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Abstract
Background and Objectives
To predict when cognitively normal individuals with brain amyloidosis will develop symptoms
of Alzheimer disease (AD).

Methods
Brain amyloid burden was measured by amyloid PET with Pittsburgh compound B. The mean
cortical standardized uptake value ratio (SUVR) was transformed into a timescale with the use
of longitudinal data.

Results
Amyloid accumulation was evaluated in 236 individuals who underwent >1 amyloid PET scan.
The average age was 66.5 ± 9.2 years, and 12 individuals (5%) had cognitive impairment at their
baseline amyloid PET scan. A tipping point in amyloid accumulation was identified at a low
level of amyloid burden (SUVR 1.2), after which nearly all individuals accumulated amyloid at a
relatively consistent rate until reaching a high level of amyloid burden (SUVR 3.0). The average
time between levels of amyloid burden was used to estimate the age at which an individual
reached SUVR 1.2. Longitudinal clinical diagnoses for 180 individuals were aligned by the
estimated age at SUVR 1.2. In the 22 individuals who progressed from cognitively normal to a
typical AD dementia syndrome, the estimated age at which an individual reached SUVR 1.2
predicted the age at symptom onset (R2 = 0.54, p < 0.0001, root mean square error [RMSE] 4.5
years); the model was more accurate after exclusion of 3 likely misdiagnoses (R2 = 0.84, p <
0.0001, RMSE 2.8 years).

Conclusion
The age at symptom onset in sporadic AD is strongly correlated with the age at which an
individual reaches a tipping point in amyloid accumulation.
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Alzheimer disease (AD) is characterized neuropathologically
by amyloid plaques and neurofibrillary tangles, which are
thought to start accumulating approximately 20 years before
the onset of dementia symptoms.1,2 Brain amyloid accumu-
lation does not occur linearly over time; instead, the pattern is
reminiscent of the multiphased nucleation-dependent aggre-
gation of β-amyloid (Aβ) peptide in vitro.3-5 In a test tube,
monomeric Aβ stochastically aggregates and disaggregates
during an initial lag phase. Once a critical concentration of Aβ
aggregates is reached (the nucleation threshold or tipping
point), the aggregates serve as nuclei for the rapid and rela-
tively predictable growth phase of Aβ aggregation. Similarly,
in the human brain, studies suggest that the rate of amyloid
accumulation is slow and highly variable at very low levels of
amyloid burden.2,6 Once a threshold level of amyloid burden
is crossed, the rate of amyloid accumulation increases and
becomes relatively consistent across individuals, which allows
the time of amyloid accumulation to be reliably estimated
through a variety of mathematical approaches.2,6-8

Although the pattern of brain amyloid accumulation may or
may not be directly related to the aggregation kinetics of Aβ in
vitro and empirically investigating this potential connection
was not the goal of this study, we used nucleation-dependent
aggregation as a conceptual framework for modeling amyloid
accumulation. We speculated that the level of amyloid burden
that marks the transition from slow to rapid amyloid accu-
mulation might represent the nucleation threshold for brain
amyloid aggregation. Furthermore, we hypothesized that this
tipping point in amyloid aggregation could be used to align
longitudinal clinical data across individuals and enable pre-
diction of when cognitively normal individuals with brain
amyloidosis will develop the onset of AD symptoms.

Methods
Standard Protocol Approvals, Registrations,
and Participant Consents
Community-dwelling participants enrolled in longitudinal
studies of memory and aging at the Knight Alzheimer Disease
Research Center (ADRC) who underwent an amyloid PET
scan with Pittsburgh compound B (PiB) within 1 year of a
comprehensive clinical assessment and had available APOE
genotype data were included in the present study. Race and
sex were self-reported. APOE genotyping was performed by
the Knight ADRC Genetics Core.9 All procedures were ap-
proved by the Washington University Human Research
Protection Office, and written informed consent in accor-
dance with the Declaration of Helsinki was obtained from
each participant or their legally authorized representative

when appropriate. All data were used for research purposes
only.

Clinical Assessment and Categorization
of Dementia
Individuals who were cognitively normal or had cognitive im-
pairment caused by an uncertain etiology or suspected AD eti-
ology were enrolled. Comprehensive clinical assessments were
performed every 3 years for participants <65 years old and yearly
for participants≥65 years of age. The clinical assessment included
a detailed interview of a collateral source, a neurologic examina-
tion of the participant, the Clinical Dementia Rating (CDR),10

CDR Sum of Boxes,11 and the Mini-Mental State Examination.12

Individuals with a CDR score of ≥0.5 were considered to have a
dementia syndrome, and the probable etiology of the dementia
syndrome was formulated by clinicians on the basis of clinical
features in accordance with standard criteria and methods.13

For this study, individuals with a CDR score of 0 were catego-
rized as cognitively normal. Previous studies in this cohort
established that individuals with a CDR score of 0.5 and an
etiologic diagnosis of AD, who would have been described by
some other studies as having mild cognitive impairment, had
early AD dementia.14,15 Symptomatic AD is a continuum that
includes mild cognitive impairment due to AD and AD
dementia.14-16 Therefore, individuals with a CDR score of ≥0.5
were categorized as having a typical AD dementia syndrome if
they met the McKhann et al.17 criteria, which include the in-
sidious onset and slow progression of dementia with an amnestic
presentation and without substantial evidence of confounding
factors.17 Individuals with a typical AD dementia syndrome, who
also had secondary disorders that could impair cognition (e.g.,
depression) that were not thought to be contributing signifi-
cantly to the dementia syndrome, were also categorized as having
a typical AD dementia syndrome. Individuals with a CDR score
of ≥0.5 with any other etiologic dementia diagnoses were cate-
gorized as having other dementia syndrome. Themost common
diagnosis in the other dementia category was uncertain etiology,
meaning that the clinical features were not clearly concordant
with 1 dementia diagnosis. Possible AD dementia was included
in the other dementia syndrome category when other disorders
were present and thought to be contributing significantly to the
dementia or when atypical clinical features were present that
could potentially be caused by other neurologic disorders such as
parkinsonism or early changes in language, visuospatial function,
or social appropriateness. The other dementia syndrome cate-
gory also included diagnoses of non-AD dementias, including
dementia with Lewy bodies, frontotemporal dementia, and
vascular dementia. Diagnostic categories were defined before the
analyses described herein were performed.

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; ADRC = Alzheimer Disease Research Center; CDR = Clinical Dementia Rating;
PiB = Pittsburgh compound B; RMSE = root mean square error; SUVR = standardized uptake value ratio.
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In formulating the CDR and etiologic diagnosis based on
clinical features, clinicians were blinded to the participant’s
performance on neuropsychological tests, the results of prior
assessments, and biomarker results. This blinding was critical
to the current study: if the amyloid PET standardized uptake
value ratio (SUVR) were considered in the diagnostic for-
mulation, the relationship between amyloid PET SUVR and
syndromic diagnosis could be confounded.

