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ABSTRACT	 Objective: Immune checkpoint inhibitors have revolutionized cancer therapy for multiple types of solid tumors, but as expected, a 

large percentage of patients do not show durable responses. Biomarkers that can predict clinical responses to immunotherapies at 

diagnosis are therefore urgently needed. Herein, we determined the associations between baseline gut commensal microbes and the 

clinical treatment efficiencies of patients with thoracic neoplasms during anti-programmed death protein 1 (PD-1) therapy.

Methods: Forty-two patients with advanced thoracic carcinoma who received anti-PD-1 treatment were enrolled in the study. Baseline 

and time-serial stool samples were analyzed using 16S ribosomal RNA gene sequencing. Tumor responses, patient progression-free 

survival, and overall survival were used to measure clinical outcomes.

Results: The diversities of the baseline gut microbiota were similar between responders (n = 23) and nonresponders (n = 19). 

The relative abundances of the Akkermansiaceae, Enterococcaceae, Enterobacteriaceae, Carnobacteriaceae and Clostridiales Family XI 

bacterial families were significantly higher in the responder group. These 5 bacterial families acted as a commensal consortium 

and better stratified patients according to clinical responses (P = 0.014). Patients with a higher abundance of commensal microbes 

had prolonged PFS (P = 0.00016). Using multivariable analysis, the abundance of the commensal consortium was identified as an 

independent predictor of anti-PD-1 immunotherapy in thoracic neoplasms (hazard ratio: 0.17; 95% confidence interval: 0.05–0.55; 

P = 0.003).

Conclusions: Baseline gut microbiota may have a critical impact on anti-PD-1 treatment in thoracic neoplasms. The abundance of 

gut commensal microbes at diagnosis might be useful for the early prediction of anti-PD-1 immunotherapy responses.
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Introduction

Increasing evidence has suggested that avoiding immune 

destruction during the pathogenesis of cancer is an 

additional hallmark of cancer1. Key immune evasive path-

ways, including the CD28/cytotoxic T-lymphocyte antigen 

4 axis and the programmed death-ligand 1 (PD-L1)/PD-1 

axis, which are known as immune checkpoint inhibitors 

(ICIs), are therefore promising therapeutic targets for drug 

development2-5. ICIs currently approved by the U.S. Food 

and Drug Administration for non-small cell lung cancer 

(NSCLC) include atezolizumab, nivolumab, and pembroli-

zumab4,6,7. Furthermore, the success of immunotherapy 

for NSCLC patients has led to similar benefits for patients 

with other rare thoracic malignancies, such as thymic epi-

thelial tumors, mesothelioma, and small cell lung cancer 

(SCLC)8-10.
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Due to the complexity of the immune system, immunothera-

peutic biomarkers are fundamentally different from targeted 

therapy biomarkers. PD-L1 expression on cancer cells has 

always been a research focus11. In the KEYNOTE-024 trial 

involving patients with treatment-naïve advanced NSCLC with 

high PD-L1 expression on the surface of tumor cells and wild-

type EGFR and ALK, pembrolizumab significantly improved 

progression-free survival (PFS), overall survival (OS), and the 

objective response rate (ORR)12. Unlike first-line treatment, 

PD-L1 status alone is not sufficient to ensure a response to 

ICI treatment using second-line therapy. The CheckMate 057 

study showed that prolonged OS with nivolumab treatment 

was correlated with higher levels of tumor PD-L1 expression, 

but treatment efficacy was also reported in patients with less 

than 1% PD-L1 expressions13. In addition to tumor PD-L1 

expression, tumor mutational burden, tumor lymphocyte 

infiltrate, peripheral blood biomarkers, and the gut microbi-

ota are emerging biomarkers for checkpoint inhibitor-based 

immunotherapy14-18.

