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ABSTRACT The functional human immunodeficiency virus (HIV-1) envelope glycoprotein
(Env) trimer [(gp120/gp41)3] is produced by cleavage of a conformationally flexible gp160
precursor. gp160 cleavage or the binding of BMS-806, an entry inhibitor, stabilizes the pre-
triggered, “closed” (state 1) conformation recognized by rarely elicited broadly neutralizing
antibodies. Poorly neutralizing antibodies (pNAbs) elicited at high titers during natural
infection recognize more “open” Env conformations (states 2 and 3) induced by binding
the receptor, CD4. We found that BMS-806 treatment and cross-linking decreased the ex-
posure of pNAb epitopes on cell surface gp160; however, after detergent solubilization,
cross-linked and BMS-806-treated gp160 sampled non-state-1 conformations that could
be recognized by pNAbs. Cryo-electron microscopy of the purified BMS-806-bound gp160
revealed two hitherto unknown asymmetric trimer conformations, providing insights into
the allosteric coupling between trimer opening and structural variation in the gp41 HR1N
region. The individual protomer structures in the asymmetric gp160 trimers resemble
those of other genetically modified or antibody-bound cleaved HIV-1 Env trimers, which
have been suggested to assume state-2-like conformations. Asymmetry of the uncleaved
Env potentially exposes surfaces of the trimer to pNAbs. To evaluate the effect of stabiliz-
ing a state-1-like conformation of the membrane Env precursor, we treated cells express-
ing wild-type HIV-1 Env with BMS-806. BMS-806 treatment decreased both gp160 cleav-
age and the addition of complex glycans, implying that gp160 conformational flexibility
contributes to the efficiency of these processes. Selective pressure to maintain flexibility in
the precursor of functional Env allows the uncleaved Env to sample asymmetric conforma-
tions that potentially skew host antibody responses toward pNAbs.

IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immuno-
deficiency virus (HIV-1) mediate the entry of the virus into host cells and serve as targets
for neutralizing antibodies. The functional Env trimer is produced by cleavage of the
gp160 precursor in the infected cell. We found that the HIV-1 Env precursor is highly plas-
tic, allowing it to assume different asymmetric shapes. This conformational plasticity is
potentially important for Env cleavage and proper modification by sugars. Having a flexi-
ble, asymmetric Env precursor that can misdirect host antibody responses without com-
promising virus infectivity would be an advantage for a persistent virus like HIV-1.
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Human immunodeficiency virus (HIV-1), the etiologic agent of AIDS, utilizes a meta-
stable envelope glycoprotein (Env) trimer to engage host receptors and enter target

cells (1). The functional Env trimer consists of three gp120 exterior subunits and three
gp41 transmembrane subunits (1–3). During virus entry, gp120 engages the receptors,
CD4 and CCR5/CXCR4, and gp41 fuses the viral and cell membranes (4–16). Env is the
only virus-specific protein on the viral surface and is targeted by host antibodies (17–20).

In infected cells, the HIV-1 Env trimer is synthesized in the rough endoplasmic retic-
ulum (ER), where signal peptide cleavage, folding, trimerization, and the addition of
high-mannose glycans take place (21–24). The resulting gp160 Env precursor is trans-
ported to the Golgi apparatus, where some of the glycans are modified to complex
types and proteolytic cleavage by host furin-like proteases produces the gp120 and
gp41 subunits (25–41). The proteolytically processed, mature Env trimers are trans-
ported to the cell surface and incorporated into virions.

On the membrane of primary HIV-1, Env exists in a pretriggered, “closed” conformation
(state 1) that resists the binding of commonly elicited antibodies (42–47). Binding to the
receptor, CD4, on the target cell releases the restraints that maintain Env in state 1, allow-
ing transitions through a default intermediate conformation (state 2) to the prehairpin in-
termediate (state 3) (42, 48, 49). In the more “open” state-3 Env conformation, a trimeric
coiled coil composed of the gp41 heptad repeat (HR1) region is formed and exposed, as is
the gp120 binding site for the second receptor, either CCR5 or CXCR4 (6, 7, 50–56).
Binding to these chemokine receptors is thought to promote the insertion of the hydro-
phobic gp41 fusion peptide into the target cell membrane and the formation of a highly
stable six-helix bundle, which mediates virus-cell membrane fusion (14–16, 57–60).

The ability of HIV-1 to establish persistent infections in humans requires an Env trimer
that minimally elicits neutralizing antibodies and resists the binding of antibodies generated
during the course of natural infection. In addition to a heavy glycan shield and surface vari-
ability, the conformational flexibility and plasticity of Env may help HIV-1 avoid the host anti-
body response (45, 47, 61–64). Flexible Envs could present epitopes that are not exposed on
the state-1 Env trimer, misdirecting host antibodies away from the functional virus spike.
The vast majority of antibodies elicited by Env during natural HIV-1 infection are unable to
bind the functional state-1 Env trimer and instead recognize downstream conformations
(states 2, 2A, and 3) (65–69). These antibodies cannot access their epitopes once the virus
has bound CD4 and therefore do not neutralize efficiently (68). Uncleaved Envs that assume
state-2/3 conformations are abundant on the surface of HIV-1-infected cells, in some cases
reaching the cell surface by bypassing the Golgi apparatus (70). Poorly neutralizing antibod-
ies (pNAbs) with state-2/3 specificity typically recognize these uncleaved Envs more effi-
ciently than cleaved Env (71–77). Cross-linking the uncleaved cell surface Env exerted effects
on Env antigenicity similar to those resulting from gp120-gp41 cleavage, suggesting that
the uncleaved Env might be more flexible than mature Env (78). Indeed, recent single-mole-
cule fluorescence resonance energy transfer (smFRET) analysis confirmed that, in contrast to
the dominant state-1 conformation of the wild-type Env, an Env mutant unable to be pro-
teolytically processed due to an alteration of the cleavage site occupies states 2 and 3 more
frequently than state 1 (79). Thus, the abundant, cell surface-accessible and conformationally
heterogeneous uncleaved Env could misdirect host immune responses away from the elici-
tation of broadly neutralizing antibodies, which generally recognize the state-1 Env confor-
mation (42, 45, 46, 48, 79). Broadly neutralizing antibodies (bNAbs) typically appear after sev-
eral years of HIV-1 infection and only in a minority of HIV-1-infected individuals (80–88).

Here, we investigate the conformation of the uncleaved HIV-1 Env trimer, both on the
cell surface and purified from membranes. Cryo-electron microscopy (cryo-EM) reconstruc-
tions reveal that purified uncleaved Envs preferentially assume asymmetric trimer confor-
mations, exposing epitopes for pNAbs. We identified a gp41 region in which structural
changes are coupled to the asymmetric opening of the Env trimer. We tested the effect of
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a state-1-stabilizing gp120 ligand, BMS-378806 (herein called BMS-806) on the cleavage
and glycosylation of the wild-type Env. Our findings indicate the importance of conforma-
tional plasticity of the uncleaved HIV-1 Env trimer for efficient proteolytic maturation, com-
plex glycan addition, and evasion of host antibody responses.

RESULTS
Analysis of the conformation of uncleaved HIV-1 Env on cell surfaces. Cleavage

of the HIV-1 Env precursor affects its antigenicity (71–77). The recognition of the
uncleaved and mature HIV-1JR-FL Envs on the surface of transfected HOS cells exhibited
distinct patterns for state 1-preferring bNAbs versus state 2/3-preferring pNAbs (Fig. 1A).
Whereas the uncleaved Env was bound by both types of antibodies, the mature Env was

FIG 1 Antibody recognition of cleaved and uncleaved HIV-1 Envs on the cell surface. (A) HOS cells transiently expressing the wild-
type HIV-1JR-FL Env, a fraction of which is cleaved in these cells, were incubated with the indicated broadly neutralizing antibodies
or poorly neutralizing antibodies. After washing and lysis of the cells, the antibody-Env complexes were purified with protein A-
Sepharose beads and analyzed by Western blotting with a goat anti-gp120 polyclonal serum. (B) The effect of cross-linking with
BS3 and/or BMS-806 treatment on antibody binding to HIV-1JR-FL Env(2) on the surface of CHO cells was evaluated by cell-based
ELISA. BMS-806 (10 mM) was added to the CHO cells at the time of induction of Env(2) expression with doxycycline. All values
were normalized against 2G12 antibody binding and were derived from at least three independent experiments. Note that the
HIV-1JR-FL Env(2) glycoprotein is not recognized by the PGT145 V2 quaternary antibody, which serves as a negative control.
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bound only by the bNAbs. The uncleaved Env apparently samples multiple conforma-
tions, but the mature Env assumes a conformation that precludes the binding of pNAbs.

The HIV-1 entry inhibitor, BMS-806, hinders transitions from state 1 and modestly
increases the occupancy of state 1 by the mature, wild-type HIV-1 Env (see Table 1) (42, 53,
54, 77, 79). BMS-806 treatment or glutaraldehyde cross-linking has been shown to shift the
antigenic profile of uncleaved HIV-1 Env closer to that of the cleaved Env (77, 78). Incubating
virions containing uncleaved Env with BMS-806 significantly enriched the low-FRET state-1
conformation, resulting in a conformational profile closer to that of the unliganded mature
HIV-1 Env (Table 1) (79). We tested the effects of BMS-806 and the lysine-specific cross-linker
bis(sulfosuccinimidyl)suberate (BS3) on the antigenic profile of cleavage-defective HIV-1JR-FL
Env(2) expressed on the surface of CHO cells (Fig. 1B). Even without treatment, HIV-1JR-FL
Env(2) was inefficiently recognized by several pNAbs (902090, 39F, 17b, A32, C11, and E51)
and by bNAbs like 35O22 and VRC34 that exhibit a strong preference for cleaved Env. The
PGT145 bNAb does not recognize the HIV-1JR-FL Env and is used as a negative control in this
experiment. Treatment with BMS-806 and BS3 additively decreased Env(2) recognition by
pNAbs (19b, b6, F105, and F240) and CD4-Ig, which preferentially bind Env conformations
other than state 1 (45, 48, 54, 76, 79). In comparison, for the bNAbs 2G12, b12, and VRC01,
the BMS-806/BS3-treated Env(2) was recognized at more than 40% the level observed for
the untreated Env(2). The proximity of the gp120 binding sites for BMS-806 and some
bNAbs against the CD4-binding site (b12, VRC01) may explain the modest level of inhibition
observed (75). These results are consistent with previous studies suggesting that BMS-806
can decrease the state-2/3 occupancy of uncleaved HIV-1 Envs anchored in the viral or cell
membranes (Table 1) (77, 79).