Amyloid PET and Structural Brain MRI
More detailed imaging methods are presented in eAppendix 1
(links.lww.com/WNL/B535). Briefly, participants underwent
a dynamic scan with PiB18 in coordination with a structural
MRI scan. Regional data from the 40- to 60 minute post-
injection window were converted to SUVRs with cerebellar
gray as a reference and partial volume corrected with a geo-
metric transfer matrix approach based on the FreeSurfer
parcellation.19,20 Values from regions where amyloid de-
position occurs early in AD were averaged together to rep-
resent mean cortical SUVR: the left and right lateral
orbitofrontal, medial orbitofrontal, precuneus, rostral middle
frontal, superior frontal, superior temporal, and middle tem-
poral cortices. Amyloid PET positivity for PiB has previously
been defined as a mean cortical SUVR >1.42.21,22

Transformation of Mean Cortical SUVR Into
Amyloid Time
Mean cortical SUVR was transformed into a timescale, as has
been performed by other groups who evaluated the relation-
ship between amyloid burden and time.6,7 This transformation
was performed with the computer algorithm provided in
eAppendix 2 (links.lww.com/WNL/B536) using data from
individuals with ≥2 amyloid PET scans. The rate of amyloid
accumulation for each individual was determined by linear re-
gression and anchored at the estimated SUVR halfway through
the follow-up period (SUVRmidpoint). Phases of amyloid accu-
mulation, similar to those described by other studies,2,23 were
delineated by binning individuals by SUVRmidpoint and evalu-
ating the correlation of SUVRmidpoint with the rate of amyloid
accumulation (eFigure 1, links.lww.com/WNL/B537). The
lowest/first bin with a significant correlation between the rate
of amyloid accumulation and SUVRmidpoint was SUVRmidpoint

1.1 to 1.2, and the upper boundary of this bin (SUVR 1.2) was
chosen as the tipping point because nearly all individuals ac-
cumulated amyloid after SUVRmidpoint >1.2.

Because there was a significant but nonlinear correlation be-
tween the rate of amyloid accumulation and SUVRmidpoint for
individuals with an SUVRmidpoint between 1.2 and 3.0, the
relationship between the rate of amyloid accumulation and
SUVRmidpoint was fitted with a cubic spline with knots at 1.2
and 3.0. The average time in years required to pass from one
SUVR to another was then estimated by integrating the re-
ciprocal of the modeled rate of amyloid accumulation, similar
to previously reported methods.6,7 Amyloid time was defined
as the estimated years from SUVR 1.2; at SUVR 1.2, amyloid
time was equal to 0.

A cross-validation procedure was performed to evaluate the
correspondence of amyloid time and actual time (by dates)
using 80% of the cohort to generate the model and 20% of the
cohort to test the model. PROC SURVEYSELECT was used
to randomly select training and tests groups. This approach
was applied to all individuals with at least 2 amyloid PET scans
within the range of SUVR 1.2 to 3.0. The actual time interval
between the first and last amyloid PET scan was calculated
and compared to the amyloid time interval.

Alignment of Longitudinal Clinical Diagnoses
by the Estimated Age at SUVR 1.2
The amyloid time transformation of SUVR derived from in-
dividuals with longitudinal amyloid PETwas applied to all PiB
scans between SUVR 1.2 and 3.0 in the Knight ADRC cohort.
The age at SUVR 1.2 was estimated by subtracting the amy-
loid time value for the scan from the participant’s age at the
scan. For individuals with >1 amyloid PET scan between
SUVR 1.2 and 3.0, the estimated age at SUVR 1.2 was aver-
aged across all scans from the individual. The time from
SUVR 1.2 for a clinical assessment was calculated as the age at
a clinical assessment minus the estimated age at SUVR 1.2.

Estimating Years From Symptom Onset
Progressors to symptomatic AD were defined as individuals
who were cognitively normal at their baseline clinical assess-
ment and diagnosed with typical AD dementia syndrome at
their last clinical assessment. The age at symptom onset was
defined as the age when progressors were first diagnosed with
a typical AD dementia syndrome. These definitions were
formulated before data analysis. Logistical regression models
were used to evaluate dementia syndrome category as a
function of the estimated age at SUVR 1.2 and the estimated
time from SUVR 1.2 or age and SUVR. Linear regression
models were used to estimate the age at symptom onset as a
function of the estimated age at SUVR 1.2.

Spearman correlations were used to evaluate potentially
nonlinear relationships, while Pearson correlations were used
to evaluate whether estimated values corresponded linearly
with actual values. All statistical analyses and programming
were conducted with SAS 9.4 (SAS Institute Inc, Cary, NC).
Plots were created with GraphPad Prism version 9.1
(GraphPad Software, La Jolla, CA).

Data Availability
All data used for this study are from the Knight ADRC and are
available on request by qualified investigators.

Results
Participants
The longitudinal cohort was used to create of model of time as a
function of amyloid PETSUVRand included 236 individuals with
>1 amyloid PET scan. Themajority of individuals had 2 scans (n=
139, 59%), and the average follow-up period between the last and
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first scanwas 4.8 ± 2.2 years (Table 1). The average agewas 66.5 ±
9.2 years, and 12 (5%) individuals had cognitive impairment
(CDR score ≥0.5) at their baseline amyloid PET scan. The
alignment cohort was used to visualize clinical diagnosis as a
function of estimated years from SUVR 1.2 and included 180
individuals with at least 1 amyloid PET scan between SUVR 1.2
and 3.0 (centiloid values of 7 and 88, respectively; Table 2).

Rate of Amyloid Accumulation
The average rate of amyloid accumulation as a function of
amyloid burden, which was represented by the estimated
SUVR halfway through the follow-up period (SUVRmidpoint),
was plotted for each individual with longitudinal amyloid PET
scans (Figure 1A). The rate of amyloid accumulation became
significantly correlated with amyloid burden between SUVR
1.1 and 1.2 (Spearman ρ = 0.58, p = 0.02, eFigure 1, links.lww.
com/WNL/B537), and SUVR 1.2 was identified as the tipping
point after which nearly all individuals accumulated amyloid.
For individuals with an SUVR ≤1.2, the rate of amyloid accu-
mulation was positively but weakly correlated with amyloid
burden (phase 1, Spearman ρ = 0.17, p = 0.03). Interestingly,
there was a significant correlation in APOE e4 carriers
(Spearman ρ = 0.48, p = 0.003) but no correlation in APOE e4
noncarriers (Spearman ρ = 0.06, p = 0.48, Figure 1B). After
SUVR 1.2, amyloid accumulation was positive in nearly all

individuals and did not vary significantly by APOE e4 carrier
status. This suggests that once an individual crossed the SUVR
1.2 threshold, he or she was almost always destined to develop
significant amyloid accumulation regardless of APOE e4 carrier
status. There was a strong correlation between the rate of
amyloid accumulation and amyloid burden between SUVR 1.2
and 3.0, but this relationship was nonlinear, with a positive
correlation between SUVR1.2 and 1.8 (phase 2a, Spearman ρ =
0.76, p < 0.0001) and a negative correlation between SUVR 1.8
and 3.0 (phase 2b, Spearman ρ = −0.47, p = 0.006, eTable 1,
links.lww.com/WNL/B539). After individuals reached an
amyloid burden of SUVR 3.0, the rate of amyloid accumulation
was highly variable and no longer correlated with amyloid
burden (phase 3, Spearman ρ = −0.11, p = 0.75).

