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Abstract
Recent evidence suggests that the condition of the gut and its microbiota greatly 
influence the course of liver disease, especially cirrhosis. This introduces the 
concept of the gut–liver axis, which can be imagined as a chain connected by 
several links. Gut dysbiosis, small intestinal bacterial overgrowth, and intestinal 
barrier alteration lead to bacterial translocation, resulting in systemic inflam-
mation. Systemic inflammation further causes vasodilation, arterial hypotension, 
and hyperdynamic circulation, leading to the aggravation of portal hypertension, 
which contributes to the development of complications of cirrhosis, resulting in a 
poorer prognosis. The majority of the data underlying this model were obtained 
initially from animal experiments, and most of these correlations were further 
reproduced in studies including patients with cirrhosis. However, despite the 
published data on the relationship of the disorders of the gut microbiota with the 
complications of cirrhosis and the proposed pathogenetic role of hemodynamic 
disorders in their development, the direct relations between gut dysbiosis and 
hemodynamic changes in this disease are poorly studied. They remain a missing 
link in the gut–liver axis and a challenge for future research.
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Core Tip: Recent evidence suggests that the condition of the gut and its microbiota 
greatly influence the course of liver disease, especially cirrhosis. This introduces the 
concept of the gut–liver axis, which can be imagined as a chain connected by several 
links. However, despite the published data on the relationship of the disorders of the 
gut microbiota with the complications of cirrhosis and the proposed pathogenetic role 
of hemodynamic disorders in their development, the direct relations between gut 
dysbiosis and hemodynamic changes in this disease are poorly studied. They remain a 
missing link in the gut–liver axis and a challenge for future research.
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INTRODUCTION
The last decade has been marked by an intensive study of the role of the gut 
microbiota in norm and pathology. It has been shown that the gut bacteria not only 
mechanically reside in the gut, but also have a variety of effects on the body, both 
positive and negative. Moreover, the gut microbiota play an important role in the 
development of diseases of the gut as well as distant organs such as the joints, heart, 
liver, brain, and others[1]. This led to introduction of the concepts of the gut–joint[2-
3], gut-heart[4], gut–liver[5], and gut–brain axes[6], and others[7]. The importance of 
the gut–liver axis is evidenced by the fact that a separate conference of the European 
Association for the Study of the Liver, which took place in 2018, was dedicated to this 
axis.

Gut bacteria and their cell components when they enter human tissues (bacterial 
translocation) lead to the development of systemic inflammation of varying degrees of 
intensity, which has a complex effect on the body. Lipopolysaccharide (LPS) is the 
most well studied and one of the most reactogenic of such components[8]. Normally, 
bacterial translocation inhibits by the predominance of strict anaerobes and bacteria 
without active LPS in the gut microbiome and low permeability of the intestinal 
barrier. With pathology, the proportion of facultative anaerobes (Bacilli and Proteo-
bacteria) and bacteria with active LPS (Proteobacteria) capable of bacterial translocation 
increases in the intestinal microbiome (gut dysbiosis), the total number of bacteria in 
the small intestine increases [small intestinal bacterial overgrowth (SIBO)], and 
intestinal permeability also increases, which contributes to the development of 
bacterial translocation and systemic inflammation. The latter triggers a chain of events 
that contribute to the decompensation of liver function in cirrhosis[8]. An important 
link in this chain is hemodynamic disorders, which are often underestimated.

GUT DYSBIOSIS IN CIRRHOSIS
Alteration of the gut microbiota composition in cirrhosis has been established in a 
number of studies (Table 1)[8-23]. Despite some inconsistencies in the results obtained, 
there was an increase in the abundance of taxa capable of bacterial translocation (
Bacilli, Streptococcaceae, Lactobacillaceae, Enterococcaceae, Proteobacteria, Enterobacteriaceae), 
as well as those with active LPS (Proteobacteria, Enterobacteriaceae), with a decrease in 
the abundance of autochthonous taxa incapable of bacterial translocation and not 
containing LPS (Clostridia, Ruminococcaceae, Lachnospiraceae, etc.) in cirrhosis in most 
reports.