Purification and characterization of Env(2) trimers. To investigate further the
range of conformations sampled by the uncleaved HIV-1 Env, we purified full-length HIV-
1JR-FL Env(2) trimers from the membranes of inducibly expressing CHO cells (Fig. 2A and
B). The CHO cells were incubated with BMS-806 during Env(2) synthesis in an attempt to
shift occupancy from states 2/3 to state 1. BMS-806 treatment of the Env(2)-expressing
cells reduced the synthesis of sialidase-sensitive and endoglycosidase H-resistant glyco-
forms that are relatively enriched in complex carbohydrates (Fig. 2C). Glycosylation analysis
revealed that BMS-806 treatment led to decreased complex sugar addition to the glycans
modifying gp120 asparagine residues 88, 156, 160, 241, 362, and 463 (Fig. 2D to F). The
effects of BMS-806 on Env(2) conformation apparently influence the conversion of partic-
ular high-mannose glycans to complex carbohydrates in the Golgi apparatus.

To purify the Env(2) trimer complexes, membranes from BMS-806-treated CHO
cells were incubated with saturating concentrations of BMS-806, cross-linked with BS3,
and solubilized in Cymal-5. The Cymal-5 detergent in the purified Env(2) glycoprotein
solution was exchanged to a mixture of 4.5 mg/ml amphipol A8-35 and 0.005% Cymal-
6 prior to cryo-plunging the samples in preparation for eventual cryo-electron micros-
copy (cryo-EM) imaging. BMS-806 was used in these experiments to enrich the state-1
conformation, potentially reducing the disruptive effect of detergent solubilization on

TABLE 1 Summary of HIV-1JR-FL conformational statesa

Env Source Treatment

Occupancy of conformational state (%)

ReferenceState 1 State 2 State 3
Wild-type HIV-1JR-FL Env Virion None 50 26 24 42, 79

BMS-806 55 18 27
HIV-1JR-FL Env(2) Virion None 25 42 33 79

BMS-806 40 32 28
Purified from cell membranes BMS-806

1
BS3 crosslinking

26 37 37 This study

aThe relative occupancies (%) of conformational states for the indicated sources and treatments of HIV-1 Envs were derived from smFRET histograms. The FRET histograms
were compiled from individual smFRET traces. The state distributions in the FRET histograms were fitted to the sum of three Gaussian distributions by hidden Markov
modeling, and the occupancy of each state was obtained from the area under each Gaussian curve.
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FIG 2 Characterization of the full-length HIV-1JR-FL Env(2) glycoprotein in CHO cell lysates and in detergent-solubilized purified forms. (A)
Purified HIV-1JR-FL Env(2) without and with cross-linking by BS3 was run on a NUPAGE 4-to-12% BT gel stained by Coomassie blue. (B)
Purified HIV-1JR-FL Env(2) cross-linked by BS3 was run on a native PAGE 4-to-16% Bis-Tris gel and subjected to Western blotting with an
HRP-conjugated anti-HIV-1 gp120 antibody. (C to E) To evaluate the effect of BMS-806 on the glycosylation of the synthesized Env(2)
glycoprotein, BMS-806 (10 mM) was added to the CHO cells at the time of doxycycline induction. (C) The effect of BMS-806 on HIV-1JR-FL

(Continued on next page)
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this metastable state. However, parallel smFRET studies estimated that despite BMS-806
treatment and BS3 cross-linking, only 26% of detergent-solubilized Env(2) was in a low-
FRET conformation consistent with state 1 (Fig. 3A). The majority (74%) of the solubilized
Env(2) glycoproteins assumed high- and intermediate-FRET conformations consistent
with states 2 and 3, respectively. Thus, compared with BMS-806-treated Env(2) on virions,
the Env(2) glycoproteins solubilized and purified from CHO cells exhibited less state-1
and more state-2/3 conformations (Table 1). Nonetheless, the conformational profile of the
purified Env(2) preparation resembled that of the uncleaved Env(2) in virion membranes
without BMS-806 treatment (Table 1).

The increased exposure of the gp120 V3 loop is a sensitive indicator of HIV-1 Envs that
have undergone transitions from a state-1 conformation (48, 54, 89–91). We tested the
ability of the 19b anti-V3 antibody, which does not neutralize most primary HIV-1 strains,
to precipitate the BMS-806-treated, BS3-cross-linked Env(2) trimers solubilized in Cymal-5
detergent (Fig. 3B). After successive precipitations with the 19b antibody, approximately
85% of the Env(2) glycoprotein was removed from the CHO cell lysate. Therefore, even in
the presence of BMS-806 and after BS3 cross-linking, most of the Env(2) trimers solubi-
lized in Cymal-5 detergent apparently sample non-state-1 conformations. Together with
the above cell-based ELISA and smFRET results, these experiments suggest that detergent
solubilization destabilizes the uncleaved Env, even after BMS-806 and BS3 treatment.
Therefore, anchorage in the cell membrane and lipid-protein interactions may be impor-
tant for maintaining the stability of the Env(2) state-1 conformation.

Env(2) structure determination by cryo-EM. The BMS-806-treated, BS3-cross-
linked HIV-1JR-FL Env(2) trimers, purified in Cymal-5 and exchanged into amphipol A8-35
and Cymal-6, were analyzed by cryo-EM. We collected cryo-EM data from both a 200-kV
FEI Tecnai Arctica microscope without an energy filter and a 300-kV FEI Titan Krios micro-
scope with a Gatan BioQuantum energy filter in video frames of a super-resolution
counting mode with the Gatan K2 Summit direct electron detector (Fig. 4A to F). While
both 200-kV and 300-kV cryo-EM data sets gave rise to consistent results, the final recon-
structions at the highest resolution were achieved using the 300-kV cryo-EM data set;
the 300-kV data set incorporates single-particle data collected at a high tilt angle of the
sample stage to alleviate the effect of the strong orientation preference of the Env(2)
particles (Fig. 4G and H). In contrast, the 200-kV cryo-EM data set, which lacks tilted data,
fell short of achieving a comparable level of resolution and suffered from the orientation
preference of the particle images. However, despite the modest level of resolution (5.5
to 8 Å), extensive three-dimensional (3D) classification of the 200-kV data set, as detailed
in a bioRxiv preprint (92), indicated the existence of multiple Env(2) conformations,
some of which are consistent with the higher-resolution reconstructions obtained from
the 300-kV data set. This paper focuses on interpreting two higher-resolution maps of
the uncleaved Env(2) trimer derived from the 300-kV data set.

Analysis of the 300-kV data resulted in two major 3D classes, herein designated state
U1 and state U2, respectively comprising 38% and 17% of the imaged particles after re-
moval of junk particles (Fig. 5). The state-U1 and state-U2 maps were refined to 4.1 and
4.7 Å, respectively, without imposing any symmetry during refinement and reconstruction
(Fig. 6). The map quality allowed atomic modeling and refinement with accuracy to the
level of the Ca backbone trace. In contrast, imposing C3 symmetry during refinement and
reconstruction resulted in lower resolution and poorer structural features in the refined

FIG 2 Legend (Continued)
Env(2) glycosylation was evaluated by Western blotting after digestion with glycosidases (sialidase, peptide-N-glycosidase F [PNGase F], and
endoglycosidase H [Endo H]). The purified HIV-1JR-FL Env(2) glycoproteins were digested with the indicated glycosidase, run on a NUPAGE
4-to-12% Bis-Tris gel, and subjected to Western blotting with a goat anti-HIV-1 gp120 antiserum. The results shown are representative of
those obtained in three independent experiments. Note that BMS-806 treatment decreases Env(2) heterogeneity by reducing the levels of
sialidase-sensitive and Endo H-resistant glycoforms. (D and E) The bar graphs show the glycan profiles at each glycosylation site of HIV-1JR-FL
Env(2) purified from untreated CHO cells (D) or CHO cells treated with 10 mM BMS-806 (E), as determined by mass spectrometry. The
glycan composition (in percent) was broadly characterized as high-mannose (red bars) or processed (complex plus hybrid) glycans (blue
bars). (F) The results in panels D and E were used to calculate the change in the percentage of processed glycans after BMS-806 treatment,
which is shown for each N-linked glycosylation site.
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FIG 3 Conformations of purified HIV-1JR-FL Env(2) treated with BMS-806 and cross-linked with BS3. (A) HIV-1JR-FL Env(2) with V1
and V4 labeling tags was purified from 293T cell membranes using a protocol identical to that used for preparation of Env(2) for
cryo-EM imaging. The purified Env(2) was labeled and analyzed by smFRET. FRET trajectories were compiled into a population
FRET histogram and fit to the Gaussian distributions associated with each conformational state, according to a hidden Markov
model (42). The percentage of the population that occupies each state as well as the number of molecules analyzed (N) is shown.
The error bars represent the standard deviation from three independent data sets. (B) Membranes from BMS-806-treated CHO
cells expressing HIV-1JR-FL Env(2) were cross-linked with BS3 and then solubilized in Cymal-5 detergent. The lysate was
successively incubated with the 19b anti-gp120 (V3) antibody and protein A-Sepharose beads. The Env(2) glycoproteins
precipitated by the 19b antibody or by the negative-control protein A-Sepharose beads during the indicated rounds of
immunoprecipitation were analyzed by SDS-PAGE and Western blotting (upper left panel). The Env(2) glycoproteins in the initial
cell membrane lysate (input) and those glycoproteins remaining after four rounds of 19b counterselection were precipitated with
Ni-NTA beads or the indicated antibodies; the precipitated Env(2) glycoproteins were analyzed by SDS-PAGE and Western
blotting (upper right panel). The total amounts of Env(2) glycoprotein in the input and after 19b counterselection, normalized to
the input Env(2) glycoprotein amount precipitated by the Ni-NTA beads, are shown in the bar graph (lower panel). Means and
standard deviations derived from two independent experiments are shown.
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density maps of both state U1 and state U2, suggesting that both conformations indeed
lack rigorous 3-fold symmetry. Other 3D classes derived from the HIV-1JR-FL data set were
not able to be refined to comparable levels of resolution and thus are not further analyzed
and discussed herein. Curiously, no major 3D classes with rigorous 3-fold symmetry were

FIG 4 Cryo-EM analysis of the full-length HIV-1JR-FL Env(2) trimer. (A) A typical cryo-EM micrograph of Env(2) trimers taken
with a Gatan K2 direct electron detector at 0 degrees of tilt. (B) Fourier transform of the image in panel A. Left panel,
simulated logarithmic amplitude spectra in Gctf (134); upper right panel, background-subtracted logarithmic amplitude
spectra; lower right panel, equiphase average in Gctf. (C) Unsupervised 2D class averages for nontilt particles. (D) A typical
cryo-EM micrograph of Env(2) trimers taken with a Gatan K2 direct electron detector at 45 degrees of tilt. (E) Fourier
transform of the image in panel D. Left panel, simulated logarithmic amplitude spectra in Gctf (134); upper right panel,
background-subtracted logarithmic amplitude spectra; lower right panel, equiphase average in Gctf. (F) Unsupervised 2D
class averages for tilted particles. (G) Final refined cryo-EM density map for the state-U1 Env(2) trimers. Left, side view,
with gp120 at the bottom of the figure and gp41 at the top. Middle, top view from the gp120 side. The right inset shows
the orientation distribution of the particles used for reconstruction of the final state-U1 map. (H) Final refined cryo-EM
density map for the state-U2 Env(2) trimers. Left, side view, with gp120 at the bottom of the figure and gp41 at the top.
Middle, top view from the gp120 side. The right inset shows the orientation distribution of the particles used for
reconstruction of the final state-U2 map.
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FIG 5 Cryo-EM classification workflow. The diagram illustrates the major steps of our classification strategy for the 300-
kV data set. Iterated steps with the same parameters were omitted for clarity.
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found when extensive 3D classification was conducted using the maximum-likelihood
method without imposing C3 symmetry (93). Asymmetric trimers apparently constitute a
major fraction of the imaged particles, likely reflecting the intrinsic conformational plastic-
ity of the Env(2) glycoprotein.

