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ABSTRACT	 The emergence and clinical application of immunotherapy is considered a promising breakthrough in cancer treatment. According 

to the literature, immune checkpoint blockade (ICB) has achieved positive clinical responses in different cancer types, although 

its clinical efficacy remains limited in some patients. The main obstacle to inducing effective antitumor immune responses with 

ICB is the development of an immunosuppressive tumor microenvironment. Myeloid-derived suppressor cells (MDSCs), as major 

immune cells that mediate tumor immunosuppression, are intimately involved in regulating the resistance of cancer patients to 

ICB therapy and to clinical cancer staging and prognosis. Therefore, a combined treatment strategy using MDSC inhibitors and 

ICB has been proposed and continually improved. This article discusses the immunosuppressive mechanism, clinical significance, 

and visualization methods of MDSCs. More importantly, it describes current research progress on compounds targeting MDSCs to 

enhance the antitumor efficacy of ICB.
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Introduction

As cancer progresses, a complex tumor microenvironment 

(TME) is gradually formed through the interaction of immune 

cells infiltrating the tumor tissue with cancer cells1. To cope 

with the pathological changes in the body, the immune sys-

tem activates effectors that exert antitumor effects2. However, 

myeloid-derived suppressor cells (MDSCs), regulatory T cells 

(Tregs), and other immunosuppressive cells are induced by 

tumors and antagonize the effector function of cytotoxic T 

lymphocytes (CTLs), thereby preventing their infiltration into 

tumor tissues3,4. Moreover, the inhibitory immune checkpoint 

molecules programmed death 1 (PD1) and cytotoxic T lym-

phocyte-associated antigen 4 (CTLA4), among other molecules 

expressed on T cells, bind their ligands and subsequently par-

ticipate in mediating T cell inhibition5. These inhibitory reac-

tions impair T cell activation and are considered the main 

mechanisms promoting tumor progression and immune 

escape6. Because the immune system has plasticity and can be 

reprogramed to exert antitumor effects, several immunothera-

pies emerged and quickly received widespread attention7.

Immunotherapies, including monoclonal antibody (mAb) 

therapy and immune cell immunotherapy, have shown poten-

tially beneficial results in clinical applications8,9. Phase III clin-

ical trials with immune checkpoint blockade (ICB) therapies, 

including anti-PD1/PD-L1 or anti-CTLA4 mAbs, have shown 

positive antitumor activity and prolonged overall survival 

in the treatment of various solid and hematological malig-

nancies10. However, some cancer patients show little or no 

response to ICB therapy11,12. The efficacy of immunotherapy  

depends on enhancing effective CTL responses to tumor-

associated antigens, and patients with low immunogenic 

tumors may lack sufficient preexisting tumor-infiltrating  

lymphocytes (TILs), thus resulting in a limited response to ICB 

therapy13,14. Therefore, an urgent need remains to improve the 

responses of patients with various types of cancer to ICB ther-

apy and to enhance its antitumor efficacy.
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Relieving immunosuppression, a typical feature of the 

TME15, is a potent strategy to enhance the efficacy of ICB 

therapy. Among the immunosuppressive cells infiltrating into 

tumors, MDSCs are significantly associated with intratumoral 

immunosuppression through multiple mechanisms, and their 

inhibitory activity is closely involved in disease progression 

and poor prognosis in cancer patients16,17. Vigorously ampli-

fied and activated MDSCs in cancer patients lead to T cell 

suppression and impair the antitumor immune response18. 

In addition, cancer tissues with high MDSC infiltration have 

been shown to be associated with patient resistance to various 

immunotherapies15. The aim of ICB in cancer patients is to 

reverse the immunosuppressive signals in the TME19, and the 

levels of MDSCs in cancer patients may be a prerequisite for 

initiating ICB therapy20. Therefore, the development of com-

bined immunotherapies that target MDSC-mediated immu-

nosuppressive pathways to improve the antitumor efficacy of 

ICB therapy has very broad prospects21.

Given the gradually increasing clinical application of com-

bined treatments, comprehensive and updated literature 

reviews on the current combination of MDSC inhibition and 

ICB are lacking. In this review, we describe the immunosup-

pressive properties, clinical value, and visualization methods 

of MDSCs. Importantly, we focus on strategies for targeting 

MDSCs and compounds combined with ICB therapy.

The role of MDSCs in the TME

Classification of MDSCs

A heterogeneous population of myeloid-derived cells is 

defined as MDSCs22. MDSCs consist of 2 groups of cells termed 

polymorphonuclear MDSCs (PMN-MDSCs) and monocytic 

MDSCs (M-MDSCs)23. In humans, PMN-MDSCs are char-

acterized by CD11b+CD33+HLA-DR−/CD14−CD15+, and 

M-MDSCs are characterized by CD11b+CD33+HLA-DR−/

CD14+CD15−24. In mice, the Gr-1-specific antibody binds 

Ly6G and Ly6C22. PMN-MDSCs have a CD11b+Ly6G+Ly6Clow 

phenotype, and M-MDSCs have a CD11b+Ly6G−Ly6Chi 

phenotype22.

In tumor tissues, M-MDSCs dominate the MDSC classifica-

tion, whereas in peripheral lymphoid organs, the proportion 

of PMN-MDSCs is much greater than that of M-MDSCs25. 

M-MDSCs mainly upregulate the expression of arginase 1 

(ARG1), inducible nitric oxide synthase (iNOS) and trans-

forming growth factor β (TGFβ), thus causing nonspecific T 

cell inactivation26. PMN-MDSCs produce excessive reactive 

oxygen species (ROS) and reactive nitrogen species (RNS), 

which cause effector T cells to lose their response to anti-

gen-specific stimulation but retain their ability to respond 

to nonspecific stimulation27. Therefore, the inhibitory char-

acteristics of the MDSCs present in tumors and peripheral 

lymphoid organs differ. In addition, owing to the biochemical 

and functional heterogeneity of MDSCs, differences exist in 

the MDSC phenotypes present in different cancer types, and 

these phenotypes change with the cancer environmental con-

ditions28. In most types of cancer, PMN-MDSCs account for 

more than 80% of all MDSCs23.