The Model for End-stage Liver Disease (MELD) score was negatively correlated 
with the abundance of Clostridiales XIV, Lachnospiraceae, and Ruminococcaceae, and 
positively correlated with the abundance of Staphylococcaceae, Enterococcaceae, and 
Enterobacteriaceae[16]. Patients with acute-on-chronic liver failure (ACLF) had a 
significantly lower abundance of gram-positive organisms that had no LPS[16]. The 
abundance of Lachnospiraceae was negatively related to the Child–Turcotte–Pugh (CTP) 
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Table 1 Changes in the gut microbiome in cirrhosis according to data from different studies

Ref. Taxa that increased in cirrhosis Taxa that decreased in cirrhosis

Zhang et al[9], 2019 Bacteroidaceae Prevotellaceae

Jin et al[10], 2019 Proteobacteria, Granulicatella Bacteroidetes, Ruminococcaceae, Barnesiellaceae, Faecalibacterium, 
Dorea, Anaerostripes, RuminococcusButyricicoccus, Bilophila

Zeng et al[11], 2020 Proteobacteria, Bacteroides,Atopobium, AkkermansiaPrevotella, 
Parabacteroides

Kajihara et al[12], 2019 Enterobacteriaceae Akkermansia, Rikenellaceae, Erysipelotrichales

Chen et al[13], 2020 Gammaproteobacteria, Bacilli, Erysipelotrichi Clostridia

Zheng et al[14], 2020 Verrucomicrobia, Proteobacteria, Phyllobacterium, Sphingomonas, 
Enterococcus, Erysipelatoclostridium, and Romboutsia 

Firmicutes, Tenericutes, Ralstonia, Catenibacterium, and Lachnospira 

Lapidot et al[15], 2020 Gammaproteobacteria, Enterobacteria, Bacilli, Streptococcaceae, 
Alloscardovia, Atopobium

Ruminococcaceae and Lachnospiraceae 

Bajaj et al[16], 2014; 
Bajaj et al[17], 2015

Staphylococcaeae, Enterococcaeae, Enterobacteriaceae Porphyromonadaceae, Clostridialies XIV, Lachnospiraceae, 
Ruminococcaeae, Veillonellaceae

Ahluwalia et al[18], 
2016

Lactobacillaceae, Enterococcaceae, Enterobacteriaceae Clostridiales XIV, Lachnospiraceae, Ruminococcaceae

Liu et al[19], 2018 Firmicutes, Peptostreptococcaceae, Streptococcaceae, 
Erysipelotrichaceae, Clostridiaceae_1, Pasteurellaceae

Bacteroidetes, Bacteroidaceae, Prevotellaceae, Porphyromonadaceae, 
Acidaminococcaceae

Inoue et al[20], 2018 Bacilli, Streptococcus, Lactobacillus

Maslennikov et al[21], 
2021

Bacilli, Bifidobacteriaceae, Streptococcaceae, Lactobacillaceae, 
Enterococcaceae, Enterobacteriaceae, Proteobacteria

Clostridia, Ruminococcaceae, Lachnospiraceae

Chen et al[22], 2011 Proteobacteria, Fusobacteria, Bacilli, Enterobacteriaceae, 
Pasteurellaceae, Streptococcaceae, Fusobacteriaceae, 
Veillonellaceae

Bacteroidetes, Lachnospira, Bacteroidaceae

Kakiyama et al[23], 
2013

Enterobacteriaceae and Veillonellaceae Blautia, Ruminococcaceae, Lachnospiraceae

score, but an opposite tendency was observed for the abundance of Streptococcaceae
[22].

Gut dysbiosis was more pronounced in patients with hepatic encephalopathy[18]. 
Patients with severe dysbiosis had lower serum albumin and cholinesterase levels, 
higher CTP scale values, higher C-reactive protein (CRP) levels, and poorer long-term 
prognosis[21]. A higher abundance of Lachnospiraceae was negatively correlated with 
the risk of hospitalization in the intensive care unit[24]. There were positive correl-
ations of the abundance of Enterobacteriaceae with hepatic encephalopathy, the 
abundance of Enterococcaceae with circulatory failure, and the abundance of Streptococ-
caceae with respiratory failure within 30 d of hospitalization[24].