We considered the contribution of preparation-dependent variables, such as damage at
the air-water interface, to the observed Env(2) asymmetry. Although such contributing
influences cannot be totally ruled out, several considerations, as follows, suggest that asym-
metry is a relevant property of uncleaved Env trimers. (i) The high level of occupancy and
relative degree of homogeneity of the U1 and U2 classes suggest that these trimers are in
energetically favorable conformations, unexpected for the consequences of random dam-
aging influences. (ii) The efficiency with which Env trimers form interprotomer cross-links
can provide clues to the symmetry of the trimers. Cross-linkable pairs of lysine residues on
adjacent protomers will be available on all three protomers of a symmetric structure; there-
fore, cross-links between protomers are more likely to involve all three protomers when the
trimer is symmetrical. The proportion of cross-linked Env(2) trimers, dimers, and monomers
that are stable on SDS-polyacrylamide gels is a function of the interprotomer cross-links.

We studied the formation of interprotomer cross-links in Env(2) trimers in the follow-
ing two contexts. (a) First, in the experiments shown in Fig. 3B, membrane Env(2)
trimers were cross-linked with BS3 in the presence of BMS-806, solubilized in detergent,
and then repeatedly precipitated by the 19b pNAb. Notably, the 19b-reactive Env(2)
subset did not cross-link efficiently into gel-stable trimers and formed mostly monomers
(Fig. 3B). The high occupancy of the U1 class indicates that these asymmetric trimers
must fall into the large subset of the purified Env(2) preparation (;85%) that is 19b re-
active and therefore is not in a state-1 conformation. In contrast, the ;15% of the

FIG 6 Cryo-EM density maps of the state-U1 and state-U2 Env(2) trimers. (A) Masks used for the FSC calculation. Masks for state-U1 and state-U2 maps were
both generated in RELION 3.0 (136), using unmasked maps low-pass filtered to 10 Å. (B) Local resolution measurement of the state-U1 and state-U2 maps,
as measured by ResMap (142). The maps are colored according to the local resolution, indicated by the color gradient (units in angstroms). Side views of
the Env(2) maps are shown, with gp120 at the bottom of the figure and gp41 at the top. (C) Gold standard FSC plots of the state-U1 and state-U2 cryo-EM
maps. The “map vs model” FSC curve was calculated with protein models without glycans.
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Env(2) preparation that was not precipitated by the 19b antibody cross-linked efficiently
into gel-stable trimers and dimers (Fig. 3B). The different patterns of cross-linking in
these two Env(2) subsets are quantitated in Fig. 7A. The 19b-reactive (non-state-1) sub-
set of Env(2), which includes the U1 cryo-EM class, cross-linked into gel-stable trimers

FIG 7 Cross-linking solubilized and cell-surface Env(2) glycoproteins with BS3. (A) The percentage of solubilized BMS-806-treated
Env(2) that cross-linked with BS3 into gel-stable trimers was calculated from the experiments shown in Fig. 3B. The values are
reported for the Env(2) subset that was precipitated by the 19b pNAb and for the 19b-counterselected Env(2) subset
precipitated by Ni-NTA beads or the indicated bNAbs. Differences between the values associated with the Env(2) subsets were
evaluated by Student's t test (*, P , 0.05; **, P , 0.01). (B) BMS-806-treated CHO cells were induced to express HIV-1JR-FL Env(2)
and incubated with BS3 cross-linker. The cells were washed and incubated with the indicated pNAbs or bNAbs. After washing,
the cells were lysed. Cell lysates were incubated with protein A-agarose beads, and the precipitated Envs were analyzed by SDS-
PAGE and Western blotting with a goat anti-gp120 antibody. In the lower left panel, the results of a typical experiment are
shown. The Env(2) monomers (m), dimers (d), and trimers (t) are indicated. The percentage of monomers, dimers, and trimers
recognized by each antibody was calculated from the results of two independent experiments (lower right panel). Means and
standard deviations are shown. In the upper panel, the percentage of the total Env(2) that was cross-linked into gel-stable
trimers is shown for each antibody. Statistical comparisons were made using Student's t test (*, P , 0.05; **, P , 0.01; ns, not
significant).
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less efficiently than the 19b-counterselected Env(2) subset, which can be recognized by
bNAbs. This is consistent with a greater degree of asymmetry in the 19b-reactive subset
and implies that differences in symmetry among the purified Env(2) trimers exist prior
to cryo-plunging.

(b) Second, we examined the relevance of the above observations to uncleaved Env
on the surface of expressing cells. Cells expressing Env(2) were treated with BMS-806 at
the time of induction. The cell-surface Env(2) was cross-linked with BS3. The Env
(2)-expressing cells were incubated with individual pNAbs and bNAbs, washed, and
lysed. The antibody-Env complexes in the cell lysates were captured on protein A-aga-
rose beads and Western blotted. The 19b and F105 pNAbs recognized Env(2) complexes
that cross-linked mostly into gel-stable monomers and a smaller percentage of dimers
(Fig. 7B). Less than 5% of the cell surface Env(2) recognized by these pNAbs cross-linked
into gel-stable trimers. In contrast, the bNAbs (2G12, PGT121, VRC01, and 3BNC117) rec-
ognized Env(2) complexes that cross-linked more efficiently into gel-stable trimers.
These patterns of pNAb and bNAb recognition of cell surface Env(2) were similar to
those observed for antibody recognition of solubilized Env(2) in Fig. 3B (compare Fig.
7A and B). These results are consistent with bNAb-reactive cell surface Env(2) trimers
possessing a higher level of symmetry than pNAb-reactive Env(2) complexes.

Together, the observations summarized above support the relevance of the asym-
metric Env(2) trimers in the U1 and U2 cryo-EM classes to the pNAb-reactive uncleaved
HIV-1 Env in membranes.

Key structural features of the asymmetric uncleaved HIV-1 Env trimers. The U1

and U2 Env(2) trimers share an overall topology with existing structures of soluble and
membrane HIV-1 Env trimers (94–105) (Fig. 8A). A central feature of all these structures
is a 3-helix bundle (3-HBC) formed by the C-terminal portion of the gp41 HR1 region
(HR1C); the gp120 subunits project outward from this central helical coiled coil. These
common features allowed us to use existing symmetric and asymmetric HIV-1 Env
trimer structures as references to build structural models of states U1 and U2. All three
individual protomers in the U1 and U2 trimers exhibit similar folds, with Ca root mean
square deviation (RMSD) values of ;2 Å (Fig. 8B and C). While both the U1 and U2 con-
formations of Env(2) are asymmetric, they exhibit different degrees of such asymmetry
in terms of the relative rotation of the individual protomers with respect to the trimer
axis. The protomers are differentially translated and rotated with respect to each other
in unique ways in the U1 and U2 trimers (Fig. 8D), generating ;3- to 4-Å movement
overall in the gp120 outer domain (OD). When one of the protomers is used to align
both conformations, the other two protomers of U2 are notably rotated by 2.8 and 4
degrees relative to the corresponding protomers of U1 (Fig. 8A). This creates the small-
est and largest openings between two adjacent protomers in U2, the more asymmetric
of the two Env(2) conformations. Alignment of all three protomer structures in each
conformation indicates that the asymmetric conformations are facilitated by local
structural rearrangements of residues 546 to 568 at the interprotomer interface. This
gp41 segment (HR1N) is immediately N-terminal to the central 3-HBC and exhibits the
greatest local structural variation among the protomers. Notably, the overall structural
variation of gp41 among the U1 and U2 protomers is greater than that of the gp120
core structure, presumably because gp41 contributes more interactions to the inter-
protomer interface. Consistently, the gp120 trimer association domain (TAD), which
includes the V1/V2 and V3 regions, exhibits greater conformational variation in U2 than
in U1, leading to an overall greater extent of asymmetry in U2 (Fig. 8B and C). There is
similarly greater gp41 structural variation among the protomers in U2 than in U1.

Comparison with structures of cleaved HIV-1 Env trimers. We compared the U1

and U2 HIV-1JR-FL Env(2) structures to those of mature (cleaved) HIV-1 Env trimers. The
structure of the unliganded HIV-1BG505 sgp140 SOSIP.664 glycoprotein (PDB ID 4ZMJ)
provides an example of a stabilized soluble Env trimer with C3 symmetry (101).
Structures of cytoplasmic tail-deleted, detergent-solubilized HIV-1JR-FL and HIV-1AMC011

EnvDCT trimers have been solved in complex with Fab fragments of the PGT151 neu-
tralizing antibody (PDB ID 5FUU and 6OLP, respectively) (99, 102). Binding of the
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PGT151 Fabs introduces asymmetry into the Env trimer, limiting the binding stoichiom-
etry to two Fabs per trimer.

The folds of the U1 and U2 Env(2) protomers resemble those of the sgp140 SOSIP.664
and PGT151-bound EnvDCT protomers (Fig. 9). The largest structural difference is localized
in HR1N residues 534 to 570 leading to the central 3-HBC of gp41. When the U1 and
sgp140 SOSIP.664 trimer structures are aligned using one of the protomers, the other two
protomers of U1 exhibit rotations in opposite directions relative to the symmetric sgp140
SOSIP.664 trimer structure, causing a prominent narrowing of the opening angle between
these two protomers in the U1 trimer structure (Fig. 9A). In contrast, when the U1 structure
is aligned to the PGT151-bound EnvDCT trimer using the protomer free of the antibody,
both the other two protomers exhibit rotations in the same direction; this results in two
smaller opening angles and one notably larger opening angle in comparison with those
seen in the symmetric sgp140 trimer (Fig. 9B). In addition to relative rotation, the gp120
components of the U1 protomers also exhibit outward movement in both comparisons
(Fig. 9A and B), giving rise to a slightly wider trimer footprint (Fig. 10A). Some local diver-
gence in the gp120 V1/V2 region and gp41 a8 helix between HIV-1JR-FL Env(2) and
HIV-1BG505 sgp140 SOSIP.664 likely results from strain-dependent differences in primary
sequence. Consistent with this explanation, the protomer structures of the Env(2) and
EnvDCT trimers, both derived from the HIV-1JR-FL strain, align well in these regions. As is

FIG 8 Comparison of U1 and U2 Env(2) structures. (A) Protomer 2 of the state-U1 and state-U2 models are superposed,
showing that protomer 1 and protomer 3 are rotated 4.0° and 2.8°, respectively. (B) Three protomers of the state-U1 model
are superposed. (C) Three protomers of the state-U2 model are superposed. (D) With protomer 2 of the state-U1 and state-
U2 models superposed, the Ca distances between the same residues on the U1 and U2 structures are measured for four
residues (from i to iv, T90, D230, S481, and N392). In the side views of Env(2) shown in panels B to D, gp120 is at the
bottom of the figure and gp41 is at the top.
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the case for all current HIV-1 Env trimer structures, the gp41 membrane-proximal external
region (MPER) and transmembrane region are disordered in the U1 and U2 maps.