The gut microbiota, which is composed of 1013–1014 

microorganisms, can be considered an endogenous factor 

that continuously influences daily life19. Animal models for 

microbiota studies have shown that it has an important effect 

on host physiology, including on the regulation and remod-

eling of immune responses20-22. Multiple studies have shown 

that gut microbes profoundly influence cancer immunother-

apy23-26. Fecal DNA sequencing prior to ICI treatment identi-

fied a relationship between the gut microbiome compositions 

and therapeutic responses in NSCLC, renal cell carcinoma, 

and melanoma17,27,28. The aim of the present study was there-

fore to provide a clear understanding of the predictive poten-

tial of the gut microbiome prior to ICI therapy, by quantitat-

ing the relative percentages of putatively identified “beneficial” 

bacteria.

Materials and methods

Patients

This retrospective study, from January 2018 to July 2019, 

included patients with advanced thoracic carcinoma at the 

National Cancer Center/National Clinical Research Center 

for Cancer/Cancer Hospital, Chinese Academy of Medical 

Sciences and Peking Union Medical College. The enrolled 

patients were diagnosed with stage IV thoracic carcinomas and 

initially received immune monotherapy. The exclusion crite-

ria were patients receiving antibiotics (ATBs) at the initiation 

of immunotherapy. The flow chart for this study is shown in 

Figure 1. This study was approved by the ethics committee of 

the National Cancer Center/National Clinical Research Center 

for Cancer/Cancer Hospital, Chinese Academy of Medical 

Sciences and Peking Union Medical College.

Baseline characteristics were collected from medical records 

(Table 1). In general, treatment efficacy evaluation was per-

formed by imaging examinations every 2 or 3 cycles. Patients 

receiving single-agent nivolumab were assessed every 3 cycles, 

43  patients with thoracic neoplasms Collecting feces

Excluding patient with
antibiotics (n = 1)

Anti-PD-1 therapy

Treatment efficacy evaluated by imaging examinations

2 stool samples at the sencond
cycle excluded due to antibiotics

Baseline stool samples collected
(23 responders and 19 nonresponders)

Serial stool samples collected
(n = 70)

16S ribosomal RNA
gene sequencing

Combination of clinical information and sequencing data 

Figure 1  Flow chart of this study.
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Table 1  Baseline characteristics of patients with thoracic neoplasms

Characteristics   Total (n = 42)  NR (n = 19)  R (n = 23)   P

Age, years         0.769

  <65   30 (71.4%)   14 (73.7%)   16 (69.6%) 

  ≥65   12 (28.6%)   5 (26.3%)   7 (30.4%)  

Gender         1

  Female   10 (23.8%)   5 (26.3%)   5 (21.7%)  

  Male   32 (76.2%)   14 (73.7%)   18 (78.3%) 

ECOG PS         1

  0   1 (2.4%)   0 (0.0%)   1 (4.3%)  

  1   17 (40.5%)   8 (42.1%)   9 (39.1%)  

  2   24 (57.1%)   11 (57.9%)   13 (56.5%) 

Smoking status         0.453

  Nonsmoker   13 (31.0%)   7 (36.8%)   6 (26.1%)  

  Smoker   29 (69.0%)   12 (63.2%)   17 (73.9%) 

Histology         0.087

  Lung adenocarcinoma   15 (35.7%)   9 (47.4%)   6 (26.1%)  

  Lung squamous carcinoma   23 (54.8%)   7 (36.8%)   16 (69.6%) 

  Other†   4 (9.5%)   3 (15.8%)   1 (4.3%)  

Mutation status         0.122

  EGFR   5 (11.9%)   4 (21.1%)   1 (4.3%)  

  ALK   1 (2.4%)   1 (5.3%)   0 (0.0%)  

  KRAS   1 (2.4%)   0 (0.0%)   1 (4.3%)  

  WT/unknown   35 (83.3%)   14 (73.7%)   21 (91.3%) 

Metastasis sites         0.125

  <2   14 (33.3%)   4 (21.1%)   10 (43.5%) 

  ≥2   28 (66.7%)   15 (78.9%)   13 (56.5%) 

Number of prior systemic regimens        0.002*

  <3   30 (71.4%)   9 (47.4%)   21 (91.3%) 

  ≥3   12 (28.6%)   10 (52.6%)   2 (8.7%)  

