not predictive of accuracy come from 

findings that metacognitive judgments are influenced by how we act, independent of the 

content of the initial perceptual decision. For example, outputs of motor areas have been 

shown to inform confidence judgements. Indeed, transcranial magnetic stimulation delivered 

to the premotor cortex decreased both confidence and metacognitive efficiency independent 

of task performance [25]. Similarly, subthreshold motor activations before a planned 

response, which are thought to proxy corrected motor plans, correlated positively with 

confidence but not accuracy [64]. Further studies have shown that confidence is affected 

by manipulations of movement-related parameters such as increasing movement speed 

[65] and extending response times without affecting accuracy [66]. In all of these cases, 

manipulations related to how an action is executed or internally represented changed the 

confidence ratings without affecting the accuracy on the task, thus resulting in metacognitive 

inefficiency.

Factors that affect accuracy but not confidence judgements.—In addition 

to confidence being influenced by factors unrelated to accuracy, another source of 

metacognitive inefficiency is confidence not being influenced enough by factors that do 

affect accuracy. By ignoring, or at least not fully incorporating such factors, confidence 

ratings become less informative and metacognitive efficiency decreases. Perhaps the best­

known example of this phenomenon is the positive evidence bias [30,41,67–69]. This bias 

consists in the tendency for confidence ratings to disproportionately weigh the evidence 

in favor of a decision while ignoring evidence that is incongruent with that decision. 

For example, one study [68] showed that whereas perceptual choices are characterized 

by symmetric contributions of evidence for and against a choice, confidence is strongly 

modulated by evidence for the chosen response and completely insensitive to evidence 

against the chosen response. A related phenomenon is the finding that, in some situations, 

confidence is insensitive to signal variability even though this variability affects task 

accuracy [70]. Finally, confidence is unaffected by masked stimuli even though they affect 

performance on the task [28].

Incorrect weighting of sensory signals for confidence.—Finally, it is also possible 

that confidence judgments weigh inappropriately different parts of the sensory signal itself. 

Indeed, in some situations, the signal on which the primary decision and confidence are 

based may itself consist of many different individual signals. This is the case when multiple 

stimuli are being judged but is also true for individual stimuli under certain classes of 

models such as models based on sequential sampling [71]. In such cases, it is possible that 

confidence is based only on a subset of all of the available signals that affected the accuracy 

on the task. For example, confidence ratings may consider only the last part of the evidence 

accumulation process or only on the evidence of some accumulators but not others [72,73].
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Confidence computing the “wrong” quantity

To be maximally predictive of accuracy, confidence computations should be such that the 

final confidence rating is given by placing criteria directly on the axis of the probability 

of being correct, although the criteria themselves may be biased (resulting in over- or 

under-confidence). Following previous literature [63,74–76] we refer to such confidence 

computation as “reflecting” probability correct. Several studies employing 2-choice tasks 

have found that, for the majority of subjects, confidence does not reflect probability correct 

but rather reflects heuristic decision rules that approximate but do not compute the posterior 

probability of being correct [75,77]. Similarly, a recent paper examined confidence in 

3-choice tasks and found that subjects do not base their confidence on the probability of 

being correct in such tasks; instead, confidence appears to reflect the difference in posterior 

probability between the most likely and the second most likely option [74].

Methodological issues that masquerade as metacognitive inefficiency

Finally, in addition to the genuine sources of metacognitive inefficiency highlighted above, 

there are certain methodological factors that, if ignored, can masquerade as metacognitive 

inefficiency. For example, subjects may strategically shift their confidence criteria as they 

are learning a task (e.g., if they were instructed to use the whole confidence scale and they 

realize midway through the experiment that they are not) or adapting to external conditions 

such as communicating with a partner [20,22]. In addition, some sources of “inefficiency” 

may only be problematic in a lab setting but still constitute appropriate heuristics outside 

the lab (Box 1). Conversely, many factors – such as inattention, lack of motivation, unclear 

instructions, or unintuitive confidence scales – are sometimes informally considered as 

sources of metacognitive inefficiency but in fact cannot directly corrupt the confidence 

ratings. Instead, to the extent to which these factors contribute to metacognitive inefficiency, 

they necessarily do so via the same computational mechanisms highlighted above (e.g., 

lack of motivation might increase criterion jitter or the noise in the sensory signal for 

confidence).