We next compared the topology of the Env(2) trimers to that of cleaved Env
trimers. The interprotomer distances between arbitrarily chosen atoms on the outer
surface of gp120 and gp41 provide a measure of trimer geometry (Fig. 10A). Of the
trimers that we compared, the symmetric HIV-1BG505 sgp140 SOSIP.664 trimer is the
most tightly packed, with the respective gp120 and gp41 sides 77.3 and 39.3 Å in
length. The two sides of the EnvDCT trimers bound to the PGT151 antibody Fabs are
similar in length (gp120, 75.4 and 77.1 Å/gp41, 37.4 and 37.4 Å, and gp120, 75.5 and
76.0 Å/gp41, 37.5 and 37.8 Å, in the HIV-1JR-FL and HIV-1AMC011 EnvDCT trimers, respec-
tively); these Fab-bound sides are shorter than the “opened” unliganded side (gp120,
83.6 Å/gp41, 46.2 Å, and gp120, 84.8 Å/gp41, 46.6 Å, in the HIV-1JR-FL and HIV-1AMC011

EnvDCT trimers, respectively). The asymmetry of the U1 Env(2) trimer is qualitatively
similar to that of the U2 trimer; the asymmetry of the Env(2) trimers is distinguished by
three sides of different lengths and therefore differs from the asymmetry in the

FIG 9 Comparison of Env(2) structures with those of cleaved HIV-1 Envs. (A) Left, protomer 1 of the
state-U1 trimer is superposed on the unliganded HIV-1BG505 sgp140 SOSIP.664 trimer (PDB ID 4ZMJ)
(101), demonstrating how the other two protomers in state U1 are rotated toward each other. Right,
side views of the superposed protomers, with red parts representing the major areas of difference
between the two protomers. (B) Left, protomer 1 of the state-U1 trimer is superposed on the HIV-1JR-FL
EnvDCT trimer complexed with PGT151 Fabs (PDB ID 5FUU) (102), indicating that binding of the
PGT151 antibodies introduces asymmetry into the Env trimer that differs from that of U1. Right, side
views of the superposed protomers, with red parts representing the major areas of difference between
the two protomers. In the side views of the Env protomers shown on the right in panels A and B,
gp120 is at the bottom of the figure and gp41 at the top.
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EnvDCT trimers induced by the PGT151 antibody. Notably, the average lengths of the
gp120/gp41 sides of the Env(2) trimers are greater than those of the unliganded
sgp140 SOSIP.664 or PGT151-bound EnvDCT trimers, indicating that the uncleaved Env
(2) trimers are packed less tightly than the cleaved Env trimers.

To evaluate the basis for the increased “openness” of the uncleaved Env(2) trimers,
we compared the structures of the gp41 3-HBC coiled coil and HR1N region in the Env
(2) and cleaved Env trimers. Changes in the packing or orientation of the 3-HBC coiled
coil could potentially influence trimer topology. Although it appears that the crossing
angles between two adjacent helices in the gp41 3-HBC coiled coil are very similar in

FIG 10 Comparison of Env trimer geometry among Env(2) trimers and mature Env trimers. (A) The interprotomer distances (in Å)
between selected atoms of gp120 and gp41 are shown for different Env structures: the smaller, inner triangle depicts distances
measured between gp41 residues W628 and I635; the larger, outer triangle depicts distances measured between gp120 residues
A336 and Q352. The U1 and U2 structures are compared with those of the unliganded sgp140 SOSIP.664 trimer (PDB ID 4ZMJ) (101)
and the PGT151-bound HIV-1JR-FL and HIV-1AMC011 EnvDCT trimers (PDB IDs 5FUU and 6OLP, respectively) (102, 105). For 5FUU and
6OLP, the sides of the Env trimer that are bound by the PGT151 Fabs are marked. (B) The three gp120 subunits of four Env trimer
atomic structures were superposed with the gp120 subunits of the state-U1 Env(2) trimer. Each protomer was aligned separately.
After gp120 alignment, the relative positions of the gp41 HR1C helixes are jointly shown here. In each case, the U1 HR1C helices are
colored cyan. With gp120 aligned, the gp41 in state U1 is displaced compared with the other structures. Upper row, top views of 3-
helix bundles; bottom row, side views of 3-helix bundles. 5FYK is the structure of an HIV-1JR-FL sgp140 SOSIP.664 trimer complexed
with several neutralizing antibody Fabs (63).
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the U1 and U2 trimers, these 3-HBC helices exhibit differential packing and asymmetric
features in U1 and U2 that are amplified into a greater degree of overall trimeric asym-
metry. Compared to the PGT151-bound cleaved Env structures (PDB ID 5FUU and
6OLP), the U1 conformation has clearly larger crossing angles and thus a greater 3-HBC
coiled-coil footprint (Fig. 10B). In contrast, the crossing angles in U1 are nearly identical
to those of the sgp140 SOSIP.664 trimers, but the U1 3-HBC helices exhibit marked
translation in opposite directions that breaks the trimer symmetry seen in the crystal
structures of the sgp140 SOSIP.664 trimers (PDB ID 5FYK and 4ZMJ). Being able to sus-
tain structural rearrangements involving both of the orthogonal degrees of freedom
demonstrates that the Env trimer metastability and lability is potentially rooted in the
conformational plasticity and flexibility of the central 3-HBC structure.

Despite a high degree of primary sequence conservation among HIV-1 strains, the
gp41 HR1N region (residues 541 to 570) exhibits significant conformational polymor-
phism among current HIV-1 Env trimer structures. In the pretriggered (state-1) Env con-
formation, the gp41 HR1N region has been implicated in the noncovalent association
with gp120; in the prehairpin intermediate (state 3), the HR1N region forms part of the
extended HR1 helical coiled coil (14–16, 106–108). Therefore, HR1N may transition from
an as-yet-unknown state-1 structure to a helical coiled coil (state 3) as Env “opens”
upon binding CD4. The HR1N region is relatively disordered in most sgp140 SOSIP.664
structures, probably as a result of the I559P change used to stabilize these soluble Env
trimers (109–112). Even in asymmetric structures of sgp140 SOSIP.664 trimers bound
to soluble CD4 and the E51 CD4-induced antibody (113), HR1N disorder precludes anal-
ysis. We therefore limited our comparison to asymmetric Env trimers for which HR1N
structural information is available. Comparison of the HR1N conformation in the asym-
metric Env trimers suggested that the helicity of the HR1N region is related to the
degree of “openness” of the corresponding protomer (Fig. 11). Lower helicity of the
HR1N region leads to a somewhat collapsed conformation that is correlated with a
smaller interprotomer opening angle. This is consistent with the notion that a nonheli-
cal, loop-like, and more collapsed HR1N, which is located in the crevice formed by the
protomer arms, would not have sufficient structural strength to sustain a wider open-
ing angle. These observations support the proposition that the HR1N conformation is
allosterically coupled with asymmetric features of the 3-HBC and the overall asymmetry
of the entire trimer.

Env(2) glycosylation. Most of the peptide-proximal density associated with N-
linked glycosylation is preserved in the U1 map and was modeled (Fig. 12). Most distal
glycan residues are not well resolved, reflecting their dynamic nature and heterogene-
ity. As has been previously shown, the high-mannose glycans are clustered in a patch
on the surface of the gp120 outer domain (39, 40, 63, 114). No glycan-associated den-
sity on Asn 297 is detectable, and the glycan signal on Asn 448 is weak. The signals
associated with the complex glycans on gp41 residues Asn 611 and Asn 637 are buried
in noise. The most membrane-proximal gp41 glycan on Asn 616 is largely modified by
high-mannose glycans.

BMS-806 treatment of Env(2)-expressing cells led to a reduction in the modification
of glycans on Asn 88, 156, 160, 241, 362, and 463. Asn 88 and Asn 241 are located at the
gp120-gp41 interface, and Asn 156 and Asn 160 are located at the trimer apex (Fig. 12).
Previous studies have suggested that BMS-806 can strengthen intersubunit and interpro-
tomer interactions in the Env trimer, increasing the binding of neutralizing antibodies
that recognize the gp120-gp41 interface and trimer apex (77). Strengthening these inter-
actions may render the carbohydrates in these regions less available for modification to
complex carbohydrates. Consistent with this, two other BMS-806-sensitive glycans (on
Asn 362 and Asn 463) reside on the perimeter of the gp120 outer domain that, in a
more closed trimer, might be sterically limited by interprotomer effects.

BMS-806 binding site. The binding site of BMS-806 in sgp140 SOSIP.664 com-
plexes (PDB ID 5U7M) has been previously characterized (115, 116). In these studies,
BMS-806 was soaked into crystals of cleaved sgp140 SOSIP.664 trimers complexed with
antibody fragments. In our study, BMS-806 was added to cells induced to express the
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uncleaved full-length Env(2) trimers. In the Env(2) maps, density corresponding to
the location of BMS-806 in the sgp140 SOSIP.664 complexes is evident. In the Env(2)
complexes, BMS-806 is located in the gp120 Phe 43 cavity and the adjacent water-filled
channel, sandwiched between Trp 427 and Trp 112. Although the level of resolution
does not allow unambiguous definition of the binding mode, the position and orienta-
tion of BMS-806 are consistent with those in the sgp140 SOSIP.664 complexes (115,
116) (Fig. 13). In the U1 Env(-)–BMS-806 structure, as in the unliganded and BMS-806-
bound sgp140 SOSIP.664 structures (101, 115, 116), layer 1 of the gp120 inner domain
appears to be stabilized by the insertion of Trp 69 into the back end of the Phe 43 cav-
ity, where it interacts orthogonally with Trp 112. During the course of Env binding to
CD4, layer 1 is thought to undergo rearrangement to decrease the off-rate of CD4
(117); fixation of layer 1 by BMS-806 could help to inhibit Env conformational transi-
tions to the CD4-bound state 3.