SIBO IN CIRRHOSIS
The prevalence of SIBO in cirrhosis is approximately 40%, higher (approximately 50%) 
in decompensated cirrhosis and lower (approximately 30%) in compensated cirrhosis
[25]. SIBO in cirrhosis is associated with ascites, minimal hepatic encephalopathy, 
bacterial translocation, spontaneous bacterial peritonitis (SBP), prolonged orocecal 
transit time, systemic inflammation, hyperdynamic circulation, vasodilation, and 
arterial hypotension, but is not associated with hypocoagulation[25-26]. Further 
studies are required to clarify the relationship of SIBO with hyperbilirubinemia, 
hypoalbuminemia, previous overt hepatic encephalopathy, and esophageal varices
[25].

INTESTINAL BARRIER DYSFUNCTION IN CIRRHOSIS
The intestinal barrier is represented by antimicrobial proteins secreted into the 
intestinal lumen, intestinal epithelial cells connected by tight and other intercellular 
junctions, intraepithelial lymphocytes, and other structures[27]. Its dysfunction 
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manifests in an increase in intestinal permeability, the biomarkers of which are an 
increase in the level of proteins of tight junctions (claudins, zonulin, occludin, and 
others) in  blood as well as substances that are normally poorly absorbed from the 
intestinal lumen (D-lactate, lactulose, polyethylene glycol, and others)[27].

Short-chain fatty acids (SCFA) produced by the gut microbiota, especially butyrate, 
play an important role in maintaining the intestinal barrier[28]. This effect is possibly 
associated with an increase in the production of proteins of tight junctions which was 
observed in the culture of epithelial cells after the addition of SCFA[28]. However, the 
exact mechanism for this has not yet been established.

D-lactate is formed only during the metabolism of bacteria and cannot be used by 
the human body. A small amount of D-lactate enters the blood from the intestines[29]. 
With an increase in intestinal permeability, its level in the blood increases, which is 
observed in patients with cirrhosis[30]. Moreover, it becomes higher with an increase 
in the CTP class of cirrhosis[30].

Intestinal permeability measured by the urinary excretion of oral polyethylene 
glycol and lactulose with mannitol was also higher in cirrhosis[31-32]. The ratio of the 
urinary excretion of lactulose to mannitol gradually increased with disease severity[32] 
and was higher in patients with ACLF[33].

The blood level of claudin 3 was higher in patients with cirrhosis than in healthy 
individuals. It was also higher in patients with decompensated cirrhosis, SBP, and 
ACLF than in those with compensated cirrhosis and chronic hepatitis without cirrhosis
[34].

The contents of claudin 1 and occludin in duodenal biopsy specimens were lower in 
patients with cirrhosis than in healthy individuals and lower in patients with 
decompensated cirrhosis than in those with compensated cirrhosis. The expression of 
occludin gradually decreased from the crypt to the tip of the villi that have maximal 
contact with gut microbiota. Occludin and claudin 1 expression were inversely 
correlated with the CTP score, grade of esophageal varices, and blood LPS level[35].

The blood zonulin level was significantly higher in patients with cirrhosis[36]. It 
was higher in patients with CTP C cirrhosis than in those with CTP A and B cirrhosis 
and did not differ significantly between patients with CTP A and B cirrhosis[37]. The 
level of this biomarker was significantly positively correlated with the blood LPS level 
in decompensated cirrhosis[36].

The intestinal mucosal mitotic count was significantly lower in patients with 
cirrhosis than in the controls, and a trend toward increased apoptosis was recorded. 
Lipid peroxidation in the intestinal cells increased in decompensated cirrhosis but not 
in compensated cirrhosis[38]. These changes (increased death and decreased renewal 
of intestinal cells and increased oxidative stress in these cells) also predispose to a 
decrease in the gut barrier function.

