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In recent years, increasing evidence shows that circular RNA (circRNA) disorder is closely related to tumorigenesis and cancer
progression. However, the regulatory functions of most circRNAs in bladder cancer (BCa) remain unclear. This study was
aimed at exploring the molecular regulatory mechanism of circRNAs in BCa. We obtained four datasets of circRNA,
microRNA (miRNA), and messenger (mRNA) expression profiles from the Gene Expression Omnibus and The Cancer
Genome Atlas microarray databases and identified 434, 367, and 4799/4841 differentially expressed circRNAs, miRNAs,
and mRNAs, respectively. With these differentially expressed RNAs, we established a circRNA-miRNA-mRNA targeted
interaction network. A total of 18, 24, and 51 central circRNAs, miRNAs, and mRNAs were identified, respectively.
Among them, the top 10 mRNAs that had high connectivity with other circRNAs and miRNAs were regarded as hub
genes. We detected the expression levels of these 10 mRNAs in 16 pairs of BCa tissues and adjacent normal tissues
through quantitative real-time polymerase chain reaction. The differentially expressed mRNAs and central mRNAs were
enriched in the processes and pathways that are associated with the growth, differentiation, proliferation, and apoptosis of
tumor cells. The outstanding genes (CDCA4, GATA6, LATS2, RHOB, ZBTB4, and ZFPM2) also interacted with numerous
drugs, indicating their potency as biomarkers and drug targets. The findings of this study provide a deep understanding of
the circRNA-related competitive endogenous RNA regulatory mechanism in BCa pathogenesis.

1. Introduction

Bladder cancer (BCa) is a tumor affecting the mucosa of the
bladder and is one of the top 10 diagnosed tumors world-
wide [1, 2]. It is the most common malignant tumor of the
urinary system, occupying the first place in the incidence
of urogenital tumors in China while second only to prostate
cancer in the west [2]. BCa can occur regardless of age [3, 4].
The incidence of BCa increases with age, with the highest
rate among people aged 50–70 years [4, 5]. With the prog-
ress and development of medical technology in recent years,
the treatments for BCa are also undergoing continuous
improvement and innovation [6, 7]. However, the clinical
treatment of BCa is complicated [6] by variable and com-
plex pathogenic factors, including internal genetic factors

and external environmental factors [8]. In addition, RNA
research showed that the physiological functions of RNA
are diverse and complex, related to all genes, cell regula-
tion, and biological activity [9]. These results have also laid
a good clinical foundation for advancing RNA-based tar-
geted therapy, which may expand the scope of drug and
pharmacological research by screening “drug” targets [9].

Circular RNA (circRNA) plays an important role in the
occurrence and development of diseases and can be used
as a potential molecular biological marker [10]. circRNA is
another endogenous noncoding RNA discovered after
microRNA (miRNA) and long-chain noncoding RNA [11].
circRNA is a type of circular molecule formed by trans-
splicing to make the 3′ and 5′ ends covalently bonded. It
is not easily degraded by exonuclease and is more stable than
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linear RNA [11]. circRNA has many biological functions. It
can combine with miRNA and exert its “sponge” effect to
inhibit miRNA function, thereby releasing miRNA-targeted
mRNA transcripts. It can also regulate gene transcription
and translation through competition with linear splicing
[11]. Given its diverse regulatory functions, circRNA can
regulate many cancer driver genes and immunotherapy tar-
gets [10, 11]. Wu et al. found that has_circ_0002052 is sig-
nificantly downregulated in osteosarcoma (OS) tissues and
cell lines. In their study, the overexpression of hsa_circ_
000205 suppresses the expression of the tumor suppressor
miRNA miR-1250 and increases the expression of the
miR-1250 target gene APC22, which is a negative regulator
of the Wnt/β-catenin signaling pathway, causing the OS
process to slow down [12]. In lung cancer, hsa_circ_
0007059 functions as an inhibitory regulator. It activates
the Wnt/β-catenin and ERK1/2 pathways through the
sponge of miR-378, thereby reducing the proliferation of
lung cancer cells and EMT [13].