Immunosuppressive function of MDSCs

Under physiological conditions, only a small number of 

MDSCs exist in the circulation and participate in regulating 

tissue repair and immune responses15. In the tumor-driven 

microenvironment, the population of MDSCs is greatly 

expanded by the induction of tumor-derived growth fac-

tors and proinflammatory cytokines derived from the tumor 

stroma29. Activated MDSCs then induce anergy in effec-

tor T cells, thus impairing the innate and adaptive immune 

responses through multiple mechanisms (Figure 1).

Enrichment in MDSCs results in excessive consumption 

of L-arginine and L-cysteine—amino acids necessary for T 

cell proliferation and activation30,31. After stimulation with 

cytokines including interferon γ (IFN-γ), interleukin 10 (IL-

10), and tumor necrosis factor β (TNF-β), MDSCs overex-

press ARG1 and consequently consume L-arginine32. MDSCs 

express cystine–glutamate transporters (Xc−) and compete 

with antigen-presenting cells for the uptake of extracellu-

lar L-cysteine, thereby preventing T cells from importing 

L-cysteine31. In addition, the elimination of these necessary 

amino acids decreases T cell-CD3ζ, interferes with T cell Janus 

kinase/signal transduction and transcription activator (JAK/

STAT) signaling proteins and inhibits MHC class II molecules, 

thereby suppressing T cells32,33.

L-Tryptophan is also an important amino acid for T cell 

function34. MDSCs express indoleamine-2,3-dioxygenase 

(IDO), which consumes L-tryptophan, and the resultant 

metabolite kynurenine diminishes the activity of T cells and 

natural killer (NK) cells and increases Treg production35,36. IDO 

helps tumors evade immune surveillance by depleting trypto-

phan in the TME and induces immunosuppressive responses 

by inhibiting the functions of CTLs37. These disordered T cells 
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secrete IFN-γ, thus further increasing the expression of IDO 

and perpetuating the immunosuppressive cycle38.

Oxidative stress mediated by ROS and RNS is a crucial 

mechanism in MDSC-mediated immunosuppression33. The 

NADPH oxidase (NOX) complex, composed of S100A8, 

S100A9, and gp91phox, regulates ROS generation by MDSCs. 

High ROS levels and their interaction with nitric oxide 

(NO) contribute to the formation of strong biological RNS 

such as peroxynitrite (ONOO−) through the regulation of 

ARG1, NOX, and iNOS227,33. Tumor-associated myeloid cells 

release ROS such as hydrogen peroxide (H2O2), which medi-

ates the loss of the TCR ζ-chain and consequently inhibits T 

cell activation33. RNS cause the nitration or nitrosylation of 

CC-chemokine ligand 2 (CCL2), thus inhibiting the infiltra-

tion of TILs into the tumor core39. More importantly, the gen-

eration of ROS and RNS by MDSCs eliminates the ability of 

CD8+ T cells to bind peptide-MHC complexes and weakens 

the antigen-specific responses of peripheral CD8+ T cells by 

modifying TCR and CD8 molecules27.

In addition to the main mechanisms described above, 

MDSCs inhibit T cells through other means. MDSCs decrease 

the L-selectin levels on effector T cells through the plasma 

membrane expression of a disintegrin and metalloproteinase 

17 (ADAM17), thus preventing T cells from homing to tum-

ors or lymph nodes40. MDSCs accumulating at tumor sites are 

exposed to a hypoxic and inflammatory microenvironment25. 
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Figure 1  Mechanisms of MDSC-mediated immunosuppression. In healthy individuals, hematopoietic stem cells (HSCs) differentiate into 
immature myeloid cells (IMCs); IMCs can differentiate into granulocytes or monocytes, or further differentiate into mature macrophages or 
dendritic cells (DCs). In cancer patients, the maturation process of IMCs is disrupted, thus resulting in a dramatic expansion of the MDSC 
population. The activated MDSCs in the TME (i) express ARG1 and Xc−, thus depriving T cells of L-arginine and L-cysteine, which are essential 
for proliferation and activation; (ii) consume L-tryptophan by expressing IDO, thus inhibiting the activity of T cells and NK cells and increasing 
Treg production; (iii) release ROS and RNS, which mediate loss of the TCR ζ-chain and the nitration or nitrosylation of TCR signaling complex 
components and CCL2; (iv) express ADAM17, which cleaves CD62L, thereby preventing naive T cells from migrating to tumors or lymph nodes 
and subsequently forming effector T cells; (v) express PD-L1, which binds PD1 on T cells; and (vi) secrete IL-10 and TGF-β, which stimulate Treg 
activation and expansion.
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Hypoxia-inducible factor-1α (HIF-1α) has been reported to 

participate in the regulation of high levels of PD-L1 expressed 

by MDSCs; PD-L1 binds PD1 and subsequently induces T cell 

failure41. Furthermore, MDSCs stimulate the activation and 

expansion of Tregs by secreting IL-10 and TGF-β42. Excessive 

Treg infiltration in the TME promotes tumor progression and 

is associated with poor prognosis in cancer patients43.

Clinical importance and visualization 
of MDSCs

The prognostic value of MDSCs

Compared with those in healthy individuals, circulating 

MDSCs in cancer patients in all stages are significantly ele-

vated, and MDSC levels are strongly associated with the clini-

cal cancer stage and metastatic tumor burden44.

MDSCs promote tumor angiogenesis45,46 and can induce 

epithelial-mesenchymal transition and cancer cell stemness 

or cancer stem cell expansion, thereby promoting metasta-

sis47. Before tumor cells reach premetastatic sites, MDSCs 

significantly decrease IFN-γ levels; increase proinflamma-

tory cytokine and matrix metalloproteinase 9 (MMP9) pro-

duction; and promote vascular remodeling, thereby forming 

an inflammatory and immunosuppressive environment48. 

MDSCs have also been reported to interfere with the senes-

cence-related secretory phenotypes of tumors through secret-

ing interleukin-1 receptor antagonists (IL-1Rα), thereby 

antagonizing tumor cell senescence49. On the basis of this evi-

dence, high levels of MDSCs in cancer patients predict poor 

prognosis.

The influence of MDSCs on treatment effects

In cancer patients, expanded MDSC populations and immu-

nosuppressive states arise by the time at which precancerous 

lesions are present and gradually become aggravated with 

tumor progression50. However, few effector T cells are found 

in preinvasive lesions, owing to MDSC infiltration into tumors 

in a mutually exclusive manner51. Therefore, blocking MDSCs 

early in the course of immunotherapy is important.