Previous systemic therapy         0.808

  Platinum-based therapy   36 (85.7%)   16 (84.2%)   20 (87.0%) 

  Other systemic therapy   5 (11.9%)   2 (10.5%)   3 (13.0%)  

  Unknown   1 (2.4%)   1 (5.3%)   0 (0.0%)  

Prior radiotherapy         0.525

  No   15 (35.7%)   8 (42.1%)   7 (30.4%)  

  Yes   27 (64.3%)   11 (57.9%)   16 (69.6%) 

Usage of ATB         1

  No   40 (95.2%)   18 (94.7%)   22 (95.7%) 

  Yes   2 (4.8%)   1 (5.3%)   1 (4.3%)  

*P < 0.05 was considered significant. †Other included 1 SCLC, 1 NSCLC, 1 thymic squamous carcinoma, and 1 large cell neuroendocrine 
carcinoma. ATB: antibiotics.
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and patients receiving other anti-PD-1 inhibitors were assessed 

every 2 cycles. Therapeutic response was evaluated as complete 

response (CR), partial response (PR), stable disease (SD), and 

progressive disease (PD) according to the Response Evaluation 

Criteria in Solid Tumors, version 1.1. Responders (R, n = 23) 

were defined as those with CR, PR, or SD. Nonresponders 

(NR, n = 19) were defined as those with PD. The ORR was 

defined as the percentage of patients experiencing an objec-

tive response (CR or PR) as the best response to anti-PD-1 

therapy, while disease control rate (DCR) was categorized as 

the percentage of CR, PR, or SD. PFS was defined as the period 

from the initiation of anti-PD-1 antibody treatment to the 

date of disease progression. OS was defined as the time from 

anti-PD-1 therapy initiation to death. The last follow-up was 

April 27, 2020.

Sample collection and DNA extraction

Fresh feces were collected at the pretreatment visit and contin-

uously collected before each cycle of infusion (Supplementary 

Figure S1). A collection kit including protectant medium was 

given to patients. Samples were collected by patients and 

frozen at -80 °C. Total fecal DNA extraction was conducted 

according to the noncommercial protocol Q recommended 

by the International Human Microbiome Consortium 

(http://www.human-microbiome.org/). The DNA concen-

tration was determined using a Qubit™ dsDNA HS Assay Kit 

(Thermo Fisher Scientific, Waltham, MA, USA). DNA integrity 

was evaluated by 1% agarose gel electrophoresis. Samples with 

sterile water served as negative controls.

PCR amplification and Illumina sequencing

PCR amplification of the V4 variable region was performed 

using 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 

806R (5′-GGACTACNVGGGTWTCTAAT-3′) primers. PCR 

products were purified using AMPure XP beads (Beckman 

Coulter, Brea, CA, USA). Purified amplified fragments were 

then amplified by 8 cycles of PCR using a KAPA HiFi HotStart 

Ready Mix (2×) (Roche, Basel, Switzerland) and Illumina 

adaptor-specific primers (Illumina, San Diego, CA, USA). 

Indexed libraries were then purified with AMPure XP beads 

(Beckmann Coulter) and sequenced on an Illumina HiSeq 

platform (Illumina). Details on the 16S ribosomal RNA gene 

amplicon preparation protocol with Illumina were previously 

described (https://www.illumina.com/).

Sequence analysis

Sequencing data analysis was performed using QIIME version 

1 and was grouped into operational taxonomic units (OTUs) 

against the SILVA (version 132) database at 97% similarity29,30. 

Rarefaction curve analysis, alpha diversity, and beta diversity 

of the gut microbiota were assessed by Microbiome Analyst 

packages31. The Chao1, Shannon, and Simpson indices were 

calculated to measure the richness and evenness of OTUs 

within a sample31. Beta diversity analysis between samples was 

assessed using the Bray-Curtis distance and visualized by prin-

cipal coordinate analysis (PCoA) plots31. The cumulative-sum 

scaling method was used to determine the microbiome com-

position from phylum to genus levels32. Heat map visualiza-

tion of gut microbiota was performed at the family level, and 

was clustered using hierarchical clustering with Euclidean 

distance.