In the current study, we collected four datasets of cir-
cRNA, miRNA, and mRNA expression profiles that are
related to BCa from the Gene Expression Omnibus (GEO)
and The Cancer Genome Atlas (TCGA) databases. Differen-
tially expressed RNAs can be identified through the R soft-
ware package, which is an effective and convenient
bioinformatics method to identify differential correlation
genes as potential biomarkers [14]. After predicting the
target genes among the differentially expressed circRNAs,
miRNAs, and mRNAs, we constructed a circRNA-miRNA-
mRNA targeted interaction network and screened the signif-
icant central RNAs. We verified the expression of hub genes
in eight pairs of BCa tissues by quantitative real time-PCR
(qRT-PCR). To evaluate the main functional pathways of
BCa, Gene Ontology (GO) annotations and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis
were performed to evaluate the physiological pathways and
functions of differential mRNAs and targeted genes. In
addition, combined analysis of the correlation with the
pathological stage, overall survival, and drug sensitivity ver-
ified that the hub genes influence the RNA mechanism of
action of BCa. These findings provide a deep understanding
of the circRNA-miRNA-mRNA chains driving the patho-
logical mechanism of BCa and provide potential anticancer
biomarkers.

2. Methods

2.1. Data Collection. Relevant data were downloaded from
the GEO (https://www.ncbi.nlm.nih.gov/gds) and TCGA
(https://tcga-data.nci.nih.gov/tcga/) databases to uncover
genes driving the RNA mechanism of action of BCa. The cir-
cRNA and mRNA expression datasets (GSE92675 and
GSE133624) were downloaded from the GEO database.
The miRNA and mRNA expression profiles of TCGA BLCA
were downloaded from TCGA database. The total tissue
samples with the clinical symptoms were reserved. The sam-
ples that had clinical symptoms and were withdrawn were
deleted. The primary screening of genes was performed for
follow-up analyses.

2.2. Differential Expression Analysis. Four datasets of mRNA,
miRNA, and circRNA expression profiles were analyzed in
this study. To screen effective DEGs, we used log2FC as
the evaluative criteria for measuring the clinical samples,
namely, the scale standards of the significant differences
between tumor and normal tissue and required FDR ≤ 0:05
and Ilog2FCI ≥ 1. Then, we performed the differential
expression analysis with all genes (mRNA, miRNA, and
circRNA) expressed in each sample to identify the relative
differentially expressed genes (DEGs). To verify the signifi-
cantly changing genes in each group, we performed ANOVA
in R to determine the genetic variance between the tumor
and normal sample groups. Statistical significance was con-
sidered at P < 0:05.

2.3. Functional Enrichment Analysis. Functional enrichment
analysis was performed using the clusterProfiler software, an
ontology-based R package for annotating and visualizing the
integrated discovery, to understand the biological functions
of the screened DEGs. All DEGs were used for the GO and
KEGG pathway enrichment analyses. With the cutoff set to
P < 0:05, the significant biological processes and pathways
could be established.

2.4. Hub Gene Identification. The differentially expressed
circRNAs were uploaded into the search tool (http://
bioinformatics.zju.edu.cn/Circ2Disease/search.html) for re-
trieving the targeted miRNAs. Then, two R packages of mul-
tiMiR and miRNAtap were used to predict the targeted
mRNAs of all differential miRNAs. We screened the top 50
differential circRNAs, miRNAs, and mRNAs to find the
most significant hub genes in BCa development. Then, we
merged them to construct a targeted interaction network.
Genes with highly interconnected nodes in the network were
considered hub genes.

2.5. Clinical Sample Acquisition. Sixteen pairs of BCa tumor
tissues and adjacent healthy tissues were obtained from
patients with BCa who underwent radical cystectomy at
the First Affiliated Hospital of Nanjing Medical University
from 2015 to 2018. All patients were diagnosed with BCa.
All tissue samples were frozen in liquid nitrogen before
RNA extraction. The experiment was granted approval by
the ethics board at the hospital. All participants signed
informed consent.

2.6. RNA Isolation and qRT-PCR. We extracted total RNA
from tissues through the TRIzol reagent (Invitrogen, USA).
Then, cDNA was compounded by reverse transcription with
the HiScript II reagent (Vazyme, China) for qRT-PCR.
LightCycler 480 (Roche, USA) was used for qRT-PCR veri-
fying hub genes. β-Actin served as the control for relative
mRNA identification. Each experiment was repeated three
times, and the outcomes were calculated using the 2−ΔCT
method. All primers used in the experiments were pur-
chased from Tsingke (Beijing, China) and are listed in Sup-
plemental Table 1.