Patients diagnosed with non-small cell lung cancer who 

cannot be treated surgically have lower overall survival if they 

have high M-MDSC levels in the peripheral blood before 

receiving chemotherapy52. In addition, among patients with 

pancreatic adenocarcinoma undergoing chemotherapy, those 

with progressive disease have clearly higher MDSC levels in 

the peripheral blood than those with stable disease53.

Studies have shown that low baseline percentages of periph-

eral MDSCs before ICB therapy or their decrease during treat-

ment indicates positive outcomes54. Thus, effective detection 

of the dynamic distribution of MDSCs in vivo would provide 

favorable information for evaluating cancer patients’ responses 

to various therapies, as well as their prognoses.

Methods for visualizing MDSCs

Traditional MDSC detection is mainly dependent on meas-

urements in vitro or invasive methods50. Because the imag-

ing of S100A8/A9 released by MDSCs reflects the abundance  

of MDSCs in premetastatic sites and the establishment 

of an immunosuppressive environment, antibody-based 

single-photon emission computed tomography has been 

applied to detect S100A8/A9 in vivo and has made substan-

tial progress55. A premodified CD11b-specific mAb has been 

used to radiolabel PMN- and M-MDSCs, and positron emis-

sion tomography (PET) imaging has subsequently been used 

to noninvasively and quantitatively monitor the migration 

of MDSCs in multiple cancer types56. Moreover, some RNA 

aptamers that specifically recognize tumor-infiltrating MDSCs 

have been identified. These aptamers can be used not only to 

detect MDSCs but also to conjugate them to chemotherapeu-

tic drugs, and improve antitumor efficacy and targeted deliv-

ery of drugs to the TME57.

Near-infrared II (NIR-II) fluorescence imaging overcomes 

the barriers of penetration/contrast in the field of visible 

imaging58; on the basis of this technology, NIR-IIa and NIR-

IIb PbS/CdS quantum dot-based nanoprobes conjugated 

with 2 MDSC-specific antibodies have been created to target 

MDSCs in vivo59. This nanoprobe can clearly reveal the real-

time dynamic distribution of MDSCs in cancer patients in a 

non-traumatic manner through the colocalization of two-

color fluorescence; therefore, it has important clinical value for 

the evaluation of MDSC-targeted immunotherapy.

Strategies and compounds for 
targeting MDSCs

MDSCs promote tumor progression and metastasis and 

contribute to tumor immune escape through a variety of 
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mechanisms. The accumulation of MDSCs with substantial 

immunosuppressive activity in tumor tissues is associated 

with the resistance of cancer patients to multiple immuno-

therapies and with poor prognosis47. Strategies for targeting 

MDSCs to improve the antitumor effects of immunothera-

pies have sparked widespread interest and have made pos-

itive progress. As shown in Figure 2, these strategies com-

prise those that (1) prevent the recruitment of MDSCs; (2) 

promote the differentiation of MDSCs into mature cells; 

(3) deplete MDSCs in the circulation and the tumor; (4) 

inhibit the elimination of L-arginine mediated by MDSCs; 

(5) inhibit the activation of IDO in MDSCs; and (6) decrease 

the levels of ROS and RNS in MDSCs. We have selected sev-

eral compounds reported in recent years that affect MDSCs 

through these pathways. The results are divided into 6 cat-

egories according to the strategies used to target MDSCs 

(Table 1).

Preventing the recruitment of MDSCs

The factors that control the recruitment of MDSCs to tumors 

are essentially the same as those that regulate the migration 

of monocytes and neutrophils26. The absence of peripheral 

proliferation by MDSC subgroups suggests that targeting the 

chemokine system to inhibit the migration of MDSCs to tum-

ors is a potential therapeutic method for eliminating MDSCs 

from tumor tissues60.

MDSCs are recruited to tumor sites through GM-CSF; 

monocyte chemoattractant protein 1 (MCP1); CXCL1, 2, 5, 

and 12; IL-8; CSF1; prokineticin 2 (Prok2); CCL2; S100A8/9; 

and other factors derived from the TME47,61,62. In addition, 

the hypoxic environment at the primary tumor site induces 

the production of growth factors and cytokines that recruit 

MDSCs and decrease the cytotoxic effector functions of NK 

cell populations, thereby creating a premetastatic niche63.
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Figure 2  Combinations of MDSC-targeted compounds and ICB. A. SX-682, the Sema4D mAb and VPA inhibit the MDSC recruitment path-
way; B. HDC promotes the MDSC differentiation pathway; C. The TRAILR2 agonistic antibody promotes the MDSC elimination pathway; D. 
Phenformin and DMBG inhibit the L-arginine elimination pathway mediated by MDSCs; E. Indoximod, epacadostat, and navoximod inhibit the 
IDO pathway in MDSCs; F. Entinostat and inhibitors of PI3Kδ and γ inhibit the ROS and RNS pathways in MDSCs.
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Table 1  Compounds targeting MDSCs

Strategy   Compound   Mechanisms of action   Clinical state   Reference

Preventing the recruitment 
of MDSCs

  AZ13381758 
(CXCR2 SM)

  Inhibition of CXCR2   Trial in mice bearing pancreatic 
tumors 

  64

  TG100-115   Inhibition of PI3-kinase isoform 
p110γ

  Trial in mice bearing tumors   65

  Zoledronate   Inhibition of MMP-9 activity   FDA approved for multiple cancers  82

  1α,25-
Dihydroxyvitamin 
D3

  Inhibition of IL6/p-STAT3   Trial in mice bearing esophageal 
squamous cell carcinoma

  83

  Bevacizumab   Blocking of VEGF signaling   FDA approved for multiple cancers  84

  SX-682   Inhibition of CXCR2 signaling   Phase I trial in melanoma   85

  Sema4D mAb   Inhibition of MAPK-dependent 
chemokines such as CXCL1, 2, and 5

  Trial in mice bearing oral cancer   86

  VPA   Inhibition of HDAC activity and 
downregulation of CCR2

  FDA approved for multiple cancers  87

Promoting the differentiation 
of MDSCs into mature cells

  Icariin and ICT   Downregulation of S100A8/9, STAT3, 
and AKT

  Phase I trial in solid tumors; Phase 
III trial in hepatocellular carcinoma

  69

  ATRA   Activation of ERK1/2 and 
upregulation of the ROS scavenger 
GSH

  Phase II and Phase III trials in 
multiple cancers; Phase IV trial in 
acute promyelocytic leukemia