Categorizing the sources of metacognitive inefficiency

As the brief overview above shows, a number of sources of metacognitive inefficiency have 

already been identified and there are likely even more sources yet to be discovered. The 

large number of individual sources described in the literature makes it necessary that we 

identify critical dimensions that can help us better understand the nature of these sources of 

metacognitive inefficiency. We propose that existing sources of metacognitive inefficiency 

could be understood based on two key considerations: 1) does the corruption arise from 

systematic (predictable) or non-systematic (random) causes, and 2) is the corruption due 

to the input to the confidence computation or due to the confidence computation itself. 

Taken together, these two dimensions create four categories of metacognitive inefficiency 

(see Figure 1, Key Figure).

Non-systematic vs. systematic sources of inefficiency

In the first categorization, we can distinguish between non-systematic (Categories 1 and 

2) and systematic (Categories 3 and 4) sources of metacognitive inefficiency. The critical 
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difference is that the influence of the systematic sources can be predicted on a trial-by­

trial basis, whereas the influence of the non-systematic sources cannot. For example, the 

presence of high positive evidence or high confidence on the previous trial can be used 

to predict that confidence on the current trial would be relatively high, which makes 

these phenomena systematic sources of metacognitive inefficiency. On the other hand, the 

presence of random noise can tell us to expect a noisy confidence judgment but does not 

allow us to predict if the confidence rating would be low or high, which makes random noise 

a non-systematic source of metacognitive inefficiency. Among the sources reviewed above, 

noise in the signal for confidence (equivalent to Category 1 here) and noise in the confidence 

computation (equivalent to Category 2 here) are non-systematic, whereas all of the other 

sources (which fall under Categories 3 and 4 here) are systematic.

At present, there is a strong bias towards viewing metacognitive inefficiency as primarily 

due to non-systematic corruption. Indeed, as already mentioned, random noise in the 

signal for confidence (Category 1) is perhaps the most ubiquitously assumed source of 

metacognitive inefficiency and appears in many models of confidence [5,7,25,26,29,38,42–

44]. However, there is yet no empirical evidence that any of the observed metacognitive 

inefficiency stems from random, non-predictable sources. Instead, it might be that 

metacognitive inefficiency is only caused by systematic sources. However, if these sources 

are not measured or modeled, then the only way of capturing their influence is by 

postulating a non-systematic source of noise. For example, confidence may systematically 

change based on the confidence on the previous trial or the variance of the signal on the 

current trial, but, if these quantities are not modeled, then it will appear as if confidence 

ratings are corrupted in a random fashion.

Therefore, at present, the inclusion of non-systematic sources of metacognitive inefficiency 

in models of metacognition should not be taken literally as a substantive claim that the actual 

source of metacognitive inefficiency is truly random and non-predictable. Stated differently, 

studies that model metacognitive inefficiency as stemming from random noise in the sensory 

signal [7,26,29,33,78] ought not be interpreted as evidence that this type of corruption 

(Category 1) is the true cause of the observed inefficiency. Ultimately, determining the 

role of non-systematic sources of inefficiency would require measuring and quantifying all 

systematic sources of corruption; the inefficiency that is left unexplained after that can more 

confidently be attributed to random, non-systematic sources.

Input vs. computational failures

In the second categorization, we can distinguish between sources of metacognitive 

inefficiency related to the input to the confidence computation (Categories 1 and 3) vs. 

the computation itself (Categories 2 and 4; Figure 1). Input failures cast metacognitive 

inefficiency as due to the metacognitive system operating with noisy, corrupted, or 

incomplete signals. If the system responsible for generating confidence ratings does not 

have access to the same type or quality of information as the system making the primary 

decision, then this would be an input failure. On the other hand, computational failures cast 

metacognitive inefficiency as due to computational deficiencies unrelated to the incoming 

signal. If the metacognitive system does have access to the same information as the system 
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making the primary decision, but still generates confidence ratings that are not as predictive 

of accuracy as they could be, then this would be a computational failure.

Similar to the bias towards non-systematic sources of metacognitive inefficiency, there 

appears to be a bias towards casting metacognitive inefficiency as stemming from input 

failures. Indeed, the majority of the systematic sources of metacognitive inefficiency 

reviewed above are typically seen as input failures (Category 3) but for virtually all of these 

sources, the corruption could easily be due to a computational failure instead (Category 4). 