Transforming SUVR Into a Proxy for Time
The relationship between amyloid burden and time was
evaluated. For all individuals, the change in SUVR (SUVR at
last scan minus SUVR at first scan) was significantly but rel-
atively weakly correlated with the actual time interval (last
scan date minus first scan date) on a linear scale (Pearson r =
0.31, p < 0.0001, Figure 1C). When only scans with an SUVR
between 1.2 and 3.0 were evaluated, this linear relationship
was much stronger (Pearson r = 0.75, p < 0.0001). To account
for the nonlinear rate of amyloid accumulation between

Table 1 Characteristics of Participants With Longitudinal Amyloid PET Data

Characteristic

Phase 1
SUVRmidpoint

≤1.2
(n = 162)

Phase 2 SUVRmidpoint

> 1.2 and < 3.0
(n = 63)

Phase 3
SUVRmidpoint

≥3.0
(n = 11)

Phase
2 vs 1
p value

Phase
3 vs 1
p value

Baseline age, y 64.8 ± 9.6 70.1 ± 7.3 71.4 ± 6.2 0.0001 0.03

Sex, n (% female) 109 (67) 36 (57) 7 (64) NS NS

Education, y 15.9 ± 2.5 15.5 ± 2.7 15.2 ± 2.8 NS NS

Asian/Black/White, n 1/14/147 0/5/58 0/0/11 NS NS

APOE genotype (0 «4 alleles/1 «4 allele/2 «4 alleles (% «4 carrier) 125/35/2 (23) 28/30/5 (56) 2/6/3 (82) <0.0001 0.0001

Baseline MMSE score 29.2 ± 1.1 29.1 ± 1.0 27.8 ± 2.5 NS 0.0003

CDR score 0/0.5, n (% >0) 158/4 (2) 57/6 (10) 9/2 (18) 0.03 0.05

CDR-SB score 0.1 ± 0.4 0.1 ± 0.5 0.2 ± 0.3 NS NS

Cognitively normal/typical AD dementia syndrome/other dementia
syndrome, n (% typical AD dementia syndrome)

158/2/2 (1) 57/2/4 (3) 9/1/1 (9) 0.03 0.05

2/3/4/5 Scans, n 94/60/6/2 37/22/3/1 8/3/0/0 NS NS

Baseline SUVR 0.99 ± 0.07 1.66 ± 0.53 3.11 ± 0.43 <0.0001 <0.0001

SUVRmidpoint 1.02 ± 0.06 1.91 ± 0.51 3.29 ± 0.28 <0.0001 <0.0001

SUVR rate of change per year 0.016 ± 0.021 0.109 ± 0.051 0.046 ± 0.161 <0.0001 0.03

Total scan follow-up time, y between first and last scans 4.9 ± 2.1 4.5 ± 2.3 3.8 ± 2.8 NS 0.08

Abbreviations: AD =Alzheimer disease; CDR=Clinical Dementia Rating (CDR= 0 indicates cognitive normality, CDR =0.5 indicates verymild dementia); CDR-SB
=CDR Sumof Boxes;MMSE =Mini-Mental State Examination (a score of 30 is best, a score of 0 isworst); NS = not significant; SUVR = standardized uptake value
ratio; SUVRmidpoint = estimated SUVR halfway through scan follow-up time.
Values within 1 year of the baseline amyloid PET scan are shown. Continuousmeasures are presented as themean ± SD. Significance of differences between
groups was determined by Student t tests for continuous variables and by χ2 or Fisher exact tests for categorical variables.
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SUVR 1.2 and 3.0, a cubic spline was fitted to the rate of
amyloid accumulation as a function of amyloid burden. The
average time between levels of amyloid burden between
SUVR 1.2 and 3.0 was estimated by integrating the reciprocal
of the modeled rate of amyloid accumulation between 2
SUVR levels (eFigure 2, links.lww.com/WNL/B538, and
eAppendix 2, links.lww.com/WNL/B536). Given that SUVR
1.2 was the threshold after which significant amyloid

accumulation was likely to occur, SUVR 1.2 was set as the
origin (0) for this scale, and the estimated years from SUVR
1.2 was called amyloid time.

Between SUVR 1.2 and 3.0, the estimated years between
SUVR increments of 0.2 ranged between 1.4 and 2.9 years,
demonstrating the nonlinear relationship between SUVR
and time over small intervals despite an appearance of rel-
ative linearity (Table 3 and Figure 1D). The amyloid time
interval (amyloid time at the last scan minus amyloid time at
the first scan) had a strong linear relationship with the actual
time interval (last scan date minus first scan date) with a
Pearson r = 0.83. To more rigorously examine the accuracy
of the amyloid time estimates, a cross-validation approach
was used such that each amyloid PET scan was assigned an
amyloid time value estimated with a model in which that
scan was not included. The actual time interval between the
first and last scan (by dates) and the amyloid time interval
based on the SUVR of the 2 scans was highly correlated
(Pearson r = 0.83, p < 0.0001, Figure 1E).

Examining the Age at SUVR 1.2 as a Function of
APOE Genotype
The estimated age at which individuals reached SUVR 1.2 was
examined as a function of APOE e4 genotype. Using the model
created in participants with longitudinal amyloid PET, we es-
timated amyloid time for all amyloid PET scans with an SUVR
between 1.2 and 3.0 in the entire Knight ADRC cohort
(Table 2 gives participant characteristics). Amyloid time at the
baseline amyloid PET scan was plotted as a function of age for
APOE e4 noncarriers (Figure 2A) and carriers (Figure 2B). For
individuals with an SUVR between 1.2 and 3.0, the age at which
an individual reached SUVR 1.2 could be estimated by sub-
tracting amyloid time from the age at the scan. The estimated
age at SUVR 1.2 acrossmultiple amyloid PET scans in the same
individual was highly consistent: the within-individual SD was
only 0.8 years (Figure 2C). For example, if an individual’s
estimated age at SUVR 1.2 was 75 years at the baseline scan
(age 80 years at the scan minus amyloid time of 5 years [SUVR
1.63]), it was almost exactly 75 years at a scan 5 years later (age
85 years at the scan minus amyloid time of 10 years [SUVR
2.31]). The estimated age at SUVR 1.2 was plotted by the
number ofAPOE e4 alleles: no alleles (n = 80), 69.3 ± 7.6 years;
1 allele (n = 75), 64.3 ± 7.0 years; and 2 alleles (n = 25), 59.9 ±
9.2 years (mean ± SD, Figure 2D).