  70

  ATX   Activation of the Nrf2 signaling 
pathway to induce the synthesis of 
GSH

  Early Phase I trial in healthy 
volunteers; trial in mice bearing 
colon tumors 

  71

  Curcumin   Inhibition of activation of NF-κB and 
STAT3 signaling

  Phase II and Phase III trials in 
multiple cancers

  88

  MPSSS   Stimulation of the Myd88-dependent 
NF-κB signaling pathway

  Trial in mice bearing tumor   89

  Docetaxel   Decrease in pSTAT3 in MDSCs   FDA approved for multiple cancers  90

  WGP   Activation of dectin-1 receptor   Phase II trial in non-small cell lung 
cancer

  91

  HDC   Inhibition of NOX2   Phase IV trial in acute myeloid 
leukemia

  92

Depleting MDSCs in the 
circulation and tumor 
infiltration

  Anti-Ly6G mAb; 
anti-Ly6C mAb

  Depletion of MDSCs   Trials in mice bearing multiple 
types of tumors

  61

  BI 836858   Depletion of MDSCs by ADCC   Phase I trial in acute myeloid 
leukemia

  74

  Doxorubicin   Triggering of the apoptosis program 
of MDSCs

  FDA approved for multiple cancers  75

  Gemcitabine   Induction of MDSC apoptosis and 
necrosis

  FDA approved for multiple cancers  76

  5-FU   Activation of caspase-3 and 
caspase-7 to induce MDSC apoptosis

  FDA approved for multiple cancers  77

  Celecoxib   Inhibition of COX-2 and decrease in 
ROS

  FDA approved for multiple cancers  93
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Strategy   Compound   Mechanisms of action   Clinical state   Reference

  RGX-104   Promotion of MDSC apoptosis   Phase I trial in malignant neoplasms   94

  Anti-IL4Rα 
aptamer

  Inhibition of IL-4Rα–STAT6 signaling   Trial in mice bearing mammary 
carcinoma

  95

  Peptibody   Depletion of MDSCs by complement-
dependent cytotoxicity or ADCC and 
induction of MDSC apoptosis 

  Trials in mice bearing multiple 
types of tumors

  96

  DS-8273a   Induction of MDSC apoptosis by 
agonist of TRAIL-R2 

  Phase I trial in patients with 
advanced cancers

  97

Inhibiting the elimination 
of L-arginine mediated by 
MDSCs

  Phenformin   Decrease in the levels of ARG1 and 
S100A8/A9

  Phase I trial in melanoma   98

  LPS   Interference with the HMGB1-TLR4 
axis

  Phase I and Phase II trials in 
lymphoma 

  99

  DMBG   Neutralization of the glycosylation 
function of methylglyoxal

  Trial in melanoma-bearing mice   100

Inhibiting the activation of 
IDO in MDSCs 

  Indoximod   Inhibition of IDO   Phase III trials in multiple cancers   101

  Navoximod   Inhibition of IDO   Phase I trial in patients with 
recurrent/advanced solid tumors

  101

  Epacadostat   Inhibition of IDO   Phase III trial in multiple cancers   101

  BMS-986205   Inhibition of IDO   Phase I and Phase II trials in 
melanoma; Phase I trial in various 
other types of advanced tumors

  101

  1-MT   Inhibition of IDO   Phase I and Phase II trials in 
multiple cancers

  34

Decreasing the levels of ROS 
and RNS in MDSCs

  Sildenafil   Downregulation of ARG1 and NOS2 
expression

  FDA approved for multiple cancers  78

  CDDO-Me   Inhibition of STAT3 activity, 
upregulation of antioxidant genes, 
and decrease in ROS

  Phase I and Phase II trials in 
multiple cancers

  81

  AT38   Downregulation of ARG1 and NOS2, 
and decrease in RNS and N-CCL2

  Trials in mice bearing multiple 
types of tumors

  39

  NAC   Inhibition of ROS production   Phase I trial in multiple cancers; 
Phase II trial in patients at risk of 
melanoma

  102

  WA   Decrease in TNFα, IL6, IL10, and ROS   Trials in mice bearing multiple 
types of tumors

  103

  Entinostat   Decrease in ARG1, iNOS, and COX2   Phase I and Phase II trials in 
multiple cancers; Phase III trial in 
breast carcinoma 

  104

  IPI-145   Inhibition of PI3Kδ and PI3Kγ   Phase I and Phase II trials in 
head and neck squamous cell 
carcinoma; Phase III trial in 
lymphoma

  105

VPA, valproic acid; CCR2, CC-chemokine receptor 2; ATRA, all-trans retinoic acid; ATX, astaxanthin; WGP, whole β-glucan particles; 
HDC, histamine dihydrochloride; ADCC, antibody-dependent cellular cytotoxicity; 5-FU, 5-fluorouracil; LPS, lipopolysaccharides; DMBG, 
dimethylbiguanide; 1-MT, 1-methyl-L-tryptophan; NAC, N-acetylcysteine; WA, Withaferin A.

Table 1  Continued
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In pancreatic ductal adenocarcinoma treated with CXCR2 

signaling inhibitors, the migration of MDSCs and the for-

mation of a niche at the metastatic site are significantly sup-

pressed64. The phosphatidylinositol 3-kinase (PI3K) isoform 

p110γ is required for the integrin α4β1-mediated adhesion of 

myeloid cells. After activation, p110γ-dependent α4β1 recruits 

myeloid cells to tumor sites. In mice with breast carcinoma 

treated with the p110γ inhibitor TG100-115, MDSC recruit-

ment is significantly decreased65.