Statistical analysis

Statistical analyses were conducted with SPSS statistical soft-

ware for Windows, version 22.0 (IBM, Armonk, NY, USA) 

and Prism 6.0 (GraphPad, San Diego, CA, USA). The Chao1, 

Shannon, and Simpson indices were used to compare the 

differences between samples, and a nonparametric Mann-

Whitney test or Kruskal-Wallis test was used to compare dif-

ferences in the relative abundance of taxa. Receiver operating 

characteristic (ROC) curves were used to calculate the cut-off 

value of 5 bacterial families and the commensal consortium. 

The Fisher test was performed to determine the correlation 

between the gut microbiota and response rate. Survival curves 

were estimated using the Kaplan-Meier method (log-rank 

test). Univariate and multivariate analyses were conducted 

using the Cox regression model. All reported tests were two-

tailed and considered significant at P < 0.05.

Results

Patient characteristics

A total of 42 patients were enrolled in this study (Table 1). 

Thirty (71.4%) of the 42 patients were younger than 

65-years-old at initial diagnosis, 32 (76.2%) of the 42 

patients were male, and 29 patients (69.0%) were smokers. 

The performance status ranged from 0 to 2, with 57.1% of 

patients having a performance status equal to 2 prior to ICI 

http://www.human-microbiome.org/
https://www.illumina.com/
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initiation. Of these patients, 23 (54.8%) had lung squamous 

carcinomas, 15 had lung adenocarcinomas, 1 had a SCLC, 

1 had a NSCLC, 1 had a thymic squamous carcinoma, and 

1 had a large cell neuroendocrine carcinoma. Five patients 

had EGFR mutations, 1 had a KRAS mutation, and 1 had an 

ALK fusion. Twenty-eight (66.7%) patients had more than 2 

metastatic sites at the initiation of immunotherapy. Thirty 

(71.4%) patients received systemic therapies of less than 

the third-line setting prior to immunotherapy. Thirty-six 

(85.7%) patients received platinum-based therapies before 

the initiation of ICIs, 27 (64.3%) patients received radiother-

apy before ICIs, and 2 (4.8%) patients received ATBs during 

ICI treatment. A significant difference was found between the 

R and NR cohorts in terms of the number of prior systemic 

regimens (P = 0.002). No significant difference was found in 

other patient characteristics between the R and NR cohorts.

Gut microbiome diversity at baseline between 
responders and nonresponders to anti-PD-1 
therapy

Rarefaction curve analysis was performed and tended to reach 

a plateau, indicating that the sequencing depth was sufficient 

to estimate the total microbial diversity (Supplementary 

Figure S2A and S2B). The alpha diversity captures the rich-

ness and evenness of the OTU distribution in the commu-

nity33. The Chao1 index, Shannon index, and Simpson index 

were then selected for the analysis of alpha diversity. There 

was no significant difference in the Chao1 index, Shannon 

index, or Simpson index at the OTU level between the R and 

NR groups at baseline (P = 0.545, P = 0.719, and P = 0.628, 

respectively; Figure 2A, 2B, and 2C). We further analyzed the 

beta diversity between the two groups, which reflects the sim-

ilarity or difference between sample groups33. The beta diver-

sity results were visualized by PCoA. PCoA based on the OTU 

profile showed no separation between the two groups (Figure 

2D).

Differences in the baseline microbiome 
compositions between the two groups

Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria 

were the main microbiomes at the phylum level in the cur-

rent study (Figure 3A). However, they were not signifi-

cantly different between the R and NR groups (Figure 3B). 