The blood level of diamine oxidase (DAO), a biomarker of intestinal damage[39], 
was higher in patients with cirrhosis than in healthy individuals and patients with 
chronic hepatitis without cirrhosis[40]. It increased with an increase in the CTP class 
and was higher in patients with decompensated cirrhosis, SBP, bleeding from 
esophageal varices, and hepatic encephalopathy and patients who were re-hospit-
alized within the next 6 mo[40]. No difference in the DAO level was noted between 
patients with and without ascites[40]. The DAO level was positively correlated with 
aspartate aminotransferase (AST), total bilirubin[40], and D-lactate[30] levels and 
negatively correlated with serum albumen level and prothrombin activity. However, 
no significant associations were noted between the DAO level and alanine aminotrans-
ferase (ALT)[40]. The DAO level in blood was an independent marker of the 
development of complications of cirrhosis during the next 12 mo and death[32].

Patients with cirrhosis had a diminished expression of the antibacterial peptides 
defensin 5 and 6 at the intestinal crypts compared with healthy controls, and this was 
negatively correlated with blood LPS levels. In addition, the content of intraepithelial 
lymphocytes in the duodenal biopsy specimen was lower in patients with 
decompensated cirrhosis than in healthy controls[41]. Thus, the protective properties 
of the intestinal epithelium against bacterial invasion are reduced in patients with 
cirrhosis and this also predisposes to a decrease in the effectiveness of the intestinal 
barrier.

The total stool content of SCFA was lower in patients with cirrhosis than in healthy 
controls. Lower levels of propionate, butyrate, valerate, isobutyrate, and isovalerate 
were noted, while there were no differences in acetate content[10]. Fecal microbiota 
from patients with CTP class A produced SCFA comparable with those in the controls, 
whereas those from patients with CTP classes B and C produced them with a 
moderate and a profound reduction, respectively[10]. The abundance of Bacteroidetes, 
Lachnospiraceae, and Faecalibacterium was the most consistent positive association with 
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SCFA production. Granulicatella, which had a strong correlation with the severity of 
liver disease, showed a negative association with SCFA production[10]. The blood 
butyrate level was inversely correlated with the MELD score[42] and blood LPS, tumor 
necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and nitric oxide (NO) levels[38] and 
was significantly lower in patients with a history of ascites, SBP, and previous 
episodes of hepatic encephalopathy[42].

BACTERIAL TRANSLOCATION IN CIRRHOSIS
Bacterial translocation is the penetration of living bacteria (cellular bacterial translo-
cation) and their cell components (molecular bacterial translocation) from the gut 
lumen into its wall, mesenteric lymph nodes, ascitic fluid, liver tissue, and portal and 
systemic blood flow[43]. The most used biomarkers of bacterial translocation are LPS, 
soluble SD14, lipopolysaccharide binding protein (LBP), and bacterial DNA[43-45]. In 
addition, modern metagenomic technologies make it possible to assess the total 
genome of bacteria in ascitic liquid and blood (ascitic and blood microbiome)[46]. 
Endogenous infections (e.g., SBP) can develop as complications of cellular bacterial 
translocation[47].

The blood LPS level was higher in patients with cirrhosis than in healthy 
individuals. It was also higher in patients with decompensated cirrhosis, SBP, and 
ACLF compared to those with compensated cirrhosis and chronic hepatitis without 
cirrhosis[16,30,34]. Moreover, it was higher in patients with clinical portal 
hypertension (esophageal varices, portal gastropathy, thrombocytopenia, and/or 
ascites) than in those without it[41]. The greater the size of esophageal varices and the 
higher the degree of ascites is accompanied by higher blood LPS levels[41].

Direct correlations of blood LPS level with the level of intestinal permeability (D-
lactate[30] and claudin 3[34]) and intestinal damage (DAO[30]) biomarkers, pro-
inflammatory cytokines (TNF-α and IL-6)[42], endothelial dysfunction biomarker NO
[42], and CTP[30] and MELD[16] scores have been identified.

Serum LPS levels as well as TNF-α, IL-6, and NO levels were significantly higher in 
the portal blood than in the hepatic and peripheral blood, without significant 
differences in the latter two sites[42]. This proves the predominantly intestinal origin 
of blood LPS, NO, and pro-inflammatory cytokines in cirrhosis.