Effect of BMS-806 on processing of wild-type HIV-1 Env. BMS-806 and its ana-
logues block transitions from the pretriggered Env conformation; thus, addition of
these compounds to cleaved and uncleaved Envs on virions enriches state 1 (Table 1)
(42, 53, 54, 77, 79). The studies shown in Fig. 2D to F suggest that limiting the confor-
mational flexibility of the cleavage-defective Env(2) by exposing Env(2)-expressing
cells to BMS-806 can influence the processing of carbohydrate structures. To evaluate
more thoroughly how Env conformation influences its processing, we used A549-Gag/
Env cells, which produce virus-like particles (VLPs) containing Env (70). The wild-type
HIV-1AD8 Env in the A549-Gag/Env cells is proteolytically processed and the VLPs

FIG 11 Relationship between HR1N helicity and the opening angle of the trimer. (A) Sequences of the gp41 HR1N region
from three U1 protomers are shown, with residues in a-helices highlighted in red. (B) The relationship between HR1N
helicity and the opening angle of three asymmetric HIV-1 Env trimers (U1 and two PGT151-Fab-bound EnvDCT trimers
(PDB ID 5FUU and 6OLP]) is shown. The x axis represents the opening angle for each of three sides, measured using the
“angle_between_domains” command in PyMOL (141). The y axis represents the number of residues in an a-helical
conformation for the HR1N region of that side. (C) The HR1N and HR1C regions from the three indicated atomic models are
superposed. (D) The HR1N regions from the three protomers in state U1 are shown.
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contain mostly cleaved Env, as is the case for authentic HIV-1 virions (70). Therefore,
the use of A549-Gag/Env cells allowed us to evaluate the effects of BMS-806 on the
cleavage and glycosylation of wild-type HIV-1 Env in cells and on VLPs.

We incubated A549-Gag/Env cells with BMS-806 and studied Env in cell lysates and
VLPs. BMS-806 treatment during Env expression resulted in a decrease in the efficiency
of Env cleavage (Fig. 14A). The uncleaved Env produced in the presence of BMS-806
was efficiently incorporated into VLPs (Fig. 14B). This contrasts with the relative exclu-
sion of uncleaved Env from VLPs produced in the absence of BMS-806 (Fig. 14B) (70).
In the untreated cells, some of the glycans on the uncleaved Env are endoglycosidase
Hf resistant and therefore are complex carbohydrates (Fig. 14A). The endoglycosidase
Hf-resistant fraction of the uncleaved Env migrated faster on SDS-polyacrylamide gels
following BMS-806 treatment, indicating that fewer complex sugars are added to Env
produced in A549-Gag/Env cells treated with BMS-806 (Fig. 14A). Nonetheless, in the
BMS-806-treated cells, the uncleaved Env that is modified by complex glycans (and
therefore has passed through the Golgi apparatus) is incorporated into VLPs (Fig. 14B).
These results suggest that the BMS-806-induced reduction in the conformational flexi-
bility of the Env precursor decreases the efficiency of gp160 cleavage and addition of
some complex glycans, without significantly affecting Env transport through the Golgi
apparatus or incorporation into VLPs.

DISCUSSION

The uncleaved HIV-1 Env serves as a precursor to the cleaved functional Env and,
by eliciting poorly neutralizing antibodies, as a potential decoy to the host immune

FIG 13 BMS-806 binding site. The BMS-806 binding sites within three protomers of the state-U1 structure
(cyan) are compared with those in the BMS-806-bound sgp140 SOSIP.664 trimer (PDB 5U70) (green) (115).

FIG 12 HIV-1JR-FL Env(2) glycan structure. Glycans on state-U1 trimers are colored according to the following scheme: glycans that
exhibit significant decreases in the addition of processed glycans as a result of BMS-806 treatment are colored purple, high-mannose
glycans are colored yellow, and the remaining mixed or processed glycans that are not affected by BMS-806 binding are colored green.
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system. Antibody or ligand binding and smFRET analyses indicate that the Env precur-
sor can sample multiple conformations that resemble states 1, 2, and 3 of the mature
viral Env spike (71–79). The conformational plasticity of the Env precursor contrasts
with the behavior of the mature Env, which in the absence of ligands largely resides in
state 1 (42, 79). Therefore, proteolytic cleavage stabilizes state-1 Env, which is highly re-
sistant to neutralization by antibodies recognizing other Env conformations. Although
proteolytic maturation also primes the membrane-fusing potential of other class I viral
membrane fusion proteins, the effects of cleavage on HIV-1 Env conformational plastic-
ity are unusual. For example, crystal structures comparing the influenza virus hemag-
glutinin precursor, HA0, with the cleaved HA1/HA2 trimer showed differences only in
the immediate vicinity of the cleavage site (118). Uncleaved HIV-1 Envs can be trans-
ported from the endoplasmic reticulum to the cell surface by bypassing the Golgi ap-
paratus or, when trafficking through the classical secretory pathway, by escaping furin
cleavage in the Golgi apparatus (70). Both subsets of uncleaved Envs on the surface of
expressing cells can be recognized by pNAbs and therefore represent a potentially
abundant source of Env conformations other than state 1 (70, 77). Moreover, the death

FIG 14 Effect of BMS-806 on the synthesis, processing, and glycosylation of wild-type HIV-1AD8 Env. A549-Gag/Env cells
were treated with BMS-806 (10 mM) or mock treated during doxycycline induction of Gag/Env expression. Lysates were
prepared from cells (A) and supernatants containing virus-like particles (VLPs) (B) and were treated with peptide-N-
glycosidase F (PNGase F) or endoglycosidase Hf (Endo Hf) or were mock treated (no Rx). The Envs were run on
reducing SDS-polyacrylamide gels and analyzed by Western blotting. The deglycosylated gp160, gp120, and gp41
proteins (dgp160, dgp120, and dgp41, respectively) are indicated by arrows (red, PNGase F-treated sample; green,
Endo Hf-treated sample). Data in this figure are representative of those obtained in two independent experiments.

HIV-1 Envelope Glycoprotein Precursor Flexibility Journal of Virology

December 2021 Volume 95 Issue 24 e00529-21 jvi.asm.org 19

https://jvi.asm.org


of infected cells through viral cytopathic effects or immune-mediated cytolysis would
result in the presentation of significant quantities of uncleaved Env to the host
immune system. The resulting diversion of host antibody responses away from state-1
Env, the major target for neutralizing antibodies, would have considerable advantages
for a persistent virus like HIV-1.

BMS-806 can enrich state 1 in the uncleaved membrane-anchored Env (77, 79), and
BS3 cross-linking could hypothetically help to stabilize this conformation. Nonetheless,
once Env(2) glycoproteins were solubilized in detergent, these treatments did not pre-
vent Env(2) from assuming non-state-1 conformations. The loss of membrane interac-
tions (119), the effects of detergents, or other manipulations during purification may
have contributed to diminished state-1 occupancy in this case. Although the level of
state 1 in our preparation is lower than that seen in BMS-806-treated virion Envs, the
conformational profile of the purified Env(2) is quite similar to that of a cleavage-de-
fective membrane Env in the absence of BMS-806 (Table 1) (79).

Our structural and biophysical analyses indicate that the cleaved Env conformation
seen in the sgp140 SOSIP.664 trimers is also sampled by the uncleaved Env but, notably,
in an asymmetric fashion. Thus, although the asymmetry of the U1 and U2 uncleaved Env
trimers alters the quaternary relationships among the Env protomers, the fold of the indi-
vidual Env(2) protomers resembles those of sgp140 SOSIP.664 and PGT151-bound
EnvDCT trimers. Analysis by smFRET has suggested that these Envs are predominantly in
a state-2-like conformation (120). By analogy, we deduce that U1 and U2 represent state-
2-like conformations. State 2 has been suggested to represent a default intermediate
conformation favored by Envs that experience a destabilization of state 1 (48, 49, 54,
120, 121). CD4 binding to the wild-type HIV-1 Env trimer sequentially induces state-2
and state-3 conformations in the bound protomer, whereas the other, ligand-free proto-
mers in the Env trimer assume state-2 conformations (49). Although PGT151 is a broadly
neutralizing antibody and can presumably interact with state-1 Envs, it induces asymme-
try in the Env trimer, causing the Env protomers to assume state-2-like conformations
(120). Thus, breaking symmetry in the HIV-1 Env trimer often results in the adoption of a
state-2 conformation, consistent with the proposed default nature of this intermediate.

Asymmetry of both uncleaved and cleaved Env trimers appears to be related to the
structural plasticity and flexibility of the gp41 HR1N region, which is directly situated in
the interprotomer interface and is allosterically coupled with the quaternary Env confor-
mation. On the one hand, the HR1N structure can directly affect the packing of the cen-
tral 3-HBC coiled coils; on the other hand, the HR1N rigidity can allosterically regulate the
interprotomer opening angle. Mutagenesis studies have suggested that in the pretrig-
gered (state-1) Env conformation, the HR1N region contributes to the noncovalent asso-
ciation of gp120 with gp41 (106–108). We observed a relationship between the interpro-
tomer opening angle of asymmetric Env trimers and HR1N helicity. As initial CD4 binding
to the Env trimer occurs asymmetrically, with state-2 conformations assumed by the
unbound protomers (49), the HR1N regions presumably transition from as-yet-unknown
state-1 conformations to predominantly helical conformations. Subsequent assembly of
three HR1N helices into the extended gp41 coiled coil [(HR1N1C)3] projects the fusion
peptide toward the target membrane.

The symmetry of the mature, pretriggered (state-1) HIV-1 Env trimer likely contrib-
utes to its ability to evade pNAbs. Clues to the symmetry of Env trimers can be pro-
vided by the efficiency with which interprotomer cross-links form, resulting in trimers
that withstand SDS-PAGE. We previously observed that the fraction of cell surface wild-
type HIV-1 Env recognized by bNAbs cross-links into gel-stable trimers, whereas the
cell surface Env recognized by pNAbs cross-links into dimers and monomers (70).
Likewise, in the present study (Fig. 7), the pNAb-reactive (non-state-1) subset of cross-
linked Env(2) trimers on cell surfaces or in detergent lysates contained fewer gel-sta-
ble trimers than the bNAb-reactive subset that includes state-1 Env(2). These patterns
of cross-linking are consistent with a greater occupancy of asymmetric states by the
pNAb-reactive, non-state-1 Env(2) population, which by deduction is associated with
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the U1 cryo-EM class. The asymmetry observed for the uncleaved Env(2) U1 and U2

trimers potentially allows pNAbs to access their epitopes with minimal steric hin-
drance. Indeed, pNAbs directed against the gp120 V3 region or CD4-binding site can
be docked into the open face of the U1 Env trimer with only minimal readjustment of
surrounding structures to remove steric clashes (data not shown). Maintaining C3 sym-
metry may be one prerequisite for preserving an antibody-resistant state-1 Env confor-
mation. Our study implicates the conformationally labile gp41 HR1N segment in main-
taining trimer symmetry, and the high-resolution structure of this functionally
important region in a state-1-compatible Env conformation is a future goal.