2.7. GEPIA. Gene expression profiles, tumor stage, and sur-
vival rate were analyzed to reveal the prognostic value of
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hub genes on patients with BCa. The expression value and
clinical data of BCa were downloaded from the GEO and
TCGA databases. The total gene groups in the data were of
mRNA, miRNA, and circRNA. The correlation between
gene expression and stage was determined using GEPIA
(http://gepia.cancer-pku.cn/index.html) [15]. The correla-
tion between gene expression and tissues/tumor stage/over-
all survival was analyzed using the R package limma
software. The survival rate was estimated, the statistical sig-
nificance was analyzed using the Kaplan–Meier method, and
statistical significance was considered at P < 0:05.

2.8. Genetic Pathway Activity Analysis. We explored the
pathway activity that interacted with the 22 hub genes and
screened for the remarkable pathways that had higher scores
than the others and interacted mostly with hub genes.

2.9. Drug Sensitivity of Outstanding Genes. The drug sensi-
tivity of the outstanding hub genes was analyzed using
GSCALite to provide support for the drug selection of real
hub gene-targeted therapy. The drug response data across
cancers were obtained from the GDSC and CTRP datasets.
Finally, the remarkable genes that showed sensitivity to
numerous drugs and small molecules may serve as potential
markers for tumor treatment and clinical drug selection.

2.10. The Human Protein Atlas (HPA) Analysis. The protein
level of 10 hub genes in BCa tissues or normal urinary blad-
der tissues was determined by HPA analysis (https://www
.proteinatlas.org/). The results were presented in the form
of immunohistochemistry.

3. Results

3.1. Identifications of the Coexpression Network of DEGs in
BCa. With the conditions of PFDR < 0:05 and ∣log2FC ∣ ≥1,
434 differentially expressed circRNAs (167 upregulated and
267 downregulated) were identified between the BCa and
normal groups. For the miRNA database, 367 differentially
expressed miRNAs (269 upregulated and 98 downregulated)
were found. For the mRNA dataset from the GEO database,
4799 differentially expressed mRNAs (1903 upregulated
DEGs and 2896 downregulated) were detected. In the
mRNA dataset from TCGA database, 4841 DEGs (2717
upregulated and 2124 downregulated) were identified

(Table 1). We overlapped the mRNAs from TCGA and
GSE133624 datasets and identified 2290 overlapped DEGs,
including 971 upregulated and 1319 downregulated mRNAs
(Table 2). As shown in the corresponding volcano plots and
heat maps, the differentially expressed circRNAs, miRNAs,
and mRNAs were sufficient to distinguish the BCa group
from the normal group (Figures 1(a)–1(h)).

3.2. Functional Enrichment Analysis of the DEGs in the
Overlapped mRNA Datasets. The biological functions of the
differentially expressed mRNAs associated with BCa were
explored. The overlapping DEGs were subjected to GO and
KEGG pathway analyses to explore the biological functions
of the candidate genes. As shown in Figure 2, all of the sig-
nificant terms in the annotated systems were assigned in dif-
ferent colored dots when compared with other relative
significance of the enriched terms. The sizes and depths of
the colored dots represented the enrichment gene numbers
and differences, respectively. GO enrichment analysis indi-
cated that the DEGs were enriched in the biological pro-
cesses (GO-BP) with 10 significant terms. The top five
enrichment terms were about the muscle system process,
skeletal system development, muscle contraction, muscle
organ development, and regulation of ion transmembrane
transport (Figure 2(a)). In the enrichment of cellular compo-
nents (GO-CC), 11 significant terms were found. Among
them, the extracellular matrix, collagen-containing extracel-
lular matrix, and synaptic membrane were the top three
enrichment terms (Figure 2(b)). The DEGs enriched in the
molecular functions (GO-MF) included 10 significant terms.
The top 5 enrichment terms were about the DNA-binding
transcription activator activity, RNA polymerase II-specific
channel activity, passive transmembrane transporter activ-
ity, and ion and gated channel activities (Figure 2(c)). In
addition, KEGG pathway analysis showed that the signifi-
cant enriched terms were involved in 11 pathways. Among
them, the top five enriched terms were about the neuroactive
ligand-receptor interaction, calcium signaling pathway,
cAMP signaling pathway, cGMP-PKG signaling pathway,
and focal adhesion (Figure 2(d)). In a word, the enrichment
results of the merging DEGs in BCa indicated the relational
physiological function driven by differentially expressed
mRNAs. Thus, the effective genes could be further explored
and screened as potential biomarkers.