For example, positive evidence bias, which results from the neglect of decision-incongruent 

information, could occur either because metacognition does not have access to decision­

incongruent evidence (Category 3 failure) or because it chooses to exclude or underweight 

this information in its computation (Category 4 failure). Analogous to the systematic 

sources of corruption, it is also much more common to model non-systematic sources 

of metacognitive inefficiency as noise in the signal rather than noise in the confidence 

criteria even though these sources of corruption are often mathematically equivalent [33]. 

Therefore, for both systematic and non-systematic sources of metacognitive inefficiency, 

the decision on whether to cast them as input or computational failures largely depends on 

the bias of the individual modeler rather than direct empirical evidence. In fact, currently 

we can only unambiguously distinguish between input and computational failures in the 

cases described above as confidence computing the “wrong” quantity: Those sources of 

metacognitive inefficiency are clearly due to computational (Category 4) rather than input 

failures (Category 3). Thus, despite the bias towards casting metacognitive inefficiency 

as stemming from input failures, we currently only have strong evidence for cases of 

metacognitive inefficiency stemming from computational failures.

Ultimately, adequately adjudicating between input and computation failures is likely to 

require the development of new neural or behavioral methods where each type of failure 

can be identified or manipulated. Indeed, parallel efforts within perceptual decision making 

have been successful in disentangling the sensory and decisional sources of corruption in 

perceptual decisions [79].

Determining the importance of each source of metacognitive inefficiency

Many modeling papers subsume all sources of metacognitive inefficiency under the umbrella 

term of metacognitive noise, which is random, non-systematic noise in the confidence 

ratings that is not present in the perceptual decision [7,26,29,33,43,48]. Unless different 

systematic sources of metacognitive inefficiency are measured and modeled, lumping all 

sources into a single non-systematic noise term is perhaps the best we could do. However, 

many systematic sources of metacognitive inefficiency have been identified and they can 

indeed be measured and modeled [30,45,46,51,67,74,75]. This gives us an opportunity to 

determine the extent to which each source of metacognitive inefficiency contributes to the 

overall inefficiency of the confidence ratings.

How can this be done in practice? A promising approach is to include multiple sources 

in a single model and then compare their relative contributions. Perhaps the simplest way 

of implementing this approach is to build a model that includes both a specific systematic 
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source of metacognitive inefficiency and a catch-all, non-systematic noise term. The relative 

contributions of each source can then be assessed based on the best fitting parameters of 

the model. For example, one could examine the strength of metacognitive inefficiency if one 

source of inefficiency is removed, and thus compare the relative contribution of each. In fact, 

some papers already include models with multiple sources of metacognitive inefficiency 

[45,74], and in such cases it should already be possible to compare the influence of the 

different sources of inefficiency. In other cases, models that only account for a specific 

systematic source of inefficiency [30,51] can be augmented with relative ease by adding 

an additional, non-systematic source of noise. In addition, future studies can combine two 

or more of systematic sources of inefficiency and assess their relative contribution. A 

specific example of this approach is presented in Box 2. Making such complex models 

identifiable requires experiments with more complex designs – such as having tasks with 

multiple alternatives, manipulating stimulus contrast, or measuring arousal – but many such 

datasets are already freely available [80]. Therefore, immediate progress on distinguishing 

the contributions of different sources of metacognitive inefficiency is within reach.

Implications for existing research

Appreciating that metacognitive inefficiency is not a monolithic phenomenon has 

strong implications for our understanding of domain generality of metacognition [3,6,83–

85,8,13,14,16,17,32,81,82] and other cognitive skills such as intelligence, learning, and 

creativity [86,87]. A skill is domain general when the same system, consisting of a single 

set of neural and cognitive mechanisms, is responsible for its execution across multiple 

tasks. On the other hand, a skill is domain specific if different systems are responsible for 

its execution in different tasks. Determining whether a process is domain general or domain 

specific thus has strong implications about the organization of cognition. Critically, in both 

metacognition and other fields, the existence of domain generality or specificity has been 

assessed based on inter-task correlations in performance with high correlations being a sign 

of domain generality and low correlations being a sign of domain specificity.

However, this logic implicitly assumes a single source of corruption for all tasks. 