The intrinsic conformational heterogeneity of the uncleaved HIV-1 Env trimer and
the low occupancy of certain conformational states present significant challenges to
their structural characterization. Previous studies of detergent-solubilized uncleaved
HIV-1 Envs with truncated cytoplasmic tails were performed without extensive 3D clas-
sification and with C3 symmetry imposed, resulting in lower-resolution structures (122,
123). Our current study takes advantage of subsequent advances in 3D classification in
cryo-EM technology and data processing to identify two major classes of Env(2)
trimers, both asymmetric. Cryo-EM and smFRET analyses support the existence of other
conformations in the Env(2) preparation, but high-resolution reconstruction of these
conformers was unsuccessful (92). Current 3D hierarchical classification methods are
prone to ignore or completely miss lowly populated conformational states or experi-
ence difficulties in precisely classifying these low-population conformations, which
then leads to insufficient resolution for structure determination and functional inter-
pretation (124). A more complete characterization of the multiple conformations
assumed by the uncleaved HIV-1 Env may require approaches better able to deal with
a high degree of structural heterogeneity than maximum-likelihood-based 3D classifi-
cation (124, 125).

BMS-806 inhibits HIV-1 entry, blocking CD4-induced transitions of the mature Env
from a pretriggered (state-1) conformation to downstream states (42, 53, 54, 77, 79).
On the cell or viral membrane, uncleaved Env can respond to treatment with BMS-806
by increasing the occupancy of state 1 (77, 79). Consequently, BMS-806 decreases rec-
ognition of uncleaved Env by pNAbs, whereas recognition by most bNAbs is main-
tained or increased (55, 77). We found that BMS-806 also exerts a significant effect on
Env during its maturation. BMS-806 treatment of cells expressing wild-type HIV-1 Env
resulted in decreases in both gp160 cleavage and modification by complex carbohy-
drate structures; transport through the Golgi apparatus and incorporation into VLPs
were not apparently blocked by BMS-806. These observations imply that gp160 confor-
mational flexibility contributes to the efficiency with which the Env precursor is acted
upon by furin and glycosylation enzymes. The requirement that functional Env is
cleaved (25, 126) therefore provides selective pressure to maintain flexibility in the
HIV-1 Env precursor. The resulting conformational heterogeneity of the Env precursor
represents a potential advantage for a persistent virus like HIV-1 by skewing host anti-
body responses away from state 1. For immunization strategies employing membrane-
anchored HIV-1 Env or during natural HIV-1 infection, treatment with BMS-806 ana-
logues could potentially increase the presentation of the state-1 Env conformation to
the immune system. BMS-806 analogues (77) could also assist future investigation of
state-1-like conformations of uncleaved and cleaved HIV-1 Env trimers.

MATERIALS ANDMETHODS
Protein expression and purification. For expression of the uncleaved full-length membrane-anch-

ored HIV-1JR-FL Env(2) glycoprotein, the env cDNA was codon optimized and cloned into an HIV-1-based
lentiviral vector. These Env sequences contain a heterologous signal sequence from CD5 in place of that
of wild-type HIV-1 Env. The proteolytic cleavage site between gp120 and gp41 was altered, with two ser-
ine residues substituted for Arg 508 and Arg 511. In the HIV-1JR-FL Env(2) glycoprotein, the amino acid
sequence LVPRGS-(His)6 was added to the C terminus of the cytoplasmic tail. For Env(2) expression, the
env coding sequences were cloned immediately downstream of the tetracycline (Tet)-responsive ele-
ment (TRE). Our expression strategy further incorporated an internal ribosomal entry site (IRES) and a
contiguous puromycin (puro) T2A enhanced green fluorescent protein (EGFP) open reading frame
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downstream of env (TRE-env-IRES-puro.T2A.EGFP). Uncleaved membrane-anchored Env(2) was pro-
duced by exogenous expression in CHO cells. Briefly, the HIV-1-based lentiviral vector encoding HIV-1JR-FL
Env(2) was packaged, pseudotyped with the vesicular stomatitis virus (VSV) G protein, and used to trans-
duce CHO cells (Invitrogen) constitutively expressing the reverse Tet transactivator (rtTA). High-producer
clonal cell lines were derived using a FACSAria cell sorter (BD Biosciences) to isolate individual cells
expressing high levels of EGFP. The integrity of the recombinant env sequence in the clonal lines was con-
firmed by sequence analysis of PCR amplicons. Clonal cultures were adapted for growth in a serum-free
suspension culture medium (CDM4CHO; Thermo Fisher).

For the exogenous production of the Env(2) glycoprotein, cells were expanded in a suspension cul-
ture using a roller bottle system (Thermo) and were treated with 1 mg/ml of doxycycline and 10 mM
BMS-378806 (herein referred to as BMS-806) (Selleckchem) after reaching a density of .4 � 106 cells per
ml. After 18 to 24 h of culture with doxycycline and BMS-806, the cells were harvested by centrifugation.
During the remainder of the purification procedure, 10 mM BMS-806 was added to all buffers. The cell
pellets were homogenized in a homogenization buffer (250 mM sucrose, 10 mM Tris-HCl [pH 7.4], and a
cocktail of protease inhibitors [Roche Complete EDTA-free tablets]). Membranes were then extracted
from the homogenates by ultracentrifugation. The extracted crude membrane pellet was collected,
resuspended in 1� phosphate-buffered saline (PBS) to a final concentration of 5 mg of wet membrane
per ml of 1� PBS, and cross-linked with 5 mM BS3 (Proteochem), followed by solubilization with a solu-
bilization buffer containing 100 mM (NH4)2SO4, 20 mM Tris-HCl (pH 8.0), 300 mM NaCl, 20 mM imidazole,
1% (wt/vol) Cymal-5 (Anatrace), and a cocktail of protease inhibitors (Roche Complete EDTA-free tab-
lets). The suspension was ultracentrifuged for 30 min at 100,000 � g and 4°C. The supernatant was col-
lected and mixed with a small volume of preequilibrated Ni-nitrilotriacetic acid (NTA) beads (Qiagen) for
2 h on a rocking platform at 4°C. The mixture was then injected into a small column and washed with a
buffer containing 20 mM Tris-HCl (pH 8.0), 100 mM (NH4)2SO4, 1 M NaCl, 30 mM imidazole, and 0.5%
Cymal-5. The beads were resuspended in a buffer containing 20 mM Tris-HCl (pH 8.0), 100 mM
(NH4)2SO4, 250 mM NaCl, 4.5 mg/ml amphipol A8-35 (Anatrace), 0.006% decyl maltose neopentyl glycol
(DMNG) (Anatrace), and a cocktail of protease inhibitors (Roche Complete EDTA-free tablets) and incu-
bated for 2 h on a rocking platform. The mixture was applied to a column, and the buffer was allowed to
flow through. The beads were then resuspended in a buffer containing 20 mM Tris-HCl (pH 8.0), 100 mM
(NH4)2SO4, 250 mM NaCl, 4.5 mg/ml amphipol A8-35 (Anatrace), and a cocktail of protease inhibitors
(Roche Complete EDTA-free tablets) and incubated for 2 h on a rocking platform. The mixture was added
to a column, and the buffer was allowed to flow through, followed by washing with 10 bed volumes of a
buffer containing 20 mM Tris-HCl (pH 8.0), 100 mM (NH4)2SO4, and 250 mM NaCl. Proteins were eluted
from the bead-filled column with a buffer containing 20 mM Tris-HCl (pH 8.0), 100 mM (NH4)2SO4,
250 mM NaCl, and 250 mM imidazole. The buffer of the eluted Env(2) glycoprotein solution was
exchanged with imaging buffer containing 20 mM Tris-HCl (pH 8.0), 100 mM (NH4)2SO4, and 250 mM
NaCl with a centrifugal filter (Millipore) and was concentrated. Before cryo-plunging, Cymal-6 (Anatrace)
was added to the Env(2) glycoprotein solution at a final concentration of 0.005%.

Expression of wild-type HIV-1 Env and VLPs. Human A549 lung epithelial cells (ATCC) inducibly
expressing Env and an HIV-1 Gag-mCherry fusion protein under the control of a tetracycline-regulated
promoter were established as described previously (70). Briefly, A549-rtTA cells constitutively expressing
the reverse tet transactivator were transduced with an HIV-1-based lentivirus vector expressing Rev and
Env from HIV-1AD8, a primary HIV-1 strain (127). These A549-Env cells were transduced with a lentivirus
vector expressing the HIV-1 Gag precursor fused with mCherry (70). The doxycycline-regulated expres-
sion of the Gag-mCherry fusion protein resulted in the release of Env-containing VLPs into the medium.
Herein, we designate these cells A549-Gag/Env. The A549-Gag/Env cells were grown in Dulbecco’s modi-
fied Eagle medium (DMEM)/F12 supplemented with 10% fetal bovine serum (FBS), L-glutamine, and pen-
icillin-streptomycin.

Antibodies. Antibodies against HIV-1 Env were kindly supplied by Dennis Burton (Scripps), Peter
Kwong and John Mascola (Vaccine Research Center, NIH), Barton Haynes (Duke), Hermann Katinger
(Polymun), James Robinson (Tulane), and Marshall Posner (Mount Sinai Medical Center). In some cases,
anti-Env antibodies were obtained through the NIH AIDS Reagent Program. Antibodies for Western blot-
ting include goat anti-gp120 polyclonal antibody (ThermoFisher) and the 4E10 human anti-gp41 anti-
body (Polymun). A horseradish peroxidase (HRP)-conjugated goat anti-human IgG (Santa Cruz) and an
HRP-conjugated rabbit anti-goat antibody (ThermoFisher) were used as secondary antibodies for
Western blotting.