Table 1: Results of the differential expression analysis among the GSE92675, GSE133624, and TCGA BLCA datasets.

Type Comparison Log2FC_cutoff FDR_cutoff All gene_num Up gene_num Down gene_num

circRNA Tumor vs. normal 1 0.05 434 267 167

miRNA Tumor vs. normal 1 0.05 367 269 98

mRNA (GEO) Tumor vs. normal 1 0.05 4799 1903 2896

mRNA (TCGA) Tumor vs. normal 1 0.05 4841 2717 2124

Table 2: Results of the differential overlapped mRNAs from the merging datasets of GSE133624 and TCGA BLCA.

Type Comparison Log2FC_cutoff FDR_cutoff All gene_num Up gene_num Down gene_num

mRNA Tumor vs. normal 1 0.05 2290 971 1319
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Figure 1: Continued.
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Figure 1: Volcano plots and heat maps of the differentially expressed circRNAs (a, e), miRNAs (b, f), and mRNAs (c, g, d, h) datasets,
respectively. The DEGs were identified with the conditions of PFDR < 0:05 and Ilog2FCI ≥ 1. DEGs: differentially expressed genes.
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Figure 2: Functional enrichment analysis of the overlapped DGEs by GO and KEGG pathway analysis. (a) Results of the DEGs that were
enriched in the biological process by GO analysis. (b) Results of the DEGs that were enriched in the cellular component by GO analysis. (c)
Results of the DEGs that were enriched in the molecular function by GO analysis. (d) Results of the DEGs that were enriched in the
metabolic pathway by KEGG pathway analysis. GO: Gene Ontology analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes
pathways analysis; GO-BP: biological process; GO-CC: cellular component; GO-MF: molecular function.
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3.3. Identification of Universal Hub Genes among the
Differentially Expressed RNAs. We merged the differentially
expressed circRNAs and miRNAs and then constructed the
targeted interaction network with the overlapped mRNAs
from TCGA and GEO databases to screen the hub genes
with highly connectivity to each other. The differentially
expressed circRNAs were uploaded into the search tool
(http://bioinformatics.zju.edu.cn/Circ2Disease/search.html)
for retrieving the targeted miRNAs. Then, two R packages
(multiMiR and miRNAtap) were used to predict the targeted
mRNAs of all differentially expressed miRNAs. We screened
out the top 50 differentially expressed circRNAs, miRNAs,
and mRNAs, respectively. We merged them to construct

the targeted interaction network. Genes with highly inter-
connected nodes in the network were considered hub genes.
In Figure 3, the green squares, red rhombuses, and orange
dots represent circRNAs, miRNAs, and mRNAs, respec-
tively. The size of them revealed the connection strength,
showing that the bigger the size, the higher the connectivity
they had. In the circRNA group, 18 hub circRNAs were
identified, and the most remarkable genes were hsa_cir-
cRNA_104503/102682/105055/101525/100722/102002. For
the miRNA group, about 24 hub miRNAs with high connec-
tivity to each other were identified, such as hsa_miR_520e/
429/3154/520b/137/5698. In the mRNA group, 51 hub
mRNAs were identified with high connectivity. The top 10
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Figure 4: Functional enrichment analysis of the targeted mRNAs by GO and KEGG pathway analysis. (a) Results of the targeted mRNAs
that were enriched in the biological process by GO analysis. (b) Results of the targeted mRNAs that were enriched in the cellular component
by GO analysis. (c) Results of the targeted mRNAs that were enriched in the molecular function by GO analysis. (d) Results of the targeted
mRNAs that were enriched in the metabolic pathway by KEGG pathway analysis.
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remarkable genes with high connectivity were CDCA4,
GATA6, LATS2, NR3C2, PDE5A, RAB23, RHOB,
TMEM100, ZBTB4, and ZFPM2, which may be classified
as candidate hub genes for further analysis. The biological
functions of the differential targeted mRNAs (51 targeted
genes) were explored, and functional analysis indicated that
the most enriched GO-BP terms were the development of
the eye, visual system, and sensory system (Figure 4(a)).
The mainly enriched GO-CC terms were the nuclear
membrane, nuclear envelope, centrosome, and chromatin
(Figure 4(b)). For the GO-CC terms, the main enrichments
were DNA-binding transcription activator activity and
RNA polymerase II-specific and RNA polymerase II proximal
promoter sequence-specific DNA binding (Figure 4(c)).
Meanwhile, KEGG pathway analysis showed that the signifi-
cantly enriched terms were related to the miRNAs in cancer,
Th17 cell differentiation, and transcriptional misregulation
in cancer (Figure 4(d)). The enrichment terms of these differ-
entially expressed RNAs can be used to understand further the
physiological functions of these hub genes.