Promoting the differentiation of MDSCs into 
mature cells

In the tumor-driven microenvironment, proinflammatory 

cytokines such as prostaglandin-E2 (PG-E2), macrophage 

colony-stimulating factor (M-CSF), granulocyte colony-stim-

ulating factor (G-CSF), GM-CSF, stem cell factor (SCF), and 

vascular endothelial growth factor (VEGF) are involved in 

the induction of chronic inflammation in cancer26. The sig-

naling pathways in MDSCs triggered by cytokines converge 

on members of the JAK protein family and STAT3, thereby  

participating in the regulation of cell proliferation and dif-

ferentiation22. STAT3 suppresses dendritic cell (DC) differ-

entiation and increases MDSC accumulation and activa-

tion by upregulating the expression of S100A8 and S100A9, 

the transcription factor CCAAT-enhancer-binding protein  

β (C/EBPβ), interferon regulatory factor 8 (IRF8), and other 

important proteins33,66. STAT3 also upregulates NOX2 com-

ponents and increases ROS levels, thereby enhancing MDSC 

inhibition67. In addition, the interaction of T cell immuno-

globulin 3 (TIM3) on T cells and galectin 9 (Gal9) on MDSC 

precursors promotes MDSC proliferation and inhibits T cell 

responses68. Therefore, targeting proinflammatory cytokines 

to promote the maturation and differentiation of MDSCs is 

a promising strategy to decrease their population and abolish 

their immunosuppressive function.

When using the compound ICT, a derivative of icariin, to 

process MDSCs in vitro, the expression of S100A8 and S100A9 

and the activation of STAT3 and protein kinase B (AKT) in 

MDSCs are significantly inhibited, thus leading to a lower 

percentage of MDSCs and their differentiation into DCs and  

macrophages. Moreover, the conversion of this cell type is 

accompanied by the downregulation of IL-10, IL-6, and TNF-α 

production69. All-trans-retinoic acid (ATRA) is a retinoid 

receptor agonist that inhibits retinoic acid signaling. By medi-

ating the accumulation of glutathione (GSH) and neutralizing 

ROS, ATRA promotes the differentiation of MDSCs into 

mature myeloid cells70. The carotenoid astaxanthin (ATX) 

has considerable antioxidant activity. In ATX-treated tumor- 

bearing mice, the Nrf2 signaling pathway in MDSCs is activated 

and induces the synthesis of GSH, which in turn promotes 

further differentiation of MDSCs into macrophages or DCs71. 

These drugs not only weaken the immunosuppressive effects  

of MDSCs but also enhance the body’s innate immunity.

Depleting MDSCs in the circulation and in 
tumors

IL-4, IL-13, and IFN-γ, ligands for Toll-like receptors (TLRs) 

and TGF-β produced by activated T cells and tumor stromal 

cells, initiate multiple signaling pathways, such as STAT1, 

STAT6, and nuclear factor κB (NF-κB), thereby regulating 

MDSC activity72. The formation of a positive feedback loop 

between PG-E2 and cyclooxygenase 2 (COX2) contributes 

to stabilizing the phenotype of MDSCs and regulating their 

inhibitory function73.

In addition to inhibiting the activation of MDSCs, inducing 

their apoptosis is an effective strategy to deplete MDSCs in the 

circulation and in tumors. Preclinical studies have used anti-

Ly6C or anti-Ly6G antibodies to treat multiple tumor-bearing 

mouse models or to systematically eliminate MDSCs in mice, 

and enhanced antitumor effects have been observed61. In 

addition, the fully humanized, Fc-modified monoclonal anti-

body BI 836858 for CD33 has been found to consume MDSCs 

through antibody-dependent cell-mediated cytotoxicity74.

According to the evidence that the differentiation of 

MDSCs relies on the signal transduction of cellular tyrosine 

kinases, sunitinib treatment in cancer patients significantly 

decreases the effects of c-Kit and vascular endothelial growth 

factor receptor on MDSCs, thereby diminishing MDSC lev-

els15. Furthermore, low-dose chemotherapy effectively elimi-

nates MDSC populations in tumor-bearing mice26. Multiple 

chemotherapeutics, such as doxorubicin75, gemcitabine76, and 

5-fluorouracil (5-FU)77, have been reported to induce MDSC 

apoptosis, thus enhancing antitumor immune activity.

Inhibiting the immunosuppressive function of 
MDSCs

Eliminating MDSC-mediated immunosuppression and 

reversing the suppressed states of T cells are the main objec-

tives of immunotherapy. In this process, effective inhibition 
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of the key molecules in MDSC suppressive pathways is cru-

cial. These strategies can be further divided into inhibiting the 

elimination of L-arginine mediated by MDSCs, inhibiting the 

activation of IDO, and decreasing the levels of ROS and RNS 

in MDSCs.

The phosphorylation of STAT3 is required to induce 

MDSCs to upregulate the expression of IDO. Therefore, 

IDO-induced MDSC immunosuppressive activity can be 

blocked by the STAT3 antagonist JSI-124 or the IDO inhibitor 

1-methyl-L-tryptophan34.

Sildenafil, a a phosphodiesterase 5 (PDE5) inhibitor, down-

regulates the expression of IL-4Rα on MDSCs, and decreases 

ARG1 and iNOS levels, thereby inhibiting MDSC inhibitory 

activity78. PDE5 inhibitors also increase tumor-infiltrating 

CD8+ T cells and decrease Treg proliferation, thereby enhanc-

ing immune-mediated antitumor activity79.

The anti-inflammatory triterpenoid CDDO-Me stimulates 

the nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway 

and consequently upregulates multiple antioxidant genes80. 

The application of CDDO-Me to target MDSCs effectively 

decreases ROS production, thus abolishing the immunosup-

pressive effect of MDSCs81.

Compounds targeting MDSCs 
applied in combination with ICB

As discussed above, activated MDSCs significantly inhibit T 

cell infiltration into lesion sites and antitumor activity through 

specific and nonspecific mechanisms. MDSCs are strongly 

associated with tumor progression and metastasis. Therefore, 

expanded MDSCs in the TME are considered crucial in ICB 

therapy resistance among cancer paitents106. With the rise of 

combination immunotherapies, reports combining MDSC-

targeting strategies with ICB to treat cancer are increasingly 

being updated87,107. Here, we elaborate on several represent-

ative reports on the combination of compounds targeting 

MDSCs through multiple mechanisms and ICB (Figure 2).

Inhibiting the MDSC recruitment pathway in 
combination with ICB

SX-682
SX-682, a small-molecule allosteric inhibitor of CXCR2, selec-

tively inhibits CXCR2+ PMN-MDSC transport into tumors 

and consequently decreases the MDSC population in tumors85. 