The estimated age at SUVR 1.2 was used to align amyloid
PET trajectories. Plotting SUVR as a function of age depicted
accurate slopes of change in amyloid burden over time
(Figure 2E), but these trajectories were not aligned because
individuals started accumulating amyloid at different ages. For
the participants with at least 1 amyloid PET scan between
SUVR 1.2 and 3.0 (Table 2), the estimated age at SUVR 1.2
was subtracted from the age at each scan, which aligned am-
yloid PET trajectories (Figure 2F). Some individuals with an
estimated age at SUVR 1.2 had undergone earlier amyloid
PET scans with an SUVR ≤1.2 or later amyloid PET scans

Table 2 Characteristics of Participants With at Least 1
Amyloid PET Scan Between SUVR 1.2 and 3.0

General characteristics No. Value

Sex, n (% female) 180 95 (53)

Education, y 180 15.7 ± 3.0

Asian/Black/Other/White, n 180 1/19/160

APOE genotype, 0 «4 alleles/1 «4 allele/2 «4
alleles, n (% «4 carrier)

180 80/75/25 (56)

Age at death (if applicable), y 29 83.6 ± 7.5

Estimated age at SUVR 1.2, y 180 65.9 ± 8.3

Clinical follow-up, y 180 8.4 ± 4.7

Clinical assessments, n 180 5.6 ± 4.2

Characteristics at baseline clinical assessment

Age, y 180 69.9 ± 7.7

Estimated years from SUVR 1.2 180 4.0 ± 6.4

MMSE score 173 28.5 ± 2.0

CDR score 0/0.5/1, n (% >0) 180 142/31/7 (21)

CDR-SB score 180 0.6 ± 1.3

Normal/typical AD dementia syndrome/other
dementia syndrome, n (% AD dementia syndrome)

180 142/24/14 (13)

Specific diagnoses at all assessments (o = 1,384)

Cognitively normal (o = 1,064, 77%)

Typical AD dementia syndrome (o = 179, 13%)

Typical AD dementia (o = 171)
Typical AD dementia with other disorders not contributing to dementia (o = 8)

Other dementia syndrome: uncertain, atypical, or suspected non-AD dementia (n
= 141, 10%)

Uncertain etiology (o = 77)
Uncertain etiology, possible non-AD dementia (n = 13)
Uncertain etiology, questionable impairment (o = 19)
Possible AD dementia with other disorders contributing (o = 11)
Possible AD dementia with atypical features such as parkinsonism or early
changes in language, visuospatial function, or social appropriateness (o = 11)
Dementia with Lewy bodies or Parkinson disease dementia (o = 3)
Frontotemporal dementia (o = 5)
Vascular dementia (o = 2)

Abbreviations: AD = Alzheimer disease; CDR = Clinical Dementia Rating (CDR
= 0 indicates cognitive normality; CDR = 0.5 indicates very mild dementia;
CDR = 1 indicates mild dementia); CDR-SB = CDR Sum of Boxes; MMSE =
Mini-Mental State Examination (score of 30 is best and a score of 0 is worst);
n = number of individuals; o = number of observations; SUVR = standardized
uptake value ratio.
Values at the baseline clinical assessment are shown. Continuousmeasures
are presented as mean ± SD.
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with an SUVR ≥3.0; therefore, the trajectories aligned by age
at SUVR 1.2 extended outside the SUVR 1.2 to 3.0 range.

Estimation of Years Until Symptom Onset
Using Age at SUVR 1.2
An estimate of the age at SUVR 1.2 allowed alignment of
longitudinal clinical diagnoses, enabling visualization of 1,384

clinical assessments from 180 individuals with an average total
follow-up time of 8.4 ± 4.7 years (Figure 3A). Each point
represented the dementia syndrome category from a single
clinical assessment; data from each individual were arranged
in a single row and aligned on the x-axis by the estimated time
from SUVR 1.2 (the age at each clinical assessment minus the
estimated age at SUVR 1.2). Points with a negative value on

Figure 1 Transformation of Amyloid PET Mean Cortical SUVR Into Amyloid Time

Rate of amyloid accumulation for each
individual was determined by linear
regression and anchored at the esti-
mated standardized uptake value ra-
tio (SUVR) halfway through the follow-
up period (SUVRmidpoint) (A). Note that
the y-axis represents rate of change,
not total amyloid burden. Solid red
squares represent APOE e4 homozy-
gotes (e4/e4); red open squares rep-
resent e4 heterozygotes (e4/e2 or e4/
e3); and blue circles represent APOE e4
noncarriers. Rate of change for each
individual was correlated (Spearman)
with SUVRmidpoint over phases denoted
by vertical dotted lines. Solid lines in-
dicate the linear regression of amyloid
accumulation as a function of amyloid
burden for APOE e4 carriers (red) and
noncarriers (blue). At SUVR ≤1.2, the
rate of amyloid accumulation was
correlated (Spearman) with amyloid
burden in APOE e4 carriers but not
noncarriers (B). One point with a low
rate was omitted for improved data
visualization. Change in amyloid bur-
den (last SUVR minus first SUVR) was
linearly correlated (Pearson) with the
time between scans (last scan date
minus first scan date) (C). For individ-
uals with an SUVRmidpoint between
SUVR 1.2 and 3.0, the estimated years
between 2 SUVR values was calculated
by integrating the reciprocal of the
modeled rate of amyloid accumula-
tion (D). Amyloid time was defined as
the estimated years from SUVR 1.2. A
cross-validation approach showed
that for individuals with at least 2
scans between SUVR 1.2 and 3.0, the
amyloid time interval (based on the
last SUVR minus the first SUVR) was
highly correlated (Pearson) with actual
time interval by dates (E). Solid line
represents the linear regression be-
tween the amyloid time interval and
actual time interval. Dashed black line
represents a perfect correlation.
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the x-axis denoted clinical assessments that occurred before
the individual was estimated to have reached SUVR 1.2. Be-
cause clinicians were blinded to biomarker status, some in-
dividuals were diagnosed with typical AD dementia syndrome
at a low amyloid PET burden. Clinicians were also blinded to
diagnoses at previous assessments; some individuals fluctu-
ated from year to year between a typical AD dementia syn-
drome and other dementia syndrome (usually with an
uncertain dementia diagnosis), potentially reflecting changing
conditions that affected diagnostic certainty. The 180 indi-
viduals in Figure 3A were further arranged vertically from
oldest (top) to youngest (bottom) estimated age at SUVR
1.2. With the dementia syndrome category at the baseline
assessment for all 180 individuals in the alignment cohort, a
logistic regression was used to estimate the years from SUVR
1.2 at which 50% of individuals would have a typical AD
dementia syndrome (eTable 2, links.lww.com/WNL/B540);
this estimate is denoted by a black line in Figure 3A and
represents the expected age at symptom onset based on the
estimated age at SUVR 1.2 and estimated time from
SUVR 1.2.