3.4. Correlation Validation of the Central RNAs between the
BCa and Normal Groups. We performed a differential
expression analysis across the screening hub RNAs to pro-
vide an intuitive depiction of the central RNA expression
profiles between the BCa and normal groups. For the central
circRNAs, the expression levels of hsa_circRNA_104700/
101902/100213/100062/102682/001059/104433/100722/104
435/104387 significantly increased in the tumor samples.
Meanwhile, the expression levels of hsa_circRNA_105055/
101525/104194/104703/102002/101308/104503/103890 re-
markably decreased in the tumor samples (Figure 5). In
the miRNA groups, the expression levels of all central miR-
NAs, except hsa_miR_113a-2/133b/195/145/28/23b (down-
regulated), significantly increased in the tumor samples
(Figure 6). For the top 10 targeted mRNAs, all of the hub
genes, except CDCA4 (upregulated), were validated to be

significantly downregulated in the BCa samples (Figure 7).
We also validated the expression levels of these 10 mRNAs
in 16 pairs of BCa tissues by using the qRT-PCR method.
Our results are consistent with the previous analysis, except
PDE5A (Figure 8). The protein levels of 10 mRNAs were
verified by HPA analysis. The results showed a low expres-
sion level in BCa tissues compared with normal urinary
bladder tissues except TMEM100 (Supplemental Figure 1).

3.5. Evaluation of the Prognostic Value of the Top 10 Hub
mRNAs. The statistical significance of the expression distri-
bution in diverse tumor stages was calculated using one-
way ANOVA to explore the prognostic value of the 10 hub
genes. In this study, a low stage (tumor stages I and II)
and high stage (tumor stages III and IV) were selected for
the expression analysis. The GATA6, LATS2, PDE5A,
RAB23, TMEM100, and ZFPM2 genes showed significantly
positive correlations between expression and stages (P < 0:05
) (Figure 9). Thus, the regulatory roles of these genes in tumor
progression are worthy of further exploration.

Furthermore, the overall survival analysis was performed
via the Kaplan–Meier curve test to verify the regulatory roles
of these hub genes. Results showed that the hub genes out-
standing in the current survival analysis were CDCA4,
GATA6, LATS2, RAB23, and TMEM100 (P < 0:05). The
other genes had no significant correlation in overall survival
(Figure 10).

3.6. Validation of Hub Gene Expression across Cancers.
TCGA database provides rich clinical follow-up informa-
tion, including the use of drugs, relapse, and survival in
diverse cancers. Exploring the expression profiles across
cancers helped in elucidating the regulatory roles of the
hub genes. Results showed that all of the genes, except
CDCA4 (positive), played a negative role across cancers
(Figure 11(a)). Moreover, the PDE5A gene showed the
highest correlation with survival risk, whereas the RHOB
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Figure 5: Expression profiles of the 18 hub circRNAs between bladder cancer and normal groups. The significant difference was under the
condition of P value < 0.05.
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gene had the lowest correlation in diverse cancer types
(Figure 11(b)).