We then compared the different compositions at the family 

level and identified 5 bacterial families that were more 

abundant in the R group than in the NR group (Figure 4A, 

4B, and Supplementary Table S1). Akkermansiaceae and 

Enterococcaceae were enriched in the R group (P = 0.041 

and P = 0.023, respectively). Akkermansia and Enterococcus 

are commensal genera in patients with NSCLC who benefit 

from anti-PD-1 therapy17. The bacterial genus Granulicatella, 

which represents the majority of the Carnobacteriaceae 

family, was significantly associated with superior clini-

cal responses (P  =  0.039, Supplementary Figure S3 and 

Table S2). Some studies also showed that the bacterial gen-

era, Granulicatella and Peptoniphilus, as well as the bacterial 
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Figure 2  Gut microbiota diversity between the responder (R, n = 23) and nonresponder (NR, n = 19) groups at baseline. (A, B, C) Chao1 
index, Shannon index, and Simpson index between the R and NR groups at the operational taxonomic unit level. Statistical analysis was per-
formed using the Mann-Whitney test. P > 0.05 for all tests. (D) Principal coordinate analysis was based on the Bray-Curtis distance. P > 0.05 
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family, Enterobacteriaceae, are found in the normal gut micro-

biota and are commensal microbes34-36.

Association between baseline commensal 
microbes and PFS

Five bacterial families enriched in the R group were regarded 

as a commensal consortium, and the relative abundance of 

the commensal consortium stratified patients more accu-

rately according to clinical responses (P = 0.014; Figure 5A). 

Receiver operating characteristic curve analysis was per-

formed, and the cut-off abundances of the 5 bacterial families, 

as well as the commensal consortium, were calculated. The 

cut-off value of the commensal consortium was 0.003, which 

stratified patients with high levels of commensal microbes 

versus low levels of commensal microbes (Figure 5B). Next, 

we examined the impact of baseline commensal microbes on 

the response rate. None of the patients achieved a complete 

response (CR) in the current study. A high level of commen-

sal microbes compared with the low level group was not 

different in terms of ORR, but significantly associated with 

a higher DCR (P = 0.000; Figure 5C and Supplementary 

Table S3). The median follow-up was 13.44 months [95% 

confidence interval (CI): 11.62–15.25]. The median PFS 

for all patients in this study was 2.82 months (95% CI: 

0.41–5.24) and the median OS was 16.00 months (95% 

CI: 11.84–20.16). Baseline fecal commensal microbes were 

significantly associated with the patient PFS (P = 0.00016; 

Figure 5D); however, it did not influence the OS (P = 0.84; 

Supplementary Figure S5). Patients with a higher commen-

sal bacterial abundance had a prolonged PFS. More precisely, 

the Akkermansiaceae, Enterococcaceae, Enterobacteriaceae, 

Carnobacteriaceae, and Clostridiales Family XI were all 

over-represented at diagnosis in patients with longer PFS 

(Supplementary Figure S6A–6E). The predictive capability 

of baseline commensal microbes was evaluated using Cox 

proportional hazards regression. Using univariate analysis, 

the mutation status of patients (P = 0.011), the number of 

prior systemic regimens (P = 0.000), and baseline fecal com-

mensal microbes (P = 0.000) were all significantly associated 

with PFS. Moreover, using multivariate analysis, the base-

line fecal commensal consortium and the number of prior 
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systemic regimens were still significant factors affecting PFS 

(P = 0.003 and P = 0.006, respectively; Table 2).

The gut microbiota composition is similar 
during anti-PD-1 treatment.

To better characterize the abundance of gut commensal 

bacteria, time-serial fecal samples were collected during 

anti-PD-1 therapy. Diversities calculated by both the Shannon 

and Simpson indices were not altered by anti-PD-1 ther-

apy (P  =  0.434 and P = 0.807, respectively; Supplementary 

Figure S4A and S4B). Four main bacterial phyla, namely, 

Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria, 

remained stable from baseline to different time points (Kruskal-

Wallis test; P > 0.05; Figure 6A). As shown in Figure 6B, the 

bacterial percentages at the family level were not significantly 

altered during the treatment (Kruskal-Wallis test; P > 0.05). 

