Skip to main content
. 2021 Feb 16;46(5):588–598. doi: 10.1093/jpepsy/jsab004

Table II.

Loglikelihood, Information Criteria, and Entropy Tests for Latent Class Growth Analysis and Growth Mixture Models

Measure Intercept Linear 1 Class 2 Classes 3 Classes 4 Classes 5 Classes 6 Classes
LGCM
 CFI 0.89 1.00
 TLI 0.92 1.03
 RMSEA 0.10 0.00
 SRMR 0.11 0.02
 χ2 9.01 0.52
 df 4 1
 χ2/df 2.25 0.52
 AIC 1,822.53 1,812.45
 BIC 1,836.46 1,834.75
 SSA-BIC 1,820.66 1,809.45
LCGA
 Loglikelihood −945.49 −885.95 −878.44 −859.57 −855.34 −855.34
 AIC 1,900.99 1,787.89 1,778.87 1,747.14 1,744.69 1,750.69
 BIC 1,914.92 1,810.19 1,809.53 1,786.17 1,792.08 1,806.44
 SSA-BIC 1,899.12 1,784.90 1,774.76 1,741.91 1,738.33 1,743.21
 Entropy 0.91 0.80 0.88 0.82 0.83
 LMR test 111.34 14.04 19.72 7.91 −0.66
 LMR, p-value .11 .46 .13 .83 .77
GMM
 Loglikelihood −901.78 −881.00 −867.25 −856.58 −849.92
 AIC 1,815.57 1,780.00 1,758.50 1,743.15 1,735.85
 BIC 1,832.29 1,805.09 1,791.95 1,784.96 1,786.03
 SSA-BIC 1,813.32 1,776.63 1,754.02 1,737.54 1,729.12
 Entropy 0.90 0.93 0.89 0.87
 LMR test 38.86 25.71 19.96 12.43
 LMR, p-value 0.28 0.29 0.12 0.38

Note. AIC = Akaike Information Criteria; BIC = Bayesian information criteria; LGCM = latent growth curve model.