CXCR2 is a G protein-coupled receptor for the human CXC 

chemokines CXCL1, 2, 3, 5, 6, 7, and 864. CXCL1/2 attracts 

CD11b+Gr-1+ myeloid cells to tumors, thus enhancing the 

survival of cancer cells through the generation of chemokines, 

including S100A8/9108. In various tumor models, the CXCR2 

signaling pathway has been observed to recruit PMN-MDSCs 

to the TME, and drive tumor invasion and metastasis109,110.

CXCR2 blockade promotes T cell infiltration into tumors 

and improves sensitivity to immunotherapy. The combination 

of a CXCR2 inhibitor (CXCR2 SM) with an anti-PD1 anti-

body to treat mice bearing pancreatic ductal adenocarcinoma 

clearly inhibits metastasis and enhances antitumor efficacy64. 

In addition, PD-L1 is highly expressed in murine rhabdo-

myosarcoma, but treatment with PD1 blockade alone has 

limited persistent effects. When combined with anti-CXCR2, 

anti-PD1 elicits enhanced antitumor effects111.

Accumulation of CD8+ TILs and increased PD-L1 expres-

sion on tumor cells has been observed in tumor-bearing mice 

treated with SX-68285. Combining SX-682 with an anti-PD1 

antibody to treat mice significantly inhibits tumor growth and 

increases mouse survival rates85,112. Importantly, combined 

treatment with SX-682 and the anti-PD1 antibody pembroli-

zumab has been tested in phase I clinical trials for metastatic 

melanoma26.

Semaphorin 4D mAb
The interactions of Semaphorin 4D (Sema4D) with its 

receptor Plexin-B1 regulate angiogenesis and tumor invasive 

growth113. Sema4D, derived from cancer cells, induces the for-

mation of peripheral blood mononuclear cells into MDSCs 

in vitro. Additionally, the function of Sema4D in promoting 

tumor progression has been confirmed in various malignant 

tumors in human and animal models, and associated with a 

poor prognosis114.

A decrease in PMN-MDSC recruitment has been observed 

after the use of Sema4D mAb to treat murine oral cancer 1 

(MOC1); this phenomenon is associated with decreased 

expression of MAPK-dependent chemokines such as CXCL1, 

2, and 5 in tumor cells86. The decrease in PlexinB1 downstream 

ERK and STAT3-dependent arginase production also weakens 

PMN-MDSC-induced T cell inhibition. Moreover, IFN-γ pro-

duction increases in the TME. These changes increase the infil-

tration of CD8+ TILs into tumors and enhance the activation 

of T lymphocytes in draining lymph nodes.

The combination of the Sema4D mAb and anti-PD1 in 

MOC1 or Lewis lung carcinoma mouse models suppresses 



Cancer Biol Med Vol 18, No 4 November 2021� 1001

tumor growth and significantly improves survival in both 

models. The decrease in PMN-MDSC recruitment and inhibi-

tion of immunosuppressive functions caused by the Sema4D 

mAb enhances the specific responses of T cells to tumor 

antigens, thus potentially explaining the increased immune 

response to PD1 blockade86. Similar combined effects have 

been observed in models of colon carcinoma115.

Valproic acid 
When GM-CSF-stimulated murine bone marrow cells are 

exposed to histone deacetylases (HDACs), M-MDSCs sub-

stantially expand, and the proliferation of allogeneic T cells 

is inhibited116. The antiepileptic drug valproic acid (VPA) has 

been shown to be a strong class I HDAC inhibitor that may 

inhibit HDAC activity by binding the catalytic center117. VPA 

effectively alleviates tumor burden by decreasing the num-

ber of M-MDSCs infiltrating into tumors, and the antitumor 

immune response induced by anti-PD1 has been found to be 

improved by combination treatment with VPA87.

In anti-PD1-sensitive EL4 and anti-PD1-resistant B16-F10 

tumor-bearing mouse models, the combined application of 

VPA and anti-PD1 clearly increases CD8+ T cell infiltration 

into tumors and suppresses tumor progression87. The over-

expression of the chemokine CCL2 and its receptor CCR2 

has been observed in multiple cancer types118,119. The CCL2/

CCR2 pathway is strongly associated with MDSC migration 

into tumors, and a lack of these cytokines can impair the 

tumor-promoting effects of MDSCs120. In both mouse mod-

els, the application of VPA inhibits the activity of HDACs and 

decreases CCR2 expression on M-MDSCs, thereby inhibiting 

the recruitment of M-MDSCs to tumors. The decrease in his-

tone acetylation in MDSCs caused by VPA may explain the 

observed downregulation of CCR2 expression. VPA also pro-

motes CD8+ T cell and NK cell expansion and reactivation in 

the TME. In addition, the decrease in ARG1 and prostaglan-

din E synthase levels in the PMN-MDSCs of VPA-treated mice 

indicates the ability to avoid the immunosuppression caused 

by PMN-MDSCs87,121.

Promoting the MDSC differentiation pathway 
in combination with ICB

Histamine dihydrochloride
Histamine dihydrochloride (HDC) can be decomposed into 

histamine in solution92. Controlled by the STAT3 transcrip-

tion factor, the upregulation of NOX2 activity increases the 

ROS levels in MDSCs and the suppression of T cell function. 

In the absence of NOX2 activity, MDSCs cannot effectively 

inhibit T cell responses and they will rapidly differentiate into 

mature DCs and macrophages67. Histamine, an inhibitor of 

myeloid NOX2, promotes the maturation of myeloid cells that 

produce ROS. By decreasing the production and extracellu-

lar release of ROS, histamine also helps to retain the function 

of NK cells and promote the NK cell-mediated removal of 

malignant cells122. In a tumor-bearing mouse model, MDSC 

accumulation and tumor progression are promoted in hista-

mine-deficient mice compared with wild-type mice123.

In 3 murine cancer models, EL4 lymphoma, MC38 colorec-

tal carcinoma, and 4T1 mammary carcinoma, which exhibit 

MDSC accumulation, HDC treatment delays tumor growth92. 