The blood LPS level was positively correlated with the abundance of gram-negative 
bacteria Enterobacteriaceae and Bacteroidaceae and negatively correlated with the 
abundance of gram-positive bacteria Clostridiales XIV, Lachnospiraceae, and Ruminococ-
caceae in the gut microbiome[16].

Patients who died within 30 d after admission compared with those who survived 
had a significantly higher blood LPS level and an abundance of gram-negative bacteria 
that had LPS in the gut microbiome[16]. In patients with infectious complications of 
cirrhosis (e.g., SBP), the abundance of potential pathogenic bacteria Enterobacteriaceae 
was higher, and the abundance of autochthonic bacteria Lachnospiraceae, Ruminococ-
caceae, Veillonellaceae, and Clostridiales XIV was lower[16]. These patients had a higher 
blood LPS level[16]. The content of the genetic material of Enterobacteriaceae increased 
in the blood of patients with cirrhosis[12].

Bacterial DNA was detected in ascitic fluid and blood in 30% of patients with 
decompensated cirrhosis, only in ascitic fluid in 30% of these patients, only in blood in 
20% of these patients, and not in one of them in 20% of these patients[48]. The presence 
of bacterial DNA in blood and ascitic fluid was associated with a significantly higher 
prevalence of systemic inflammatory response syndrome[48]. A significantly higher 
number of patients with bacterial DNA in ascitic liquid needed transjugular 
intrahepatic portal shunting, while the presence of serum bacterial DNA was 
associated with an increased number of episodes of hepatic encephalopathy[48]. 
Bacterial DNA in blood and/or ascitic fluid was more often detected in patients with 
SBP, systemic inflammatory response syndrome, and ACLF[49]. The presence of 
bacterial DNA in blood and ascitic fluid was associated with higher blood IL-6 and IL-
10 levels[49].

It is striking that there is a huge difference in the composition of the gut microbiome 
on the one hand and the ascitic and blood microbiome on the other. Firmicutes and 
Bacteroidetes represented mainly by strict anaerobes were dominant, while mainly 
facultative anaerobes Proteobacteria, as a rule, occupied less than 10% in the gut 
microbiome in cirrhosis. However, Proteobacteria accounted for 75%-90%, Firmicutes 
(rather as facultative anaerobes Bacilli) for 5%-10%, and Bacteroidetes for 3%-4% in the 
ascitic and blood microbiomes in cirrhosis. The aerotolerant bacteria Actinobacteria 
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were represented many times more (5%-10% vs < 2%) in the ascitic and blood 
microbiome than in the gut microbiome[49-50]. No significant differences were noted 
between the microbiota compositions of ascites and blood samples at the phylum level
[49]. The main families of bacteria in the ascitic and blood microbiome were facultative 
anaerobes Pseudomonadaceae, Oxalobacteraceae, Neisseriaceae, Enterobacteriaceae, Sphingo-
monadaceae, and Moraxellaceae, which are relatively poorly represented in the gut 
microbiome[50]. These data prove the hypothesis that facultative anaerobes are the 
main translocating bacteria, while dominant in the gut microbiome of healthy persons, 
strict anaerobes almost never translocate.

Thus, bacterial translocation is associated with gut dysbiosis, impaired intestinal 
barrier function, systemic inflammation, endothelial dysfunction, infectious and non-
infectious complications of cirrhosis.

SYSTEMIC INFLAMMATION IN CIRRHOSIS
The pro-inflammatory cytokine TNF-α level was higher in patients with cirrhosis than 
in healthy individuals. It was also higher in patients with decompensated cirrhosis, 
SBP, and ACLF compared to those with compensated cirrhosis and chronic hepatitis 
without cirrhosis[34]. The blood TNF-α level was positively correlated with the blood 
level of the intestinal permeability biomarker claudin 3 and bacterial translocation 
biomarker LPS[34].

Patients with systemic inflammation (blood CRP level above 25 mg/L) had higher 
MELD and CTP scores, and they were more often diagnosed with SBP[50].

The blood CRP level was higher in cirrhosis with SIBO and in cirrhosis with severe 
dysbiosis[21,26]. Porphyromonadaceae was negatively correlated with the anti-inflam-
matory cytokine IL-10 and positively correlated with IL-13 in cirrhosis[17]. The pro-
inflammatory cytokine and NO levels were lower in patients receiving antibiotic 
treatment[42].