Appreciating the possibility of multiple sources of inefficiency instead offers an alternative 

explanation for such findings. Specifically, it could be that there is a single system for 

computing confidence across all tasks (that is, metacognition is fully domain general) and 

the correlations in metacognitive accuracy between tasks are driven by the overlap in the 

sources of inefficiency for the different tasks (Figure 2). In this interpretation, high inter-task 

correlations imply that the same source of metacognitive inefficiency dominates both tasks, 

whereas low correlations suggest that the two tasks are dominated by different, uncorrelated 

sources of inefficiency. This alternative interpretation is supported by a recent study which 

found that using a particular task type increased the inter-task correlation in metacognitive 

efficiency across the domains of perception and memory [82], consistent with the idea that 

different domains are dominated by different sources of noise but using the same task type 

allows similar sources of metacognitive inefficiency to prevail in both tasks. It should also be 

noted that a lack of correlation may also arise due to insufficient statistical power with larger 

studies being more likely to find significant correlations [13,82,84].
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The existence of multiple sources of metacognitive inefficiency also has implications for 

the neural correlates of metacognitive inefficiency [3–5,51]. Previous studies have measured 

the correlation between metacognitive ability and various brain measures. Although this is 

an important first step towards understanding the neural basis of metacognitive inefficiency, 

the presence of an omnibus correlation does not reveal which sources of metacognitive 

inefficiency are mediated by the anatomical regions uncovered by such correlations. 

Identifying the different sources of metacognitive inefficiency in a given task can therefore 

allow a much more precise interpretation of the role of different brain regions, and 

potentially uncover additional anatomical correlates associated with sources of noise that 

were not dominant in previously used tasks.

Concluding remarks

Metacognition is inefficient but, unlike dominant assumptions in the field, this inefficiency 

is not monolithic. Here we review the different sources of metacognitive inefficiency and 

identify four different categories based on the distinction of systematic vs. non-systematic 

and input vs. computation failures. This categorization is general and should apply to 

many other areas of cognition. We argue that to understand the nature of metacognitive 

judgments, it is critical that future studies go beyond simply determining the existence 

of inefficiency and attempt to pinpoint its exact sources. Accomplishing this goal will 

likely necessitate the use of more complex tasks and models. This effort is likely to lead 

to surprises: We may discover that the main sources of metacognitive inefficiency are 

not the ones we thought (see Outstanding Questions). Identifying the exact sources of 

metacognitive inefficiency may also necessitate that we revise our ideas about whether 

metacognition is a fully domain-general process or whether some sub-domains have their 

own dedicated metacognitive systems. Finally, a mechanistic understanding of the exact 

sources of metacognitive inefficiency will result in greater insight into neuropsychiatric 

disorders characterized by disruptions of metacognition [88–92] and potentially allow us 

to create targeted interventions to improve the quality of confidence ratings, especially in 

high-stakes situations such as eyewitness testimony [93].
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Box 1.

The ultimate reasons for metacognitive inefficiency

Given the importance of confidence in the real world [39,94–98], it is natural to ask why 

metacognitive inefficiency was not eliminated by evolution.

If they exist, non-systematic sources of metacognitive inefficiency are likely caused by 

inherent processing or resource limitations [27,50]. It is possible that random input noise 

is due to inevitable signal corruption associated with passing information from decision 

circuits to circuits involved in confidence computations. Similarly, it could be that neural 

circuits cannot perform noiseless computations and phenomena like criterion jitter are 

inevitable. These two categories of metacognitive inefficiency can thus be expected to be 

similar across different tasks and to have a detrimental effect in both the real world and 

the laboratory.

On the other hand, the ultimate cause of the systematic sources of metacognitive 

inefficiency is likely different. Of course, it is possible that some of them are also 

due to processing or resource limitations, especially when computing the probability of 

being correct is complex or resource-demanding [75,77]. However, in many cases, it 

is more likely that the ultimate reason for these sources of metacognitive inefficiency 

is that confidence is based on mechanisms that are well adapted to the real world but 

not to the laboratory. For instance, unlike in the lab, decisions in the real world are 

rarely between two discrete alternatives [74,99] and estimating the evidence associated 

with each of many possible alternatives is inefficient and often impossible. Therefore, in 

such situations, confidence may be based exclusively on the evidence for the most likely 

option, which could explain findings of positive evidence bias [30]. Similarly, in the real 

world, there is a high degree of temporal continuity between events that can be exploited 

by our decision-making systems, which could explain the confidence leak phenomenon 

[51]. Finally, it may be beneficial if confidence in the real world reflects other quantities 

and not just the accuracy of the primary decision [30,67,74].

Therefore, the metacognitive inefficiency observed in the lab may be due both to inherent 

limitations of the system and to the fact that confidence has evolved to be employed in 

different situations than the ones commonly used in the lab. It remains an open question 

which set of factors ultimately has a higher contribution to metacognitive inefficiency.
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Box 2.