In the EL4 and 4T1 models, HDC decreases MDSC accu-

mulation and the level of NOX2-derived ROS. The negative 

correlation between the percentage of MDSCs in the tumor 

and tumor-infiltrating CD8+ T cells is clear in both mod-

els, thereby suggesting that HDC relieves MDSC-induced 

immunosuppression92. However, HDC has not been found 

to affect tumor progression in Nox2-KO mice or mice lack-

ing Gr-1, thus indicating that its antitumor efficacy requires 

NOX2+Gr-1+ cells96. More importantly, the combination of 

HDC and anti-PD1/anti-PD-L1 to treat mice with MC38 or 

EL4, respectively, has been found to be superior to any mono-

therapy in inhibiting tumor development. This finding might 

be associated with the increase in the proportion of CD8+ T 

cells showing an effector phenotype caused by anti-PD1/anti-

PD-L1 treatment92.

Promoting the MDSC elimination pathway in 
combination with ICB

TRAIL-R2 agonistic antibody
TNF-related apoptosis-inducing ligand (TRAIL) is an effective 

stimulator of apoptosis, and the TRAIL pathway is a prom-

ising target for promoting MDSC elimination. TRAIL ligates 

2 receptor types: the death receptors TRAILR1 and TRAILR2 

(also known as DR5) and the decoy receptors TRAILR3 and 

TRAILR4124. On the basis of the function of TRAIL receptors 

(TRAILRs) to selectively inhibit MDSCs, the efficacy of an 

agonistic DR5 antibody has been verified125.

In cancer patients with high MDSC levels, DS-8273a, an 

agonistic antibody to TRAILR2, rapidly eliminates MDSCs 

without affecting neutrophils, monocytes, or other myeloid 

and lymphoid cells97. In tumor-free mice, the endoplasmic 
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reticulum stress response causes changes in the expression of 

TRAILRs in MDSCs, thus resulting in a shorter lifespan for 

MDSCs than their counterparts (PMNs and monocytes). In 

tumor-bearing mice treated with the agonistic DR5 antibody 

(MD5-1 mAb), MDSCs are selectively inhibited. Combining 

the MD5-1 mAb and anti-CTLA4 to treat mice increases the 

sensitivity of tumors to anti-CTLA4 and significantly delays 

tumor progression125.

Inhibiting the L-arginine elimination pathway 
mediated by MDSCs in combination with ICB

Phenformin
Previous reports have suggested that biguanides, such as 

phenformin, exhibit antitumor activity both in vivo and  

in vitro126,127. After treatment with phenformin, the numbers 

of PMN-MDSCs but not M-MDSCs significantly decrease 

in the spleens of mice with melanoma. The effects of phen-

formin on PMN-MDSCs are dependent on AMP-activated 

protein kinase, a major mediator of its antitumor activity98. 

Phenformin diminishes the PMN-MDSC population by 

inhibiting proliferation and promoting apoptosis128,129. These 

results suggest that phenformin has a selective inhibitory effect 

on PMN-MDSC-driven immunosuppression. 

The combination of phenformin and an anti-PD1 antibody 

to treat mouse models of BRAF/PTEN melanoma effectively 

inhibits tumor growth98. In these models, phenformin signif-

icantly decreases the levels of proteins such as ARG1, S100A8, 

and S100A9, which are critical to the immunosuppressive 

activity of MDSCs. In addition, this combination clearly 

decreases the ratio of PMN-MDSCs in the tumor and spleen 

and synergistically promotes CD8+ T cell infiltration, thus fur-

ther indicating its positive prospects98.

Dimethylbiguanide
The metabolism of MDSCs in tumors and inflammatory tis-

sues is greatly diminished, and this response may be associ-

ated with the accumulation of methylglyoxal in MDSCs100. 

Methylglyoxal can be administered to CD8+ T cells by cell-

to-cell transfer; it then causes the consumption of L-arginine 

inside T cells and the deactivation of L-arginine-containing 

proteins through glycosylation, thereby inhibiting their 

effector functions. Dimethylbiguanide (DMBG)-containing 

guanidine groups neutralize the glycosylation function of 

methylglyoxal and release the suppressed states of CD8+ T cells 

conferred by MDSCs100.

After isolation from hepatocellular carcinoma patients, 

methylglyoxal has been detected in M-MDSCs but not in 

PMN-MDSCs, thus indicating one difference between human 

and mouse models100. Strong and lasting tumor regression has 

been observed in mice with melanoma specifically expressing 

ovalbumin after the combined application of DMBG and an 

anti-PD1 antibody. Tumor cells grown after treatment with 

this combined therapy lose ovalbumin expression100. These 

results clearly indicate that DMBG relieves MDSC inhibition 

of CD8+ T cells against tumor-specific antigens, and its com-

bination with an anti-PD1 antibody synergistically increases 

tumor-specific immune responses.

Inhibiting the IDO pathway in MDSCs in 
combination with ICB

IDO pathway inhibitors
IDO is activated by MDSCs in many human cancers, and its 

overexpression tends to be associated with poor prognosis130. 

Because IDO is regarded as an important target for cancer 

treatment, IDO pathway inhibitors have been applied in vari-

ous types of cancer models and clinical trials37,101. In addition, 

IDO expression is associated with some immune checkpoints, 

such as PD-L1 and CTLA4, thus supporting a combined tar-

geting strategy131.

In non-Hodgkin lymphoma mouse models, the applica-

tion of the IDO inhibitor indoximod decreases the number of 

Tregs in tumor-draining lymph nodes and effectively inhibits 

tumor growth132. In patients with melanoma, the combination 

of a PD1 antibody and indoximod has achieved positive dis-

ease control rates101. In addition, other IDO inhibitors, such 

as epacadostat and navoximod, when combined with PD1 

blockade to treat head and neck squamous cell carcinoma, 

melanoma, and other solid tumors, have shown enhanced 

antitumor activity compared with treatment with PD1 block-

ade alone133.

Inhibiting the ROS and RNS pathways in 
MDSCs in combination with ICB

Entinostat
Entinostat, a class I-specific HDAC inhibitor, impairs the 

dynamic interactions between host immune surveillance and 

the TME134. Entinostat enhances tumor cell immunogenic-

ity in animals bearing tumors or in cancer patients by acti-

vating tumor antigen expression, antigen presentation, and 
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costimulatory molecules135,136. Furthermore, entinostat inhib-

its the immunosuppressive functions of MDSCs infiltrating 

into tumors by significantly decreasing the levels of ARG1, 

iNOS, and COX2104.