Moreover, the percentages of 5 bacterial families abundant in 

the R group at baseline, as well as the commensal microbiome, 

slightly fluctuated over the course of anti-PD-1 treatment 

(Kruskal-Wallis test; P > 0.05; Figure 6C). Combined analyses 

of the data showed that the gut microbiome composition was 

not significantly modified by anti-PD-1 therapy in patients 

with advanced thoracic carcinoma.
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Discussion

This study showed that compositional differences in the base-

line gut microbiome were associated with anti-PD-1 ther-

apeutic responses in patients with thoracic neoplasms. The 

relative abundances of 5 bacterial families (Akkermansiaceae, 

Enterococcaceae, Carnobacteriaceae, Enterobacteriaceae, and 

Clostridiales Family XI) were significantly different between 

the R and NR groups, and they were all over-represented in the 

R group. The high level of the commensal microbiome group 

also exhibited an increased DCR and longer PFS. In addition, 

the relative abundance of this baseline commensal consortium 

was an independent risk factor for checkpoint blockade ther-

apy responses.

Routy et al.17 reported that Akkermansia and Enterococcus 

were commensal bacterial genera, and were significantly asso-

ciated with clinical responses in NSCLC. They also reported 

that Akkermansia was enriched in patients with a longer 

PFS17. Our results confirmed these conclusions at the family 

level. Moreover, our study showed that the Enterobacteriaceae, 

Carnobacteriaceae, and Clostridiales Family XI bacterial 

families were also associated with favorable responses to 

anti-PD-1 treatment. Although the immune system of the 

host is activated by infection, Enterobacteriaceae is required 

by intestinal epithelial cells (IECs) to clear the patho-

gen36. In mouse models of Citrobacter rodentium infection, 

inflammation changes the metabolic landscape of IECs and 

leads to the colonization of anaerobes37. The growth of the 

Enterobacteriaceae family switches the metabolism and oxy-

gen availability of IECs, which might cooperate with the 

innate immune response of the host38. In the present study, 

the main genus detected in the Carnobacteriaceae family was 

Granulicatella. Until now, there has been no report of the 

beneficial roles of gut Granulicatella in patients with tho-

racic neoplasms during anti-PD-1 therapy. A previous study 

of HIV-infected individuals showed that Granulicatella was a 

commensal microbe in the respiratory tract39. Katagiri et al.40 

showed that the Carnobacteriaceae family and Granulicatella 

genus, which were over-represented in the gut microbiome 

after rehabilitation for dysphagia, affected the systemic health 

of stroke survivors. Moreover, in the current study, the rich-

ness of the Carnobacteriaceae bacterial family was relatively 

Table 2  Univariate and multivariate analyses for progression-free survival in the cohort

Covariates   Comparisons  
 

Univariate analysis   P  
 

Multivariate analysis

Median PFS in months (95% CI) P   HR (95% CI)

Age   ≥65 vs. <65   5.13 (2.02–8.23) vs. 1.41 (0.03–2.80)   0.345    

Gender   Male vs. female   4.11 (0.47–7.45) vs. 1.81 (0.20–3.41)   0.626    

Histology   Squamous vs. adenocarcinoma   5.13 (2.19–8.07) vs. 1.81 (1.01–2.60)   0.119    

  Others vs. adenocarcinoma   1.28 (0.67–1.89) vs. 1.81 (1.01–2.60)   0.861    

Smoking status   Smoker vs. non-smoker   2.83 (0.00–6.05) vs. 2.73 (0.75–4.71)   0.994    

ECOG PS   0 vs. 2   5.49 (NA) vs. 2.73 (1.10–4.36)   0.547    

  1 vs. 2   4.11 (0.36–7.85) vs. 2.73 (1.10–4.36)   0.476    

Mutation status   EGFR/ ALK vs. others   1.35 (0.12–2.57) vs. 5.13 (1.64–8.61)   0.011*   0.701   0.74 (0.16–3.49)

Metastasis sites   <2 vs. ≥2   5.49 (0.00–11.31) vs. 2.00 (0.71–3.30)   0.199    

Number of prior 
systemic regimens

  <3 vs. ≥3   5.49 (3.64–7.34) vs. 1.28 (1.25–1.32)   0.000*   0.006*   0.15 (0.04–0.58)