Determining the influence of different sources of metacognitive inefficiency

There are many sources of metacognitive inefficiency but it is unlikely that they are 

all equally important. Here we outline how one could begin to determine the strength 

of the influence of different sources. Specifically, we model the influence of (1) the 

confidence on the previous trial, (2) the arousal on the current trial, and (3) a catch-all, 

non-systematic source of noise that captures all remaining sources of metacognitive 

inefficiency.

Consider a 2-choice task where the stimulus s can come from two categories s = {−1,1}. 

The signal for the decision, rdec, is corrupted by Gaussian sensory noise but is not 

influenced by any of the three factors above, such that rdec = N s ∗ μ, σs2 , where μ is 

the signal strength and σs2 is the variance of the sensory noise. The decision d can be 

made such that d =
−1, rdec ≤ 0
1, rdec > 0 . The confidence variable, rconf, can then be modeled 

as a function of the decision, d, the decision variable, rdec, and the three sources of 

inefficiency above. There are many possible models for the confidence variable but here 

we will consider an extremely simple model for illustration.

Let confprev be the confidence on the previous trial, the parameter a be the level of 

arousal measured on the current trial, and ϵ = N 0, σmeta2  be a non-systematic source of 

noise with zero mean and variance of σmeta2 . One possible model of confidence generation 

is based on the following formula for the confidence variable:

rconf = f d, rdec, confprev, a, ϵ = d ∗ rdec + w1 ∗ confprev + w2 ∗ a + ϵ

where w1 and w2 are weights which have to be estimated. This model thus has three 

free parameters – w1, w2, and σmeta2  – corresponding to the strength of influence of 

each factor. Additional free parameters would be needed to transform rconf into discrete 

confidence ratings. Note that this model is silent on whether the sources of metacognitive 

inefficiency stem from input or computational failures as both interpretations are viable.

Assuming that this model fits the data better than competing models, we can then 

assess the relative contribution of each source of metacognitive inefficiency. One way 

of doing so could be to simulate the observer’s behavior by removing the influence 

of each of these three sources in turns from the formula for rconf and determining the 

resulting improvement in metacognitive efficiency (meta-d/d’). This approach would tell 

us how much better one’s metacognitive ability could have been had a specific source of 

metacognitive inefficiency been avoided.
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Glossary Box

• Confidence ratings: Subjective ratings indicating how certain subjects are 

in their response. Confidence ratings are often assumed to indicate the 

probability of being correct but recent works shows that this may not always 

be the case.

• Criterion jitter: The tendency for criteria that should remain stable over the 

course of an experiment to shift from trial to trial. Jitter in confidence criteria 

leads to lower informativeness of the confidence ratings and is a type of 

metacognitive noise.

• Domain general vs. domain specific: The idea that the same system 

(domain general) or different systems (domain specific) are responsible for 

the performance across two or more tasks. Whether different metacognitive 

tasks are domain general or domain specific has been typically assessed by 

correlating the metacognitive scores across subjects on these tasks.

• Metacognitive ability: The ability of the subject to use metacognitive 

ratings of confidence to differentiate between correct and incorrect responses. 

Higher metacognitive ability means that one’s confidence ratings are more 

informative of their own accuracy.

• Metacognitive inefficiency: A phenomenon whereby metacognitive ratings 

of confidence are less informative about the accuracy of a decision that they 

could be.

• Metacognitive noise: A type of noise that affects confidence ratings but not 

the primary decision. Metacognitive noise is a feature of many recent models 

of confidence. Its existence leads to counterintuitive predictions that have 

recently been empirically validated [26].

• Model-based: Evidence for a phenomenon that comes from testing the 

assumptions of a computational model. For example, model-based evidence 

for metacognitive inefficiency that comes from findings of meta-d’ < d’, 

where both meta-d’ and d’ are measures derived from SDT, which predicts 

that meta-d’ = d’ for ideal observers.

• Model-free: Evidence for a phenomenon that does not depend on 

the assumptions of specific computational models. For example, task 

manipulations that affect confidence but not accuracy (or vice versa) 

constitute model-free evidence for metacognitive inefficiency because for 

ideal observers, a given confidence level must always map to the same 

accuracy level irrespective of the assumed computational model.

• Signal detection theory: A theory of perceptual decision making used to 

model choice behavior (often in two-choice tasks) relating choice behavior to 

the way sensory information is represented internally.
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Outstanding Questions Box

• What other sources of metacognitive inefficiency exist beyond the ones 

discussed in this Opinion?