The blood levels of the biomarkers of macrophage activation sCD163 and soluble 
mannose receptor and biomarkers of systemic immune activation IL-6 and IL-8 were 
significantly higher in patients with cirrhosis than in healthy controls and gradually 
increased with disease severity (CTP classes B and C vs A)[32]. The blood levels of 
sCD163 and soluble mannose receptor were significantly positively correlated with the 
values of other biomarkers of systemic inflammation (IL-6 and IL-8), bacterial translo-
cation (LPS and soluble CD14), intestinal permeability (test with urinary lactulose/ 
mannitol excretion), and intestinal damage (DAO) and were higher in patients who 
developed complications of cirrhosis (ascites, hepatic encephalopathy, or jaundice) 
within 12 mo[32].

Thus, systemic inflammation is associated with SIBO, gut dysbiosis, impaired 
intestinal barrier function, bacterial translocation, infectious and non-infectious 
complications of cirrhosis.

HEMODYNAMIC CHANGES IN CIRRHOSIS
The main hemodynamic changes in cirrhosis are systemic vasodilation, arterial 
hypotension, and hyperdynamic circulation (increased cardiac output and index). It is 
believed that vasodilation is the primary condition and leads to arterial hypotension 
and an increase in the heart function and fluid retention (hyperdynamic circulation) 
through activation of the renin, angiotensin, and aldosterone and other systems to 
compensate for it[51].

N-terminal prohormone of brain natriuretic peptide (NT-proBNP) can be used as a 
biomarker of hyperdynamic circulation in cirrhosis. This protein is considered a 
biomarker of heart failure. However, its level was not correlated with a decrease in 
ejection fraction but correlated with an increase in cardiac output and a decrease in 
systemic vascular resistance (SVR) in cirrhosis[52]. Patients with hyperdynamic 
circulation had a higher NT-proBNP level regardless of the presence of diastolic 
dysfunction[52]. Patients with refractory ascites, severe esophageal varices, 
hepatorenal syndrome, and hypoalbuminemia had a higher NT-proBNP level, but 
patients with pre-ascites had a lower NT-proBNP level. The NT-proBNP level was 
correlated with the CTP and MELD scores, serum albumin level, and portal vein 
diameter[53].
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Patients with hyperdynamic circulation had a higher MELD score, serum total 
bilirubin level, international normalized ratio, and massive ascites. These patients 
more often developed ACLF and died within 1 year of follow-up[54]. The mean 
arterial pressure (MAP) decreased progressively from the prognostic stages of 
cirrhosis 1 to 5, and the cardiac index increased progressively from stages 1 to 4 but 
decreased in stage 5[55].

The blood flow increased in the abdominal aorta and common hepatic and superior 
mesenteric arteries, decreased in the renal arteries, and did not change significantly in 
the portal vein and carotid arteries in cirrhosis. Moreover, the flow through the 
abdominal aorta and common hepatic and superior mesenteric arteries was higher in 
patients with a higher MELD score than in those with a low score[56]. In cirrhosis, the 
blood flow increases in the organs that are most susceptible to the effects of bacterial 
translocation and the inflammatory response to it: the intestine (superior mesenteric 
artery) and liver, into which the portal vein carries blood rich in LPS and pro-inflam-
matory cytokines[42]. As a result, the kidneys are affected by the steal syndrome, 
which predisposes to the development of hepatorenal syndrome[57]. The excess blood 
that enters the intestine through the superior mesenteric artery does not increase the 
flow in the portal vein due to increased resistance to portal blood flow through the 
liver. This leads to increased pressure in the portal vein (increased portal hyper-
tension), the equivalent of which is the wedged hepatic venous pressure (WHVP), and 
shunting of portal blood, which predisposes to the development of esophageal varices 
and hepatic shunt encephalopathy[58]. Patients with clinically significant portal 
hypertension had higher cardiac output and index and lower SVR than those with 
preclinical portal hypertension. Moreover, these changes were greater in patients with 
esophageal varices than in those without[59]. The shunted fraction (ratio of the 
splenorenal shunt flow to portal vein flow) was directly correlated with the cardiac 
index and inversely correlated with SVR. Moreover, the blood ammonia level and 
incidence of hepatic encephalopathy were higher in patients with a higher shunted 
fraction[60]. WHVP and hepatic venous pressure gradient (HVPG) (the main indicator 
of hepatic portal hypertension–the difference between the pressure in the portal vein, 
the equivalent of which is WHVP, and the pressure in the hepatic veins) were 
positively correlated with cardiac output and negatively correlated with SVR[61]. 
Cardiac output was independently associated with higher hepatic blood flow[61]. The 
platelet count was inversely correlated with the value of the cardiac index[60].