3.7. Pathway Activity of the Hub Genes Associated with BCa.
The regulatory roles of the hub genes in pathological mech-

anisms were explored. Ten classical pathways associated
with cancers were selected to evaluate the pathway activity
regulated by each hub gene. Results indicated that all of
the pathways may be activated by these genes in varying
degrees. The pathways of apoptosis, cell cycle, and DNA
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Figure 6: Expression profiles of the 24 hub miRNAs between bladder cancer and normal groups. The significant difference was under the
condition of P value < 0.05.
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Figure 8: Continued.
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Figure 8: Expression validation of the top 10 hub mRNAs in 16 patients by qRT-PCR. The significant difference was under the condition of
P value < 0.05.
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Figure 9: Correlations of top 10 hub genes between expressions and tumor stages. The significant difference was under the condition of P
value < 0.05.
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damage response were mainly inhibited by most hub genes,
except CDCA4, which showed an activation role. Mean-
while, the EMT pathway was outstanding for its activation
across the hub genes. Other pathways, such as hormone
ER, PI3K/AKT, RAS/MAPK, and RTK, were activated by
most genes (Figures 12(a) and 12(c)). In addition, heat
map percentage analysis indicated that the top three out-
standing pathways were EMT (activation), cell cycle, and
apoptosis (inhibition) with high scores across these hub
genes (Figure 12(b)).

3.8. Correlations between Hub Genes and Clinical Outcomes.
We performed a drug sensitivity analysis to evaluate the cor-
relation of hub genes and clinical outcomes. Results indi-
cated that the most outstanding genes were GATA6,
ZBTB4, and LATS2, which were connected with drugs and
small molecules in the GDSC and CTRP groups; these genes
were then followed by RAB23 and RHOB (Figure 13). More-
over, the most efficient drugs/small molecules that were
connected with hub genes were vorinostat, tubastatin A,
NPK76-II-72-1, I-BET-762, navitoclax, WZ3105, PHA-
793887, TPCA-1, and so on in the GDSC groups
(Figure 13(a)). In the CTRP groups, the most efficient drugs/
small molecules were vorinostat, SR-II-138A, panobinostat,
PHA-793887, belinostat, SR-II-138A, CR-1-31B, and so on
(Figure 13(b)). These results revealed that these hub genes
were significantly correlated with clinical outcomes, and they
may have potencies as drug targets and biomarkers of BCa.

4. Discussion

BCa is the most common malignant tumor of the urinary
system [1]. Given its high incidence and complex etiology,

BCa became one of the top 10 malignant tumors with high
mortality in the world [1, 2]. Targeted therapy is a new type
of strategic therapy for BCa [6]. Compared with immuno-
therapy, it is characterized by its capacity to specifically tar-
get cancer cell growth-related mutant genes, message
transmission pathways, or growth factor receptors to sup-
press or destroy tumor cells, thereby suppressing or elimi-
nating tumors [6, 16]. Biomarkers that can be used as
effective candidate genes in BCa therapy remain unclear
because of the extensive and complex mutual assistance net-
works of targeted genes. RNA is an important regulatory fac-
tor for gene expression; it plays a crucial role in tumor
genesis, progression, and prognosis [9, 17]. Although RNA
has been extensively studied in recent years, its specific
mechanism of action in BCa has not yet been clarified, and
further research is needed.

In the present study, we first systematically analyzed the
differentially expressed RNAs of circRNAs, miRNAs, and
mRNAs in BCa. GO and KEGG enrichment analyses were
performed to reveal the potential regulatory roles of these
differentially expressed RNAs in BCa. Results showed that
they were mainly enriched in the GO terms of muscle and
skeletal system development, DNA transcription translation,
and channel activity. Skeletal muscle not only is the driving
force of exercise but also is the key regulator of the entire
body’s metabolism, which might be driven by cancer-
related factors [18, 19]. During transcription, the abnormal
transcription factors or gene mutations could affect gene
expression, including blocking cell differentiation and death
programs, which are a hallmark for cancer [20]. In addition,
the enriched signaling pathways of calcium, cAMP, cGMP-
PKG, and even the ligand-receptor interaction are all
involved in tumor procession and prognosis [21–23]. These
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Figure 10: Results of the overall survival analysis of the top 10 hub genes in bladder cancer. The significant difference was under the
condition of P value < 0.05.
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results suggest that differential RNAs play important roles
in BCa.