Previous systemic 
therapy

  Other systemic therapy vs. 
platinum-based therapy

  6.83 (NA) vs. 2.83 (0.20–5.45)   0.987    

Prior radiotherapy   Yes vs. no   5.13 (1.63–8.62) vs. 1.38 (1.26–1.50)   0.276    

Usage of ATB   Yes vs. no   0.69 (NA) vs. 2.83 (0.40–5.25)   0.671    

Commensal microbiome  High vs. low   5.13 (1.52–8.73) vs. 1.28 (0.85–1.71)   0.000*   0.003*   0.17 (0.05–0.55)

*P < 0.05 was considered significant.
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increased in the R group, indicating that Carnobacteriaceae 

in the gut benefited anti-PD-1 therapeutic responses. The 

Clostridiales family XI family was also significantly enriched 

in the R group. Many members of the Clostridiales family XI, 

including Peptoniphilus, have been shown to utilize peptone 

as the major metabolic product41. This genus colonizes the 

normal gut and upper respiratory tract of humans35. Many 

species of this genus can act as opportunistic pathogens in 

immunocompromised patients and are associated with pol-

ymicrobial infections42-44. Because this genus contains not 

only pathogenic species but also probiotic species, future 

studies will be needed to verify the relationship between 

anti-PD-1 therapy and this bacterial genus.

Among clinical characteristics, the present study showed 

that the number of prior systemic regimens was associated 

with responses to anti-PD-1 therapy. Using multivariate anal-

yses, patients receiving third-line or the above systemic treat-

ments prior to ICIs had a shorter PFS. The result was mainly 

due to worse performance status and a relatively larger tumor 

burden in the heavily treated patients. The number of prior 

regimens was also associated with decreased OS in another 

cohort of patients with NSCLC receiving ICI therapy45. 

Previous studies have shown that gut microbiota are not mod-

ified by ICI treatment in patients with NSCLC and metastatic 

melanoma28,46. Our study also found that the gut microbiota 

composition, especially commensal bacteria, remained stable 

in serial stool samples. This suggested that a higher level of the 

commensal microbiome at baseline provided long-term bene-

fits for patients receiving ICI therapy.

A diverse array of commensal bacteria that reside in the 

gastrointestinal tract are important entry sites against inva-

sion from pathogens, and the intestinal immune system is 

devoted to protecting against infections and other diseases47,48. 

Evidence has emerged that there is a strong correlation between 

commensal bacteria and clinical responses to immunotherapy. 

Matson et  al.27 showed that the ratio of beneficial bacteria 

to “non-beneficial” bacteria could be a predictor of clinical 

responses to checkpoint blockade therapy in patients with 

metastatic melanoma. In mouse models of melanoma, the oral 

administration of commensal Bifidobacterium improved den-

dritic cell function and tumor-specific CD8+ T cell responses, 

promoting anti-tumor immunity involving checkpoint block-

ade49. Furthermore, 11 low abundance commensal strains of 

human gut microbiota induced the accumulation of interfer-

on-γ-producing CD8 T cells and simultaneously enhanced 

ICI therapy50. Importantly, our study also showed that 5 

bacterial families that were abundant in the responders might 

act as a commensal consortium that more accurately stratified 

patients according to clinical responses.

There were some limitations in our study. First, the number 

of patients enrolled in the present study was relatively small, 

and the findings require validation in another larger, inde-

pendent cohort. In addition, due to the limited resolution of 

16S sequencing, long-read sequencing or shotgun sequencing 

are needed to distinguish between related bacterial families. 

Moreover, owing to the issues mentioned above, we failed to 

detect bacteria with a negative impact on ICI therapy at base-

line, which might also be important in clinical responses27.

Conclusions

Our findings provided an example of gut-resident commen-

sal microbiota that were associated with a favorable response 

to anti-PD-1 therapy in patients with thoracic neoplasms. 

Importantly, when a high level of the commensal consortium 

was present in the pretreatment feces, patients had a better 

prognosis.
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