Of the 180 individuals with an estimated age at SUVR 1.2
available, 22 were cognitively normal at their baseline clinical
assessment and had a typical AD syndrome at their last clinical
assessment; these individuals were defined as progressors to
symptomatic AD (Figure 3B and eTable 3, links.lww.com/
WNL/B541). The age at which the progressors first de-
veloped a typical AD dementia syndrome was predicted by
the estimated age at SUVR 1.2 (R2 = 0.54, p < 0.0001, root
mean square error [RMSE] 4.5 years, Figure 3C). Three
progressors who were amyloid PET negative (SUVR ≤1.42)
at the onset of cognitive decline (CDR score >0) could have
experienced a typical AD dementia syndrome caused by a
non-AD etiology; omission of these individuals improved

prediction of the age at symptom onset (R2 = 0.84, RMSE 2.8
years, p < 0.0001, Figure 3D). Sex, years of education, APOE
e4 status, and race were not significant predictors when in-
cluded in the models. The model for age at symptom onset
derived in the progressors (n = 19, Figure 3D) was plotted
with a red line in Figure 3A. It was largely overlapping with the
model derived in the entire alignment cohort (n = 180) that
included individuals who were cognitively stable throughout
follow-up and individuals who with diagnosed with dementia
at study entry.

A cross-validation approach in which the amyloid time model
was generated without data from the progressors resulted in
nearly identical models and model fits for the estimated age at
symptom onset in progressors (R2 = 0.54, RMSE 4.5 years for
all progressors; and R2 = 0.85, RMSE 2.7 years after 3 po-
tential misdiagnoses were omitted). A logistic regression of
the dementia syndrome category at the baseline amyloid PET
scan found that older individuals were more likely to have a
typical AD dementia syndrome at a given SUVR (eTable 4,
links.lww.com/WNL/B542).

Discussion
Amyloid accumulated at a nonlinear but relatively consistent
rate across individuals from SUVR 1.2 until SUVR 3.0, an
approximately17-year period that included much of the pre-
clinical phase of AD for most individuals. Amyloid time, the
estimated years from SUVR 1.2, was highly correlated with
actual time by dates (Pearson r = 0.83, p < 0.0001) and was
used to estimate the age when an individual reached SUVR
1.2. A variety of approaches have been used to calculate the
time course of amyloid accumulation,2,6-8,24,25 and lowest
level of amyloid burden that predicts cognitive decline has
been evaluated.26 In the work most conceptually similar to the
current study, a completely different mathematical approach
was used to align amyloid PET trajectories, which were re-
markably consistent across individuals, and to estimate the
age at amyloid positivity.24 A longer time of amyloid positivity
was associated with a higher risk of cognitive decline and
clinical progression.24 Compared to other studies, the major
innovation of the current study was the use of estimated age at
SUVR 1.2 to align longitudinal clinical diagnostic data col-
lected many years distant from the amyloid PET scan and to
predict the age at AD symptom onset. The agreement and
convergence of our findings with other studies suggest that
the amyloid time concept is robust across different cohorts
and mathematical approaches.

At low levels of amyloid burden (SUVR ≤1.2) analogous to
the lag phase of Aβ aggregation in vitro, the rate of amyloid
accumulation was correlated with amyloid burden inAPOE e4
carriers but not noncarriers. Biochemical studies demonstrate
that adding preformed nuclei or seeds shortens or eliminates
the lag phase of Aβ aggregation in vitro.3,5 The abbreviated lag
phase in APOE e4 carriers, as demonstrated by the correlation

Table 3 Estimated Years Between Different SUVR Levels

SUVR Amyloid time, y

Beginning End Interval Cumulative (from 1.20)

1.20 1.40 2.9 2.9

1.40 1.60 1.9 4.8

1.60 1.80 1.6 6.3

1.80 2.00 1.4 7.8

2.00 2.20 1.4 9.2

2.20 2.40 1.5 10.7

2.40 2.60 1.7 12.4

2.60 2.80 2.0 14.4

2.80 3.00 2.7 17.1

Abbreviation: SUVR = standardized uptake value ratio.
Note that the time between SUVR increments of 0.2 varies between 2.9 and
1.4 years because of the nonlinear accumulation of amyloid over time.

Neurology.org/N Neurology | Volume 97, Number 18 | November 2, 2021 e1829

Copyright © 2021 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://links.lww.com/WNL/B540
http://links.lww.com/WNL/B541
http://links.lww.com/WNL/B541
http://links.lww.com/WNL/B542
http://neurology.org/n


between the rate of amyloid accumulation and amyloid burden
at SUVR ≤1.2, may indicate that APOE e4 has a seeding effect
on brain amyloid aggregation. The earlier age at amyloid de-
position in APOE e4 carriers seen in this study and many
others25,27-32 also suggests thatAPOE e4 has a seeding effect on
amyloid aggregation in the human brain. Previous studies in
our cohort28,33 and other cohorts6,30,32,34-36 have reported in-
consistent results on how andwhetherAPOE e4 affects the rate
of amyloid accumulation, likely because the studies were ex-
amining different phases of amyloid accumulation depending

on their analytic approach. A study that stratified by amyloid
burden found results similar to this study: faster amyloid ac-
cumulation in APOE e4 carriers at lower levels of amyloid
burden but no difference in amyloid accumulation byAPOE e4
status at higher levels of amyloid burden.36 The lack of effect of
APOE e4 status on amyloid accumulation between SUVR 1.2
and 3.0, which may be analogous to the growth phase of am-
yloid aggregation, suggests that APOE e4 modulates primarily
initiation of amyloid accumulation (seeding) and not the rate of
amyloid accumulation later in the disease course.

Figure 2 Estimating the Age at Which an Individual Reached SUVR 1.2

Amyloid time at the baseline amyloid
PET scan was plotted as a function of
an individual’s age at the time of the
scan in APOE e4 noncarriers (A) and
carriers (B). Solid red squares repre-
sent APOE e4 homozygotes (e4/e4);,
red open squares represent e4 het-
erozygotes (e4/e2 or e4/e3); and blue
circles represent APOE e4 noncarriers.
Individuals with a standardized up-
take value ratio (SUVR) ≤1.2 were
assigned an amyloid time of 0 for vi-
sualization. Dashed vertical lines
represent age 65 years. Age at which
an individual reached SUVR 1.2 was
estimated by subtracting amyloid
time (if > 0) from age and was con-
sistent across multiple scans (C). Es-
timated age at which an individual
reached SUVR 1.2 was averaged
across all scans from the individual
and was plotted as a function of APOE
e4 genotype. Horizontal lines repre-
sent the mean and SD for each group
(D). Trajectories of SUVR as a function
of age were plotted for individuals
with longitudinal amyloid PET (E). Red
lines represent APOE e4 carriers; blue
lines represent noncarriers. Sub-
tracting the estimated age at SUVR 1.2
from the age at each scan aligned
SUVR trajectories across the cohort
(F). Horizontal dotted lines represent
SUVR 1.2 and 3.0 (E and F).
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The most important finding of this study was that the age at
AD symptom onset for cognitively normal individuals with
brain amyloidosis could be estimated with a single amyloid
PET scan. Previous studies have shown that parental age at
symptom onset in autosomal dominant AD predicted

individual age at onset with an R2 = 0.38 to 0.56.1,37 In this
study of sporadic AD, the model including all progressors
predicted individual age at onset at a similar level (R2 = 0.54,
RMSE 4.5 years). Exclusion of 3 of the 22 progressors (14%)
with cognitive decline (CDR score >0) before amyloid PET