Many studies have shown that dysregulation of circRNA
expression is related to the pathogenesis of BCa, tumor pro-
gression, and prognosis and can be used as biomarkers for
BCa [24, 25]. Li et al. revealed that circCdr1as is significantly
downregulated in BCa tissues and cell lines. Overexpression
of circCdr1as could inhibit the proliferation, invasion, and
migration of BCa cells in vitro and slow down the growth
of tumors in vivo. The study also found that circCdr1as
could directly target miR-135a and inhibit its activity to
exert anticancer effects [24]. Similarly, circHIPK3 could tar-
get miR-558 for sponging to inhibit the expression of hepar-
anase (HPSE) and suppress the migration, invasion, and

angiogenesis of tumor cells [25]. Many studies have found
that miRNA also plays an important role in the development
of tumors, and miRNA may become an important target for
the early diagnosis and treatment of bladder cancer [26, 27].
Taheri et al. revealed that aberrant expression of miRNAs
may also provide new diagnosis biomarkers in bladder can-
cer [26]. Ding et al. screened out a group of miRNAs related
to the progression of bladder cancer by bioinformatics
methods and also provided a new direction for the diagnosis
and treatment of bladder cancer [27]. In the present study,
we generated a global triple interaction network based on
circRNA-miRNA and miRNA-mRNA targeting prediction.
The network (circRNA-miRNA-mRNA) was composed of
18 circRNAs, 24 miRNAs, and 51 mRNAs. In this network,
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Figure 11: Expressions of the hub genes across cancers. (a) Results of the hub gene expression between tumor and normal groups. (b)
Results of the hub gene expression in the survival with diverse cancer types. The significant difference was under the condition of P
value < 0.05.
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hsa_circ_104503 and 102682 were the most outstanding cir-
cRNAs that target with the maximum number of miRNAs,
which were rarely identified in BCa and other diseases.
However, the most remarkable miRNAs were has_miR_
520e/429/3154/520b/137 with high connectivity with diverse
mRNAs in this network. These central miRNAs were also
rarely identified in BCa but associated with other cancers.
For example, hsa_miR_520e expression is downregulated
in breast cancer tissues and might promote cell migration
and apoptosis in vitro [28]. The hsa_miR_429 is downregu-
lated and could reduce the migration ability of HCC cells by
targeting the RAB23 gene [29]. Meanwhile, hsa_miR_137
could directly target with the PIK3R3 gene and inhibit its
function, thereby suppressing the migration and invasion
of tumor cells [30]. Given these relevant evidence, the cen-
tral circRNAs and miRNAs were speculated to be potential
biomarkers for BCa treatment.

We identified 10 hub genes that were the top 10 out-
standing mRNAs (CDCA4, GATA6, LATS2, NR3C2,
PDE5A, RAB23, RHOB, TMEM100, ZBTB4, and ZFPM2)
in the targeted interaction network. The expression levels
of these hub genes, except for CDCA4, significantly
decreased in BCa tissues; CDCA4 showed a remarkably
upregulated role in the tumor. In our own patients, the
results are consistent with the previous analysis except
PDE5A, TMEM100, and ZBTB4. Moreover, among them,
six hub genes (GATA6, LATS2, PDE5A, RAB23, TMEM100,
and ZFPM2) were significantly correlated with the patholog-
ical stage, whereas five of them (CDCA4, GATA6, LATS2,
RAB23, and TMEM100) had significantly poor prognosis
in BCa. GATA6 belongs to the transcription factor family

that associated with many diseases [31]. In BCa, low expres-
sion of GATA6 could promote lymph node metastasis,
which might serve as a predictor of early recurrence and
short survival [32]. It is directly targeted by has-miR-944
that binds with has_circRNA_105055 and might serve as a
suppressor in BCa. LATS2 is a Dbf2-related kinase that acts
as a central regulator of cell fate by regulating the function of
numerous carcinogenic factors or tumor suppressor effectors
[33]. In non-small-cell lung cancer, low expression of LATS2
may result in poor prognosis [34]. Our finding of LATS2
was consistent with its correlation with tumor stage and
poor prognosis. LATS2 was targeted by has-miR-372 that
binds with has_circRNA_104503 and 102002. It also has
high scores in the activation of the ENT pathway and inhibi-
tion of the cell cycle, which are closely related to tumorigen-
esis and progression [35, 36]. Thus, the LATS2 mRNAs may
serve as suppressors of anti-BCa. PDE5A acted as an onco-
genic factor in melanoma cells. Its downregulation would
result in increased cGMP and cytosolic Ca2+, thereby
increasing contractility and inducing tumor cell invasion
[37]. In the present study, PDE5A was downregulated in
the BLCA group. It showed a high score in inhibiting cell
cycle transition, which indicated that PDE5A may play a
negative role in BCa. But the survival risk analysis of PDE5A
was not significant. RAB23 belongs to the RAB subfamily
and is a key regulator of cell membrane trafficking. It is a
tumorigenic or metastatic biomarker for many cancers
[38]. We found that the RAB23 played a negative role
across cancers and had a high score in activating the
EMT pathway, which might enhance the invasiveness of
tumor cells and generate circulating tumor cells [36].
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Figure 12: Pathway activity analysis of the hub genes. (a) Global percentage of the hub genes in activating or inhibiting pathways. (b) Heat
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TMEM100 or transmembrane protein 100 contains two
hypothetical transmembrane domains and is associated with
tumor progression [39, 40]. Its low expression could promote
tumor cell proliferation, invasion, and migration, leading to a
poor prognosis in non-small-cell lung carcinoma [40].
Although in the BLCA group, TMEM100 has a high expres-

