Skip to main content
. 2021 Nov 16;2021:9979560. doi: 10.1155/2021/9979560

Table 1.

Summary of previous works in keratoconus classification since 2012.

Authors Year Method Dataset Inputs Accuracy Feature selection
Al-Timemy et al. [8] 2021 SqN, AlN, SfN, MbN 2136 images N.A 92.2% to 94.8% N.A
Kamiya et al. [9] 2021 CNN 3390 images N.A 78.5% N.A
Jiménez-García et al. [10] 2021 TDNN 743 images 6 N.A Yes
Kuo et al. [11] 2020 VGG16, InceptionV3, ResNet152 354 images N.A 93.1%, 93.1%, 95.8% N.A
Cao et al. [22] 2020 RF, SVM, KNN, LR, LDA, LaR, DT, MPAN 88 eyes 11 87%, 86%, 73%, 81%, 81%, 84%, 80%, 52% Yes
Lavric et al. [24] 2020 25 classifiers 3151 images 8 62% to 94% SS, FRank
Velázquez-Blázquez et al. [23] 2020 LR 178 eyes 5 73% X 2, Kruskal-Wallis
Lavric and Valentin [12] 2019 CNN 3000 180 × 240 × 3 (images) 99.33% Yes
Issarti et al. [13] 2019 FNN 851 141 × 141 (images) 96.56% NCAFS
Salem and Solodovnikov [14] 2019 RF 500 N.A 76% Yes
Hallett et al. [15] 2019 BNN 124 29 73% (supervised) 80% (unsupervised) PCA
Luna et al. [16] 2019 BNN 60 16 100% N.A
Kamiya et al. [17] 2019 CNN 543 6 × 224 × 224 (image) 99.1% N.A
Yousefi et al. [5] 2018 UnML 3156 420 N.A PCA NonLinear_tSNE
Hidalgo et al. [18] 2017 SVM 131 25 92.6% to 98% N.A
Ali et al. [21] 2017 SVM 40 12 90% N.A
Smadja et al. [19] 2013 DT 372 55 N.A N.A
Arbelaez et al. [20] 2012 SVM 3502 7 98.2% N.A