Figure 3 Visualizing Dementia Syndromes Over Time and Estimating Age at Symptom Onset

At each clinical assessment, clinicians who were blinded to biomarker status and the results of prior clinical assessments formulated the Clinical Dementia
Rating (CDR) score; individuals with a CDR of ≥0.5 were considered to have a dementia syndrome, and the probable etiology of the dementia syndrome was
diagnosed from clinical features. Diagnoses from 1,384 assessments on 180 individuals were plotted by the estimated years from standardized uptake value
ratio (SUVR) 1.2 (A). Each row of points corresponds to 1 individual. Each point represents 1 clinical assessment, and the color of the point denotes the
dementia syndrome category: green, cognitively normal; yellow, other dementia syndrome (uncertain, atypical, or suspected non–Alzheimer disease [AD]
dementia); and red, typical AD dementia syndrome. Black points represent the date of death if applicable. Individuals were arranged vertically in order of
estimated age at SUVR 1.2. Dotted vertical line represents SUVR 1.2; dashed vertical line represents SUVR 1.42, the established cutoff for amyloid PET
positivity. Solid black line represents the estimated time from SUVR 1.2 when 50% of individuals would have a typical AD dementia syndrome based on a
logistic regression of the dementia syndrome category at the baseline clinical assessment (eTable 2, links.lww.com/WNL/B540). Solid red line represents the
estimated time of symptom onset as predicted by themodel in (D). Twenty-two individuals who were cognitively normal at their baseline clinical assessment
and had a typical AD dementia syndrome at their last clinical assessment were defined as progressors to symptomatic AD (B). Purple line represents the
predicted age at which the progressors were first diagnosed with typical AD dementia syndrome on the basis of the estimated age at which individuals
reached SUVR 1.2 (C). Omitting 3 individuals (purple arrowheads in B, purple points in C) who were amyloid PET negative at the onset of cognitive decline
improved prediction of the age at symptom onset (D).
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positivity (SUVR 1.42) improved the model fit (R2 = 0.84,
RMSE 2.8 years). The 3 progressors who developed cognitive
decline before SUVR 1.42 may have had a non-AD cause of
their symptoms.15,38 When the model for symptom onset that
was created in 19 progressors was applied to 180 individuals
across the cognitive spectrum, it was closely aligned to the
cross-sectional logistic regression estimate for when 50% of
the 180 individuals had a typical AD dementia syndrome. In
studies of autosomal dominant AD, approximately half of
individuals are expected to be cognitively impaired at the
estimated age at symptom onset.1,37

Our results suggest that older individuals develop symptom-
atic AD after a shorter period of amyloid accumulation, which
translates to a lower level of amyloid burden. According to our
model using the age at SUVR 1.2 to align cognitive trajecto-
ries, a 45-year-old who reached SUVR 1.2 would be expected
to develop symptoms 21 years later at SUVR >3.0, whereas an
85-year-old would develop symptoms in only 9 years at SUVR
≈2.2. Furthermore, using a simple logistic regression, we
found that older individuals were more likely to manifest
symptoms of AD dementia at the same level of amyloid
burden (SUVR). The increased expression of AD symp-
toms in older individuals could be related to decreased cog-
nitive reserve from normal aging processes or comorbid
conditions.39,40 Brain amyloid deposition is necessary but not
sufficient for symptomatic AD, and many other genetic, bi-
ological, and social factors are likely involved in expression of
symptoms.41,42 Analyses of larger numbers of progressors will
likely improve modeling of factors that are known to modify
the risk of symptomatic AD associated with a particular level
of amyloid burden21,39,43,44 and may further improve esti-
mation of the age at symptom onset. In addition, analyses of
cohorts that include assessment of prodromal AD (e.g., sub-
jective cognitive decline) may enable study of the evolution of
AD symptom onset.

Many additional studies, including with both late-onset AD
and autosomal dominant AD cohorts, are needed to refine
these approaches and to validate these findings, especially
before application to clinical settings. Innumerable ap-
proaches could be used to calculate amyloid time and to de-
termine the tipping point in amyloid accumulation.2,6-8 We
chose a simple approach that could be easily applied to other
datasets, including datasets with relatively few scans from each
individual. The specific values used in the amyloid time model
(SUVR 1.2 and 3.0, which correspond to centiloid values of 7
and 8845) will vary depending on center-specific factors, in-
cluding the amyloid PET tracer, brain regions evaluated, and
PET processing. Improvements in MRI and PET scanners
and sequences may provide greater sensitivity to pathology,
and such differences should be systematically evaluated in
future studies. PiB is a highly sensitive tracer,22 and models
created with less sensitive tracers may not be as accurate. In
addition, differences in the assessment of dementia diagnosis
may affect models for prediction of symptom onset.

Accurate estimation of the age at symptom onset would im-
prove our understanding of the AD time course and facilitate
identification of cognitively normal participants at high risk of
progression to symptomatic AD for prevention trials. As has
been shown in drug trials for autosomal dominant AD, ac-
curate prediction of symptom onset increases power and
decreases costs.46 Furthermore, if specific therapies are most
effective within a certain period of the disease course, precise
staging is critical. Therefore, accurate prediction of symptom
onset may accelerate efforts to develop effective preventative
treatments for AD.

Acknowledgment
The authors express their gratitude to the research volunteers
who participated in the studies from which these data were
obtained and their supportive families. They thank the
Clinical, Biomarker, and Imaging Cores at the Knight ADRC
for sample and data collection. They also thank Andrianus
Kardjaja for assistance in data visualization.

Study Funding
This study was supported by National Institute on Aging
grants R03AG050921 (S. Schindler), K23AG053426 (S.
Schindler), P30AG066444 (J.C.Morris), P01AG003991 (J.C.
Morris), P01AG026276 (J.C. Morris), and R01AG053550
(C. Xiong).