Single-molecule FRET: sample preparation, data acquisition, and analysis. Analysis of the con-
formational dynamics of HIV-1 Env was performed after enzymatic labeling of the V1 and V4 regions of
gp120 on the purified (His)6-tagged HIV-1JR-FL Env(2) glycoprotein with Cy3 and Cy5 fluorophores,
respectively, as previously described (42). A transfection ratio of 20:1 of nontagged to V1/V4-tagged HIV-
1JR-FL Env(2) was used to ensure that only one protomer within a trimer carries enzymatic tags for site-
specific labeling. The HIV-1JR-FL Env(2) glycoprotein was purified from transiently expressing 293T cells
that had been treated with BMS-806 and cross-linked with BS3, as described above. The purified HIV-1JR-FL
Env(2) glycoprotein in buffer [20 mM Tris-HCl (pH 8.0), 10 mM MgCl2, 10 mM CaCl2, 100 mM (NH4)2SO4,
250 mM NaCl, 0.005% Cymal-6, 10 mM BMS-806] was labeled with Cy3B(3S)-cadaverine (0.5 mM), transglu-
taminase (0.65 mM; Sigma-Aldrich), LD650-CoA (0.5 mM) (Lumidyne Technologies), and AcpS (5 mM) at
room temperature overnight. After labeling, Env(2) trimers were purified using Zeba spin desalting col-
umns (ThermoFisher) to remove free dyes. Finally, prior to imaging, fluorescence-labeled HIV-1JR-FL Env(2)
carrying the (His)6 epitope tag was incubated with biotin-conjugated anti-(His)6 tag antibody (HIS.H8;
Invitrogen) at 4°C for 2 h.
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All smFRET data were acquired on a home-built total internal reflection fluorescence (TIRF) micro-
scope, as previously described (42, 128). Fluorescently labeled HIV-1JR-FL Env(2) trimers were immobi-
lized on passivated streptavidin-coated quartz microscopy slides and washed with preimaging buffer
specifically made for this experiment. The preimaging buffer consisted of 20 mM Tris HCl (pH 8.0),
100 mM (NH4)2SO4, 250 mM NaCl, 0.005% Cymal-6, and 10 mM BMS-806. For smFRET analysis, a cocktail
of triplet-state quenchers and 2 mM protocatechuic acid (PCA) with 8 nM protocatechuic 3,4-dioxyge-
nase (PCD) was added to the above preimaging buffer to remove molecular oxygen. Cy3 and Cy5 fluo-
rescence was detected with a 60� water-immersion objective (Nikon), split by a diachronic mirror
(Chroma), and imaged on two synchronized ORCA-Flash4.0v2 sCMOS cameras (Hamamatsu) at 40
frames/s for 80 s.

smFRET data analysis was performed on the customized Matlab (Mathworks) program SPARTAN
(127). Fluorescence intensity trajectories were extracted from recorded movies, and FRET efficiency
(FRET) was calculated based on FRET = IA/(gID 1 IA), where ID and IA are the fluorescence intensities of do-
nor (D) and acceptor (A), respectively, and g is the correlation coefficient, which incorporates the differ-
ence in quantum yields of donor and acceptor and detection efficiencies of the donor and acceptor
channels. FRET trajectories were further compiled into a FRET histogram, which provides information
about the distribution of Env(2) molecules among the conformational states. The state distributions in
the FRET histogram were then fitted to the sum of three Gaussian distributions (based on previously
identified FRET trajectories) (42, 79, 120) in Matlab, and the occupancy of each state was further
obtained from the area under each Gaussian distribution.

Immunoprecipitation of cell surface Env. Immunoprecipitation of wild-type HIV-1JR-FL Env from the
surface of expressing cells, as shown in Fig. 1A, was performed as follows. One day prior to transfection,
HOS cells were seeded in 6-well plates (6 � 105 cells/well). The cells were transfected the next day with
0.4 mg of the pSVIIIenv plasmid expressing the wild-type HIV-1JR-FL Env and 0.05 mg of a Tat-expressing
plasmid. Two days later, the cells were washed twice with blocking buffer (1� PBS with 5% FBS) and
then incubated for 1 h at 4°C with 6 mg/ml anti-gp120 monoclonal antibody. Cells were then washed
four times with blocking buffer and four times with washing buffer (140 mM NaCl, 1.8 mM CaCl2, 1 mM
MgCl2, and 20 mM Tris, pH 7.5) and lysed in NP-40 buffer (0.5% NP-40, 0.5 M NaCl, and 10 mM Tris, pH
7.5) for 5 min at 4°C with gentle agitation. Lysates were cleared by centrifugation at 15,000 � g for
30 min at 4°C. Antibody-bound Env was precipitated using protein A-Sepharose beads and analyzed by
SDS-PAGE and Western blotting with an HRP-conjugated rabbit anti-gp120 polyclonal serum.

The cell surface immunoprecipitation of the uncleaved HIV-1JR-FL Env(2) from the surface of expressing
cells, as shown in Fig. 7B, was performed as follows. Twenty milliliters of CHO cells expressing HIV-1JR-FL
Env(2) (106 cells/ml) was treated with 1 mg/ml doxycycline and 10 mM BMS-806 for 24 h. The cells were
pelleted at 900 � g for 3 min, washed with 1� PBS containing 10 mM BMS-806, and cross-linked with
1 mM BS3 for 45 min. The cells were pelleted at 900 � g for 3 min and washed with 1� PBS–5% FBS. After
resuspension in 1.4 ml of 1� PBS–5% FBS, 200-ml aliquots of the cell suspension were incubated with
10mg/ml antibodies for 1 h at 4°C. The cells were washed three times with 1 ml 1� PBS–5% FBS and then
lysed in 250 ml lysis buffer (1� PBS, 1% CA-630, and 1� protease inhibitor cocktail) on ice for 5 min. The
cell lysates were cleared by centrifugation at 16,100 � g for 10 min. The cleaved lysates were incubated
with 10 ml of protein A-agarose beads for 1 h at room temperature. The precipitates were analyzed by
SDS-PAGE and Western blotting with an HRP-conjugated goat anti-gp120 polyclonal serum.

Cell-based enzyme-linked immunosorbent assay (ELISA). CHO cells expressing HIV-1JR-FL Env(2)
were induced with 1 mg/ml doxycycline with or without 10 mM BMS-806. Fifteen to 24 h later, the cells
were washed twice with washing buffer 1 (20 mM HEPES, pH 7.5, 1.8 mM CaCl2, 1 mM MgCl2, 140 mM
NaCl) and cross-linked with 5 mM BS3 or incubated in buffer without cross-linker. At 45 min later, the
cells were quenched with quench buffer (50 mM Tris, pH 8.0, 1.8 mM CaCl2, 1 mM MgCl2, 140 mM NaCl).
The cells were blocked with a blocking buffer (35 mg/ml BSA, 10 mg/ml nonfat dry milk, 1.8 mM CaCl2,
1 mM MgCl2, 25 mM Tris, pH 7.5, and 140 mM NaCl) and incubated with the indicated primary antibody
in blocking buffer for 30 min at 37°C. Cells were then washed three times with blocking buffer and three
times with washing buffer 2 (140 mM NaCl, 1.8 mM CaCl2, 1 mM MgCl2, and 20 mM Tris, pH 7.5) and
reblocked with the blocking buffer. An HRP-conjugated antibody specific for the Fc region of human IgG
was then incubated with the samples for 45 min at room temperature. Cells were washed three times
with blocking buffer and three times with washing buffer 2. HRP enzyme activity was determined after
the addition of 35 ml per well of a 1:1 mix of Western Lightning oxidizing and luminal reagents (Perkin
Elmer Life Sciences) supplemented with 150 mM NaCl. Light emission was measured with a Mithras
LB940 luminometer (Berthold Technologies).

Analysis of Env(2) glycoforms in BMS-806-treated cells. CHO cells expressing HIV-1JR-FL Env(2)
were treated with 1 mM BMS-806 or an equivalent volume of the carrier, dimethyl sulfoxide (DMSO).
After 18 to 24 h of culture, the cells were harvested and lysed in homogenization buffer (see above) and
treated with different glycosidases in accordance with the manufacturer’s instructions. The lysates were
analyzed by Western blotting with an HRP-conjugated anti-HIV-1 gp120 antibody, as described above.

Analysis of Env glycopeptides. The sample preparation and mass spectrometric analysis of Env(2)
glycopeptides has been described previously (39, 40), and no changes were made to the procedure for
the current analysis. Briefly, the Env(2) glycoprotein was denatured with urea, reduced with TCEP [Tris
(2-carboxyethyl)phosphine hydrochloride], alkylated with iodoacetamide, and quenched with dithiothre-
itol. The protein was then buffer exchanged and digested with trypsin alone or with a combination of
trypsin and chymotrypsin, generating glycopeptides.

The glycopeptides were analyzed by liquid chromatography-mass spectrometry (LC-MS) on an LTQ-
Orbitrap Velos Pro (Thermo Scientific) mass spectrometer equipped with ETD (electron transfer
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dissociation) that was coupled to an Acquity ultra performance liquid chromatography (UPLC) system
(Waters). About 35 mmol of digest was separated by reverse-phase HPLC using a multistep gradient, on
a C18 PepMap 300 column. The mass spectrometric analysis was performed using data-dependent scan-
ning, alternating with a high-resolution scan (30,000 at m/z 400), followed by ETD and collision-induced
dissociation (CID) data of the five most intense ions. The glycopeptides were identified in the raw data
files using a combination of freely available glycopeptide analysis software and expert identification, as
described previously (39).

Analysis of A549-Gag/Env cells and VLPs treated with BMS-806. To analyze the effect of BMS-806
on the processing of the wild-type HIV-1AD8 Env, 150-mm dishes of 30 to 40% confluent A549-Gag/Env
cells were seeded and, on the following day, treated with 2 mg/ml doxycycline. At the same time, 10 mM
BMS-806 was added. Approximately 72 h after induction, cell lysates and medium were harvested. To
prepare VLPs, the culture medium was cleared by low-speed centrifugation (500 � g for 15 min at 4°C)
and 0.45-mm filtration. VLPs were pelleted by centrifugation at 100,000 � g for 1 h at 4°C. The resus-
pended VLP preparation was clarified by low-speed centrifugation.

Env solubilized from cell lysates and VLPs was denatured by boiling in denaturing buffer (New
England Biolabs) for 10 min. Samples were mock treated or treated with peptide N-glycosidase F
(PNGase F) or Endo Hf (New England Biolabs) for 1.5 h according to the manufacturer’s protocol. The
treated samples were then analyzed by reducing SDS-PAGE and Western blotting.

Cryo-EM sample preparation. A 3-ml drop of 0.3 mg/ml Env(2) protein solution was applied to a
glow-discharged C-flat grid (R1/1 and R1.2/1.3, 400 mesh; Protochips, CA, USA), blotted for 2 s, and then
plunged into liquid ethane and flash-frozen using an FEI Vitrobot Mark IV.

Cryo-EM data collection. Cryo-EM grids were first visually screened on a Tecnai Arctica transmission
electron microscope (FEI) operating at 200 kV. Qualified grids were then imaged in a 200-kV FEI Tecnai

TABLE 2 Cryo-EM data collection, refinement, and validation statistics

Parameter

Value for:

HIV-1JR-FL Env(2) U1 HIV-1JR-FLEnv(2) U2

Data collection and processing
Magnification 105,000 105,000
Voltage (kV) 300 300
Electron exposure (e/Å) 53 53
Defocus range (mm) 21.0 to22.7 21.0 to22.7
Pixel size (Å) 0.685 0.685
Symmetry imposed C1 C1
Initial particle images (no.) 572,205 572,205
Final particle images (no.) 123,372 55,571
Map resolution (Å) 4.1 4.7
FSC threshold 0.143 0.143
Map resolution range (Å) 3.8 to 8 3.8 to 10

Refinement
Initial model used (PDB code) 5FUU 5FUU
Model resolution (Å) 4.1 4.6
FSC threshold 0.143 0.143
Model resolution range (Å) 3.8 to 8 3.8 to 10
Map sharpening B factor (Å2) 275 275
Model composition
Nonhydrogen atoms 16,092 15,705
Protein residues 1,776 1,771
Ligands 151 123

B factors (Å2)
Protein 229.66 255.78
Ligands 11.70 13.60

RMSD
Bond length (Å) 0.008 0.008
Bond angle (degree) 1.446 1.377

Validation
MolProbity score 2.61 2.36
Clashscore 13.96 13.80
Poor rotamers (%) 2.48 1.34

Ramachandran plot
Favored (%) 85.03 87.06
Allowed (%) 14.51 12.59
Disallowed (%) 0.46 0.34
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Arctica microscope, equipped with an Autoloader, at a nominal magnification of 210,000 times and in a
300-kV Titan Krios electron microscope (FEI) equipped with a Gatan BioQuantum energy filter, at a nomi-
nal magnification of 105,000 times, operating at 300 kV (Table 2). Coma-free alignment and astigmatism
were manually optimized prior to data collection. Cryo-EM data from the 200-kV Arctica microscope
were collected semiautomatically by Leginon version 3.1 (129, 130) on the Gatan K2 Summit direct elec-
tron detector camera (Gatan Inc., CA, USA) in a super-resolution counting mode, with a dose rate of 8
electrons/pixel/s and an accumulated dose of 50 electrons/Å2 over 38 frames per movie. The calibrated
physical pixel size and the super-resolution pixel size were 1.52 Å and 0.76 Å, respectively. The defocus
for data collection was set in the range of 21.0 to 23.0 mm. A total of 12,440 movies were collected on
the 200-kV Arctica microscope without tilting the stage, from which 10,299 movies were selected for fur-
ther data analysis after screening and inspection of data quality.