sion level in the normal group, the verification of it in our
own patients was insignificant. And the survival analysis
showed that TMEM100 was negatively associated with sur-
vival time of patients in BLCA. Therefore, the role of
TMEM100 in BCa needs to be further explored. CDCA4 or
cell division cycle-associated protein 4 is related to tumor cell
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Figure 13: Results of drug sensitivity analysis of the outstanding hub genes.
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proliferation and apoptosis. In breast cancer, transfecting
with CDCA4 in vitro could enhance the proliferation and
reduce the apoptosis of MCF-7/ADM cells [41]. In the pres-
ent study, CDCA4 was targeted by has-miR-548ba that binds
with has_circRNA_100722. Its remarkable activations on cell
cycle and apoptosis suggest that it can serve as a promotor of
BCa. These results revealed that the outstanding hub genes
may play important roles in regulating tumor cell prolifera-
tion, metastasis, and apoptosis, which make them potential
biomarkers for cancer diagnosis and prognosis.

Drug sensitivity analysis showed that the outstanding
genes of GATA6, ZBTB4, and LATS2 were sensitively con-
nected with a large number of drugs and small molecules,
such as vorinostat, PHA-793887, belinostat, SR-II-138A,
and panobinostat. Vorinostat is a histone deacetylase
inhibitor widely used in cancer treatment. It could upregu-
late the MICA via the PI3K/Akt pathway to enhance the
lethality of immune cells to tumors, thereby achieving
anticancer effects [42]. PHA-793887 is an inhibitor of multi-
ple cyclin-dependent kinases (CDK) with activity against
CDK2, CDK1, and CDK4 [43]. Belinostat is a histone
deacetylase inhibitor that may inhibit cell proliferation via
the Wnt/β-catenin pathway and induce cell apoptosis in
breast cancer [44]. Panobinostat is a pan-deacetylase inhibi-
tor that could disrupt the protein biological function by
interfering with the enzymatic activity of deacetylase [45].
In conclusion, these hub genes that are highly connected with
drugs and small molecules may provide a basis for the clinical
treatment and guide the clinical medication of BCa.

Studies have reported that many environmental factors
are important causes of BCa, and exposure to these environ-
mental pollution factors causes influences in many impor-
tant pathways [46]. Not only mRNAs but also many
circRNAs, lncRNAs, and miRNAs will be affected by envi-
ronmental factors, and the pathways they lead or participate
in will also be inhibited or promoted, thus causing the occur-
rence and development of bladder cancer [47–49]. In this
study, we identified some potential circRNA-miRNA-
mRNA pathways which may inhibit the tumorgenesis and
progression of BCa, while the environmental carcinogens
and other harmful stimuli may destroy the stability of these
tumor suppressor pathways and then induce the occurrence
or progression of BCa.

5. Conclusion

We conducted a comprehensive analysis of circRNAs, miR-
NAs, and mRNAs differentially expressed in BCa and con-
structed a circRNA-miRNA-mRNA targeting interaction
network. The central RNAs with highly connected nodes
were identified in this network. Then, functional enrich-
ment, tumor progression, and correlation analyses of prog-
nosis were performed to explore the regulatory roles of
related hub genes in BCa. Drug sensitivity analyses were
conducted to verify the biological functions of these hub
genes. This study reveals the regulatory function of the
circRNA-miRNA-mRNA chain in BCa and provides poten-
tial therapeutic targets for BCa.
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