Disclosure
S. Schindler, Y. Li, V.D. Buckles, and B.A. Gordon report no
disclosures. T.L.S. Benzinger has received research support
fromAvid Radiopharmaceuticals (a wholly owned subsidiary of
Eli Lilly) and Biogen. She has or is currently participating in
clinical trials sponsored by Janssen, Eli Lilly, Pfizer, Biogen, and
Roche. She has received travel support from Biogen, the
American Society for Neuroradiology, the Alzheimer’s Asso-
ciation, and the People’s Republic of China. G. Wang and D.
Coble report no disclosures; W.E. Klunk is supported by NIH
grants P50 AG005133, RF1 AG025516, and P01 AG025204.
GEHealthcare holds a license agreement with the University of
Pittsburgh based on the PiB PET technology described in this
article. W.E. Klunk is a coinventor of PiB and thus has a fi-
nancial interest in this license agreement and receives royalty
payments. GE Healthcare provided no grant support for this
study. A.M. Fagan has received research funding from the
National Institute on Aging of the NIH, Biogen, Centene,
Fujirebio, and Roche Diagnostics. She is a member of the
Scientific Advisory boards for Roche Diagnostics, Genentech,
and AbbVie and also consults for Araclon/Grifols, DiademRes,
DiamiR, and Otsuka. D. Holtzman cofounded and is on the
scientific advisory board of C2N Diagnostics. Washington
University and D. Holtzman have equity ownership interest in
C2N Diagnostics and receive royalty income based on tech-
nology (stable isotope labeling kinetics, blood plasma assay,
anti-tau antibodies) licensed byWashingtonUniversity to C2N
Diagnostics. He receives income from C2N Diagnostics for
serving on the Scientific Advisory Board. He is on the Scientific
Advisory Board of Denali and Genentech. He consults for

e1832 Neurology | Volume 97, Number 18 | November 2, 2021 Neurology.org/N

Copyright © 2021 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


Merck, Cajal Neurosciences, and Takeda. His laboratory re-
ceives research support from C2N Diagnostics, NextCure, and
Novartis. R.J. Bateman cofounded C2N Diagnostics. Wash-
ington University and Dr. Bateman have equity ownership
interest in C2N Diagnostics and receive royalty income based
on technology (stable isotope labeling kinetics and blood
plasma assay) licensed by Washington University to C2N Di-
agnostics. He receives income from C2N Diagnostics for
serving on the Scientific Advisory Board. Washington Univer-
sity, with R.J. Bateman as coinventor, has submitted the US
provisional patent application “Plasma Based Methods for
Detecting CNS Amyloid Deposition.” He consults for Roche,
Genentech, AbbVie, Pfizer, Boehringer-Ingelheim, and Merck.
J.C. Morris does not own stock or have equity interest (outside
of mutual funds or other externally directed accounts) in any
pharmaceutical or biotechnology company. C. Xiong reports
no disclosures. Go to Neurology.org/N for full disclosures.

Publication History
Received by Neurology March 22, 2021. Accepted in final form
August 12, 2021.

References
1. Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dom-

inantly inherited Alzheimer’s disease. N Engl J Med. 2012;367(9):795-804.
2. Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid beta deposition, neuro-

degeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective
cohort study. Lancet Neurol. 2013;12(4):357-367.

3. Harper JD, Lansbury PT Jr. Models of amyloid seeding in Alzheimer’s disease and
scrapie: mechanistic truths and physiological consequences of the time-dependent
solubility of amyloid proteins. Annu Rev Biochem. 1997;66:385-407.

4. Morel B, Conejero-Lara F. Early mechanisms of amyloid fibril nucleation in model
and disease-related proteins. Biochim Biophys Acta Proteins Proteom. 2019;1867(11):
140264.

5. Srivastava AK, Pittman JM, Zerweck J, et al. β-Amyloid aggregation and heteroge-
neous nucleation. Protein Sci. 2019;28(9):1567-1581.

6. Jack CR Jr, Wiste HJ, Lesnick TG, et al. Brain beta-amyloid load approaches a plateau.
Neurology. 2013;80(10):890-896.

7. Budgeon CA, Murray K, Turlach BA, et al. Constructing longitudinal disease pro-
gression curves using sparse, short-term individual data with an application to Alz-
heimer’s disease. Stat Med. 2017;36(17):2720-2734.

8. Jagust WJ, Landau SM; Alzheimer’s Disease Neuroimaging Initiative. Temporal dy-
namics of beta-amyloid accumulation in aging and Alzheimer disease. Neurology.
2021;96(9):e1347–e1357.

9. Pastor P, Roe CM, Villegas A, et al. Apolipoprotein Eepsilon4 modifies Alzheimer’s
disease onset in an E280A PS1 kindred. Ann Neurol. 2003;54(2):163-169.

10. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules.
Neurology. 1993;43(11):2412-2414.

11. Berg L, McKeel DW Jr, Miller JP, Baty J, Morris JC. Neuropathological indexes of
Alzheimer’s disease in demented and nondemented persons aged 80 years and older.
Arch Neurol. 1993;50(4):349-358.

12. Folstein MF, Folstein SE, McHugh PR. “Mini-Mental State”: a practical method for
grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-198.

13. Morris JC, Weintraub S, Chui HC, et al. The Uniform Data Set (UDS): clinical and
cognitive variables and descriptive data from Alzheimer disease centers. Alzheimer Dis
Assoc Disord. 2006;20(4):210-216.

14. Morris JC, Storandt M, Miller JP, et al. Mild cognitive impairment represents early-
stage Alzheimer disease. Arch Neurol. 2001;58(3):397-405.

15. Storandt M, Grant EA, Miller JP, Morris JC. Longitudinal course and neuropathologic
outcomes in original vs revisedMCI and in pre-MCI.Neurology. 2006;67(3):467-473.

16. Morris JC, Blennow K, Froelich L, et al. Harmonized diagnostic criteria for Alz-
heimer’s disease: recommendations. J Intern Med. 2014;275(3):204-213.

17. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to
Alzheimer’s disease: recommendations from the National Institute on Aging-Alz-
heimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimers Dement. 2011;7(3):263-269.

18. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease
with Pittsburgh compound-B. Ann Neurol. 2004;55(3):306-319.

19. Su Y, Blazey TM, Snyder AZ, et al. Partial volume correction in quantitative amyloid
imaging. NeuroImage. 2015;107:55-64.

20. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle
and validation. J Nucl Med. 1998;39(5):904-911.

21. Vlassenko AG, McCue L, Jasielec MS, et al. Imaging and cerebrospinal fluid bio-
markers in early preclinical Alzheimer disease. Ann Neurol. 2016;80(3):379-387.

22. Su Y, Flores S, Wang G, et al. Comparison of Pittsburgh compound B and florbetapir
in cross-sectional and longitudinal studies. Alzheimers Dement (Amst). 2019;11:
180-190.

23. Guo T, Dukart J, Brendel M, et al. Rate of beta-amyloid accumulation varies with
baseline amyloid burden: implications for anti-amyloid drug trials. Alzheimers Dement.
2018;14(11):1387-1396.

24. Koscik RL, Betthauser TJ, Jonaitis EM, et al. Amyloid duration is associated with
preclinical cognitive decline and tau PET. Alzheimers Dement. 2020;12(1):e12007.