Cryo-EM data from the 300-kV Krios microscope, including both zero-tilted and 45°-tilted images,
were collected on the K2 Summit direct electron detector (Gatan) at a pixel size of 0.685 Å in a super-re-
solution counting mode, with an accumulated dose of ;53 electrons/Å2 across 40 frames per movie
(Table 2). With defocus ranging from 21.0 to 22.7 mm, a total of 10,929 movies were acquired across
three sessions.

Zero-tilted and 45°-tilted images were collected by a semiautomatic process set up in Serial EM
(131), which is compatible with customized scripts. For the collection of zero-tilted movies, the process
normally involved the following steps: square selection and focusing, hole selection, serial local focusing,
and data acquisition. In the final step, precise adjustment of the defocus was conducted each time
before recording movies for a new group of holes. However, for the collection of tilted movies, precise
adjustment of the defocus was performed for all holes in the first place, followed by an extra coordinate
transformation for the x axis and y axis. Tilted movies were then recorded serially with the new defocus
and coordinates.

Cryo-EM data processing and analysis. The raw movie frames of each data set were first corrected
for their gain reference, and each movie was used to generate a micrograph that was corrected for sam-
ple movement and drift with the MotionCor2 program (132) at a super-resolution pixel size (0.76 Å for
the 200-kV data set, 0.685 Å for the 300-kV data set); the first two frames with high drift were discarded
before drift correction. These drift-corrected micrographs were used for the determination of the actual
defocus of each micrograph with the CTFFind4 (133) and Gctf (134) programs. Icy or damaged micro-
graphs were removed through manual per-image screening.

For the 200-kV data set, using DeepEM, a deep learning-based particle extraction program that we
developed (135), 1,436,424 particles of Env(2) were automatically selected in a template-free fashion.
All 2D and 3D classifications were done at a pixel size of 1.52 Å. After the first round of reference-free 2D
classification, bad particles were rejected upon inspection of class-average quality, which left 1,366,095
particles. The initial model, low-pass filtered to 60 Å, was used as the input reference to conduct unsu-
pervised 3D classification into 5 classes with C3 symmetry, using an angular sampling of 7.5° and a regu-
larization parameter T of 4. Iterative 3D classification in RELION (136) and ROME (137) resulted in a 3D
class of 121,979 particles that reached a resolution of 5.5 Å (gold standard Fourier shell correlation [FSC]
at a 0.143 cutoff) after refinement, with imposition of C3 symmetry. More details of this preliminary, in-
termediate analysis were described in an online bioRxiv preprint (92).

After screening, 8,031 300-kV micrographs were left for further processing. For the zero-tilt 300-kV
data set, micrographs without dose weighting were used by Gctf (134) to estimate the global contrast
transfer function (CTF) parameters; for the 45°-tilt data set, particles were first picked by a program
based on a VGG deep neural network improved from the DeepEM algorithm design (135). The coordi-
nates were then applied for local CTF estimation in Gctf (134). We found that for most of 45°-tilted
micrographs, confining the resolution range used for CTF determination in Fourier space improved the
accuracy of the results. In our work, this was realized by setting the variable “local_resL” to 20 Å and the
variable “local_resH” to 8 Å in the Gctf (134) command. Automatic picking followed by manual examina-
tion yielded 1,941,541 particles of the HIV-1JR-FL Env(2) trimers, with 785,844 zero-tilted and 1,155,697
tilted particles.

All 2D and 3D classifications of the particles from the 300-kV data sets were conducted with dose-
weighted micrographs generated by MotionCor2 (132). Particles were stacked at 2.74 Å/pixel using a
box size of 84 � 84 for initial sorting. Two rounds of reference-free 2D classification were performed in
RELION 3.0 (136), followed by one round in ROME (137), which combines maximum likelihood-based
image alignment and statistical manifold learning-based classification. Bad particles were rejected upon
inspection of the class average’s quality after each round of 2D classification, leaving 572,205 particles
for 3D refinement. The initial model for refinement was generated ab initio in RELION 3.0 (136) using par-
ticles from diversely oriented 2D classes and was low-pass filtered to 60 Å.

3D classification and refinement of the 300-kV data set were performed in RELION 3.0 (136), as sum-
marized in Fig. 5 and Table 3. In the first round of unsupervised 3D classification, the Healpix order was
enhanced from 2 to 3 at the 20th iteration. To prevent tilted particles from being separated as a sole 3D
class, the resolution limit to restrict the probability calculation was set at 15 Å in the preceding 20 itera-
tions and 10 Å in the posterior iterations. The second round of 3D classification retained the same pa-
rameters, except that K (the number of classes) was changed to 6. The third round of 3D classification
was performed by local searching (s = 4, meaning that the standard deviation of the Euler angles equals
4 times the Healpix order) to discard amorphous particles. Particles with the correct size and detailed
secondary structures were selected and binned 2-fold into 1.37 Å/pixel for further refinement. The
selected 278,582 particles were first aligned together by autorefinement and then were classified into
12 classes within a soft, global mask without alignment. Particles from 5 classes with complete domain
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constitution were sorted out and used for per-particle CTF refinement in RELION 3.0 (136). Imposed with
updated CTF correction, the sorted stacks were classified with local searching into two major classes.

As observed in Chimera (138), the distribution of particles concentrated in the top-view orientation
for both maps, leading to anisotropy of the final resolution. Therefore, we retrieved the tilt-view particles
excluded by previous rounds of 3D classification and combined them with particles from the two
classes. This was accomplished by several rounds of screening satisfying classes from the results of deep
2D classification in ROME (137). The new particle data set, containing 171,342 zero-tilted particles and
157,607 45°-tilted particles, was used for one round of 3D classification under global searching with
Healpix order 2. Particles from 3 of the 4 classes were identified as HIV-1JR-FL Env(2) trimers with
improved isotropic resolution; these 284,664 particles were combined for the next round of 3D classifica-
tion. A third round of 3D classification using the same parameters except for K = 4 was performed to
exclude particles with poor quality. The principal class consisting of 96% of this round’s particles was
reserved.

For elaborate 3D classification, we adopted a hierarchical enhancement of Healpix order in the next
6 rounds (Table 3): sorted particles from the previous round of 3D classification were used for autorefine-
ment, followed by classification into multiple classes with local searching under a Healpix order of 4. In
every round, this process produced a major class consistent with the structure of the conventional Env
trimer and consisting of more than 80% of the input particles, while the other classes appeared in
incomplete form. Therefore, this major class of particles was used for autorefinement and was chosen as
input for the next round of 3D classification. This classification-selection-refinement-classification pro-
cess was iterated four times, using different K (class number) values and the same Healpix order 4, until
the result demonstrated more than one principal class. C1 symmetry was imposed throughout all these
unsupervised 3D classifications. In the last two rounds, we enhanced the Healpix order to 5 to perform
local-searching 3D classification again and finally obtained five classes. Four of these classes, consisting
of 97% of the input particles, exhibited different degrees of asymmetry. By carefully comparing their fea-
tures, two classes with similar topology were designated state U1 while the other two classes were desig-
nated state U2, containing 123,372 and 55,571 particles, respectively. The last round of autorefinement
for the U1 and U2 data sets was done in RELION 3.0 (136), applied with a soft-edged global mask when it
fell into local searching. According to the in-plane shift and Euler angles of each particle from the final
refinement, we reconstructed the two half-maps of each state at a super-resolution counting mode with
a pixel size of 0.685 Å. The overall masked resolutions for the reconstructed maps of state U1 and state
U2 were 4.1 Å and 4.7 Å, respectively, measured by the gold standard FSC at a 0.143 cutoff.

Atomic model building and refinement. The symmetric structure of the HIV-1BG505 sgp140
SOSIP.664 trimer with three BMS-806 molecules bound (PDB ID 6MTJ) (115) and the asymmetric struc-
ture of the HIV-1JR-FL EnvDCT glycoprotein bound to PGT151 Fabs (PDB ID 5FUU) (102) were used as ref-
erence models to build a U1 structure. The template structures were docked in Coot (139), and then
main chain and side chain fitting was improved manually to generate the starting coordinate file. The fit-
ting of the U1 model was further improved by real_space_refinement with secondary structure restraints
in Phenix (140). Glycans of U1 were manually refined in Coot (139) with “Glycan” model, using PDB ID
5FUU as a reference. The U1 model was used as a whole to perform rigid-body fitting into the U2 density.
Structural comparison was conducted in PyMOL (141) and Chimera (138). All figures of the structures
were produced in PyMOL (141).

Data availability. The cryo-EM reconstructions of states U1 and U2 reported in this paper have been
deposited in the Electron Microscopy Data Bank under accession numbers EMD-23860 and EMD-23861,
respectively. The models of U1 and U2 have been deposited in the Protein Data Bank under ID codes
7N6U and 7N6W. The cryo-EM raw data, including the motion-corrected micrographs and the particle

TABLE 3 Summary of 3D classification parameters (300-kV data set)

Iteration no. K Healpix order Global searching or local searching
No. of particles
left for next round

1 4 2 & 3 Global 479,120
2 6 2 & 3 Global 362,017
3 8 4 Local, s = 4 278,582
4 12 271,277
5 8 4 Local, s = 4 243,313

Retrieve and combine
6 4 2 & 3 Global 284,664
7 3 2 Global 269,801
8 4 2 Global 265,901
9 8 4 Local, s = 4 229,246
10 6 4 Local, s = 4 223,613
11 6 4 Local, s = 8 211,023
12 6 4 Local, s = 4 164,789
13 5 5 Local, s = 4 156,714
14 5 5 Local, s = 4
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stacks of U1 and U2 used for final refinement, have been deposited into the Electron Microscopy Pilot
Image Archive (https://www.ebi.ac.uk/empiar) under accession no. EMPIAR-10163.
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