In one report, 2 mouse models bearing Lewis lung carci-

noma or renal cell (RENCA) carcinoma have been used to 

assess the combined efficacy of entinostat and PD1 block-

ade. Enhanced antitumor effects have been observed in both 

models. In the entinostat and anti-PD1 combination group, 

compared with the control, entinostat alone or anti-PD1 alone 

group, MDSC function was suppressed, the FoxP3 protein level 

in CD4+FoxP3+ cells was strongly decreased, and CD8+ T cell 

infiltration into the TME was increased. With clear changes 

in cytokine/chemokine release in vivo, the microenvironment 

changed from immunosuppressive to tumor suppressive, thus 

indicating that entinostat promotes the antitumor response to 

anti-PD1104.

PI3Kδ and γ inhibitors
PI3Ks are part of a family of signal transducing enzymes that 

mediate critical cellular functions in immunity and cancer137. 

p110δ and p110γ, class I PI3K isoforms, activate MDSCs, and 

both are associated with MDSC-mediated immunosuppres-

sion in solid tumors65,138,139.

In mice with oral cancer, MDSCs significantly accumulate 

in the periphery and TME, thus resulting in the inhibition 

of T lymphocyte function105. The expression of the PI3Kδ 

and γ isoforms is higher in PMN-MDSCs than MOC cells. 

The inhibition of PI3Kδ and γ with IPI-145 in vitro partially 

reverses the immunosuppressive phenotype of peripheral and 

tumor-infiltrating PMN-MDSCs by altering the expression 

of ARG1 and NOS2. The combination of IPI-145 and anti-

PD-L1 to treat tumor-bearing mice enhances the sensitivity 

of the mice to anti-PD-L1 and significantly improves the anti-

gen-specific T-lymphocyte response105.

Other drugs

In addition to the drugs listed above, other MDSC-targeting 

compounds have been reported to have potential for com-

bination with ICB. For instance, Prim-O-glucosylcimifugin 

impedes the proliferation and activity of PMN-MDSCs, 

mainly by suppressing the metabolism of arginine and  

proline and the citric acid cycle140. Cabozantinib and BEZ235 

inhibit PI3K-AKT-mTOR signaling in tumors and decrease 

CCL5, CCL12, CD40, and hepatocyte growth factor levels, 

thus inhibiting the recruitment and activity of MDSCs112. 

The combination of these compounds with ICB relieves the 

suppressed state of effector T cells and increases their infiltra-

tion into tumors, thereby improving the responses of cancer 

patients to ICB and enhancing antitumor efficacy112,140.

Conclusions

The mechanisms of MDSC-mediated immunosuppression 

in the TME have been described. Additionally, the com-

bined application of MDSC-targeting compounds and ICB 

to enhance antitumor effects has been shown to have broad 

prospects, and substantial progress has been made in this field. 

However, some challenges remain to be overcome in future 

clinical applications.

The distributions of MDSCs and the dominant MDSC phe-

notypes in various cancer types are known to differ28. In addi-

tion, differences exist in the baseline percentages of MDSCs 

among individuals52,54. These differences can lead to failure of 

MDSC-targeted therapies in patients. Therefore, precise detec-

tion of the phenotype and the dynamic distribution of MDSCs 

in cancer patients is beneficial and necessary for personalized 

cancer therapy. Timely and accurate MDSC visualization 

methods will provide important reference values for evalu-

ating the effectiveness and durability of immunotherapy, and 

more effective and less invasive tools also must be developed.

Molecular imaging is a tracking method that reflects spe-

cific molecular events in disease progression, thus providing 

an important foundation for personalized cancer therapy. The 

use of specific molecules expressed on MDSCs as targets for 

real-time imaging can provide guidance for the combination 

of molecular imaging with molecular therapy. The targeting 

specificity of mAbs combined with the excellent resolution and 

sensitivity of PET has allowed immunoPET imaging to become 

an emerging molecular imaging technology with far-reaching 

value in the development of cancer diagnosis and personal-

ized medicine141,142. Several immunoPET probes targeting 

anti-PD1 or anti-PD-L1 have been developed to detect the 

dynamic distribution of these antibodies in the body through 

precise imaging143-145. In future research, the exploration of 

immunoPET probes targeting MDSCs may be a meaningful 

strategy to select patients who are sensitive to MDSC-targeted 

therapy for further treatment, and to direct patients with little 

or no response to therapy toward multidisciplinary treatment. 

In addition, molecular imaging technologies based on ultra-

sound microbubbles146 or MRI147 are being applied in cancer 
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treatment strategies, and these technologies are expected to be 

further developed for MDSC-targeted therapies.

Another challenge is the limited clinical trials targeting 

MDSCs, particularly those testing the combination of targeted 

MDSC therapy and ICB therapy. Most combination strategies 

have been evaluated only in the preclinical stage or in small 

numbers of cancer patients. Furthermore, other effects of 

related drugs targeting MDSCs on the TME are not clear. Some 

MDSC-targeting compounds such as HDC have limitations in 

triggering the influx of CD8+ T cells into tumors, thus indicating 

that related combination therapies must be properly adjusted92. 

In the next phase, more clinical trials testing combination thera-

pies are expected to be performed, and the patient cohorts must 

be expanded to further evaluate the effects of these therapies on 

patient prognosis and accompanying adverse effects.

Theranostics is a new type of biomedical technology that 

effectively combines the diagnosis and treatment of diseases, 

and the emergence of nanoscale agents provides a new oppor-

tunity for its further development148. Because of their unique 

biological properties149, nanomaterials can be considered for 

integration into MDSC-targeting compounds with molecular 

markers for imaging to construct specific nanotheranostics. 

However, how to improve the specific uptake of MDSC-

targeting nanotheranostics by tumor tissues and promote 

their penetration into the tumor core remains a challenge 

requiring further investigation.

MDSCs intimately participate in mediating immunosup-

pression in the TME and cancer patients’ resistance to ICB 

therapy. Therefore, exploration of the clinical diagnosis and 

MDSC-targeted therapies and visualization methods has 

very far-reaching value. More importantly, with the in-depth 

study of MDSC expansion, recruitment and immunosuppres-

sive mechanisms, research dedicated to combining MDSC-

targeting strategies with ICB therapies has gradually emerged 

and made positive progress. Given that many MDSC-targeted 

compounds have been approved by the FDA or are in differ-

ent stages of clinical trials, more effective compounds and ICB 

combination strategies must be further explored to evaluate 

their antitumor efficacy.
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