• What are the relative contributions of each of the sources of metacognitive 

inefficiency? Are some sources more important than others?

• How can we determine whether random, non-systematic sources of 

metacognitive inefficiency truly exist or if they are just mathematical tools 

used to help our models fit the data better?

• How can we find out if a given source of metacognitive inefficiency affects 

the input to the confidence computation or the computation itself? Which of 

these two types of failure (input vs. computation) has greater influence on the 

metacognitive inefficiency observed empirically?

• What additional dimensions (beyond systematic/non-systematic and input/

computation) exist on which the sources of metacognitive inefficiency could 

be usefully classified?

• Are different tasks dominated by different sources of metacognitive 

inefficiency? If so, how can we know in advance which task is likely to be 

dominated by which source of metacognitive inefficiency?

• In tasks for which the corresponding metacognitive scores are uncorrelated, 

how can we determine if the lack of correlation is due to the presence of 

domain-specific mechanisms or different sources of noise that dominate the 

different tasks?

• Do the brain areas previously shown to correlate with metacognitive ability 

mediate all sources of metacognitive inefficiency or only a subset of these 

sources?
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Highlights Box

• Many studies have shown that confidence ratings are less informative than 

they could be, a phenomenon we refer to as metacognitive inefficiency.

• We review the sources of metacognitive inefficiency and classify them into 

four different categories, such that each source is either non-systematic 

(random and non-predictable) or systematic (predictable), and corrupts either 

the input to the confidence computation or the confidence computation itself.

• We suggest ways to determine the relative contribution of different sources to 

the overall metacognitive inefficiency observed on a given task.

• The existence of multiple independent sources of metacognitive inefficiency 

leads to a re-interpretation of studies that rely on the correlation between 

metacognitive scores to determine whether metacognition is domain general 

or domain specific.
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Figure 1, Key Figure. Categorizing the sources of metacognitive inefficiency.
(A) Metacognitive inefficiency may arise from either systematic or non-systematic sources, 

as well as from failures in either input or computation. (B) Combining these two 

dimensions results in four categories of metacognitive inefficiency. Non-systematic sources 

of metacognitive inefficiency (Categories 1 and 2) lead to random perturbations that 

cannot be used to predict confidence on a trial-by-trial basis, whereas systematic sources 

of metacognitive inefficiency (Categories 3 and 4) lead to predictable perturbations that 

can be used to predict confidence on a trial-by-trial basis. Input failures (Categories 1 

and 3) affect the signal for confidence such that confidence ratings are bound to be less 

informative regardless of the computation, whereas computational failures (Categories 2 

and 4) are due to the metacognitive system arriving at less informative confidence ratings 

despite working with signals that allow for more informative confidence ratings to be made. 

Several categories of failures can co-exist within a single task. Metacognitive inefficiency is 

currently most often viewed as input failure (Categories 1 and 3) but in virtually all cases 

the empirical findings could also be explained as computational failure instead (Categories 2 

and 4). Similarly, many models include non-systematic sources of noise (Categories 1 and 2) 
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but it is currently unclear whether confidence judgments are corrupted by truly random noise 

or by unmodeled systematic sources of metacognitive inefficiency (Categories 3 and 4).
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Figure 2. Interpreting metacognitive accuracy correlations between different tasks.
It is typically assumed that the correlation between the metacognitive scores on two different 

tasks can be used to infer whether metacognition is domain general (claimed in cases 

of positive correlation) or domain specific (claimed in cases of no correlation) [3,6,83–

85,8,13,14,16,17,32,81,82]. However, a markedly different interpretation of such findings is 

possible. According to this interpretation, metacognition is a priori assumed to be domain 

general. A lack of correlation between two different tasks is then taken as evidence that the 

two tasks are dominated by different sources of metacognitive inefficiency. For example, the 

upper panel depicts a situation where two different sources of noise completely determine 

the extent of metacognitive inefficiency in Tasks 1 and 2, and therefore the correlation in the 

metacognitive score between these tasks is zero. On the other hand, if the contribution of 

each source is comparable (bottom panel), then a positive correlation is observed. Thus, in 

this alternative interpretation, metacognition is simply assumed to be domain general and the 

strength of correlation between the metacognitive accuracy on two different tasks is taken as 

evidence regarding whether different sources of metacognitive noise dominate the two tasks.
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