Appendix Authors

Name Location Contribution

Suzanne E.
Schindler, MD,
PhD

Washington
University, St.
Louis, MO

Design and conceptualization of
study; analyzed the data; drafted
the manuscript for intellectual
content

Yan Li, PhD Washington
University, St.
Louis, MO

Analyzed the data; interpreted the
data and recommended additional
analyses; revised themanuscript for
intellectual content

Virginia D.
Buckles, PhD

Washington
University, St.
Louis, MO

Design and conceptualization of
study; revised the manuscript for
intellectual content

Brian A.
Gordon, PhD

Washington
University, St.
Louis, MO

Interpreted the data and
recommended additional analyses;
revised the manuscript for
intellectual content

Tammie L.S.
Benzinger, MD,
PhD

Washington
University, St.
Louis, MO

Major role in the acquisition of data;
interpreted the data; revised the
manuscript for intellectual content

Guoqiao Wang,
PhD

Washington
University, St.
Louis, MO

Interpreted the data; revised the
manuscript for intellectual content

Dean Coble,
PhD

Washington
University, St.
Louis, MO

Interpreted the data; revised the
manuscript for intellectual content

William E.
Klunk, MD, PhD

University of
Pittsburgh, PA

Interpreted the data and
recommended additional analyses;
revised the manuscript for
intellectual content

Anne M. Fagan,
PhD

Washington
University, St.
Louis, MO

Interpreted the data; revised the
manuscript for intellectual content

David M.
Holtzman, MD

Washington
University, St.
Louis, MO

Interpreted the data; revised the
manuscript for intellectual content

Appendix (continued)

Name Location Contribution

Randall J.
Bateman, MD

Washington
University, St.
Louis, MO

Interpreted the data and
recommended additional analyses;
revised the manuscript for
intellectual content

John C. Morris,
MD

Washington
University, St.
Louis, MO

Major role in the acquisition of data;
interpreted the data; revised the
manuscript for intellectual content

Chengjie Xiong,
PhD

Washington
University, St.
Louis, MO

Interpreted the data and
recommended additional analyses;
revised the manuscript for
intellectual content

Neurology.org/N Neurology | Volume 97, Number 18 | November 2, 2021 e1833

Copyright © 2021 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

https://n.neurology.org/lookup/doi/10.1212/WNL.0000000000012775
http://neurology.org/n


25. Bilgel M, An Y, Zhou Y, et al. Individual estimates of age at detectable amyloid onset
for risk factor assessment. Alzheimers Dement. 2016;12(4):373-379.

26. Farrell ME, Jiang S, Schultz AP, et al. Defining the lowest threshold for amyloid-PET to
predict future cognitive decline and amyloid accumulation.Neurology. 2021;96(4):e619-e631.

27. Bussy A, Snider BJ, Coble D, et al. Effect of apolipoprotein E4 on clinical, neuro-
imaging, and biomarker measures in noncarrier participants in the Dominantly
Inherited Alzheimer Network. Neurobiol Aging. 2019;75:42-50.

28. Mishra S, Blazey TM, Holtzman DM, et al. Longitudinal brain imaging in preclinical
Alzheimer disease: impact of APOE epsilon4 genotype. Brain. 2018;141(6):1828-1839.

29. Villemagne VL, Pike KE, Chetelat G, et al. Longitudinal assessment of Abeta and
cognition in aging and Alzheimer disease. Ann Neurol. 2011;69(1):181-192.

30. Fleisher AS, Chen K, Liu X, et al. Apolipoprotein E epsilon4 and age effects on
florbetapir positron emission tomography in healthy aging and Alzheimer disease.
Neurobiol Aging. 2013;34(1):1-12.

31. Jack CR Jr, Wiste HJ, Weigand SD, et al. Age, sex, and APOE epsilon4 effects on
memory, brain structure, and beta-amyloid across the adult life span. JAMA Neurol.
2015;72(5):511-519.

32. Lopresti BJ, Campbell EM, Yu Z, et al. Influence of apolipoprotein-E genotype on
brain amyloid load and longitudinal trajectories. Neurobiol Aging. 2020;94:111-120.

33. Vlassenko AG, MintunMA, Xiong C, et al. Amyloid-beta plaque growth in cognitively
normal adults: longitudinal [11C]Pittsburgh compound B data. Ann Neurol. 2011;
70(5):857-861.

34. Grimmer T, Tholen S, Yousefi BH, et al. Progression of cerebral amyloid load is
associated with the apolipoprotein E epsilon4 genotype in Alzheimer’s disease. Biol
Psychiatry. 2010;68(10):879-884.

35. Resnick SM, Bilgel M, Moghekar A, et al. Changes in Abeta biomarkers and associations
with APOE genotype in 2 longitudinal cohorts.Neurobiol Aging. 2015;36(8):2333-2339.

36. Lim YY, Mormino EC, Alzheimer’s Disease Neuroimaging Initiative. APOE genotype
and early beta-amyloid accumulation in older adults without dementia. Neurology.
2017;89(10):1028-1034.

37. Ryman DC, Acosta-Baena N, Aisen PS, et al. Symptom onset in autosomal dominant
Alzheimer disease: a systematic review and meta-analysis. Neurology. 2014;83(3):253-260.

38. Shim YS, Roe CM, Buckles VD, Morris JC. Clinicopathologic study of Alzheimer’s
disease: Alzheimer mimics. J Alzheimers Dis. 2013;35(4):799-811.

39. Ossenkoppele R, Jansen WJ, Rabinovici GD, et al. Prevalence of amyloid PET posi-
tivity in dementia syndromes: a meta-analysis. JAMA. 2015;313(19):1939-1949.

40. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;
11(11):1006-1012.

41. Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: time, space
and ’wingmen. Nat Neurosci. 2015;18(6):800-806.

42. Arboleda-Velasquez JF, Lopera F, O’Hare M, et al. Resistance to autosomal dominant
Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat Med.
2019;25(11):1680-1683.

43. Roe CM, Ances BM, Head D, et al. Incident cognitive impairment: longitudinal
changes in molecular, structural and cognitive biomarkers. Brain. 2018;141(11):
3233-3248.

44. Morris JC, Roe CM, Grant EA, et al. Pittsburgh compound B imaging and prediction
of progression from cognitive normality to symptomatic Alzheimer disease. Arch
Neurol. 2009;66(12):1469-1475.

45. Su Y, Flores S, Hornbeck RC, et al. Utilizing the centiloid scale in cross-sectional and
longitudinal PiB PET studies. Neuroimage Clin. 2018;19:406-416.

46. Bateman RJ, Benzinger TL, Berry S, et al. The DIAN-TU Next Generation Alz-
heimer’s Prevention Trial: adaptive design and disease progression model. Alzheimers
Dement. 2017;13(1):8-19.

e1834 Neurology | Volume 97, Number 18 | November 2, 2021 Neurology.org/N

Copyright © 2021 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n