It is assumed that the main mechanism of vasodilation in cirrhosis is the release of 
NO from the vascular wall under the action of pro-inflammatory cytokines[62-64]. 
However, this process is obviously more complex, and other molecules, including 
carbon monoxide, may be involved in its implementation[52,62-65]. The blood NO 
level was positively correlated with stroke volume, arterial compliance, total blood 
plasma volume, and WHVP[66]. There was a positive correlation between the blood 
CRP level and cardiac output and total arterial compliance and a negative correlation 
between the blood CRP level and SVR in cirrhosis[26]. IL-6 and IL-8 were significantly 
correlated with HVPG, whereas IL-8 was significantly correlated with cardiac output. 
SVR and MAP showed a negative correlation with IL-6 and IL-8[54]. The blood level of 
nitrates (stable metabolites of unstable NO) was higher in patients with decompen-
sated cirrhosis (maximal in CTP C) than in those with compensated cirrhosis and 
chronic hepatitis without cirrhosis and healthy individuals (it did not differ 
significantly among these two groups)[67]. Moreover, it was higher in patients with 
ascites or large esophageal varices[67]. The blood renin level was higher in patients 
with cirrhosis compared to healthy individuals and increased with the CTP class. 
There was a positive correlation between the blood renin and nitrate levels. The pro-
inflammatory cytokine IL-6 level was positively correlated with both nitrate and renin 
levels[67]. The CTP score was found to be directly related to serum levels of 
angiotensin-I and aldosterone and the cardiac index[68].

Carbon monoxide (CO) is formed as a by-product of the breakdown of heme by 
heme oxygenase, the activity of which is increased in the liver with cirrhosis[69,70]. 
The CO concentration in exhaled air was higher in patients with cirrhosis than in 
healthy individuals, and it was even higher in patients with ascites than in those 
without ascites. The level of this biomarker correlated with Child-Pugh score, 
prothrombin time, serum bilirubin and albumin level[71]. No correlation was found 
between CO concentration and blood pressure, heart rate, or plasma renin activity
[71]. However, plasma CO levels directly correlated with the serum LPS level, cardiac 
output, and inversely with SVR and MAP[65]. This and other vasodilators are much 
less studied in patients with cirrhosis than NO.
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Table 2 Correlation matrix of links of the gut-liver axis in cirrhosis (data from human studies)

Gut 
dysbiosis

Small 
intestinal 
bacterial 
overgrowth

Intestinal 
barrier 
dysfunction

Bacterial 
translocation

Systemic 
inflammation

Hyperdynamic 
circulation

Severity 
of 
cirrhosis

Complications 
of cirrhosis Prognosis

Gut dysbiosis NR + + + NR + + +

Small 
intestinal 
bacterial 
overgrowth

NR NR + + + + + NR

Intestinal 
barrier 
dysfunction

+ NR + + NR + + +

Bacterial 
translocation

+ + + + + + + +

Systemic 
inflammation

+ + + + + + + +

Hyperdynamic 
circulation

NR + NR + + + + +

Severity of 
cirrhosis

+ + + + + + + +

Complications 
of cirrhosis

+ + + + + + + +

Prognosis + NR + + + + + +

+: Relations are reported; NR: Not reported.

Despite the established correlations between the levels of proinflammatory 
cytokines and vasodilators in cirrhosis, the exact mechanisms of increasing the concen-
tration of the latter remains to be determined[72].

CONNECTING THE LINKS OF THE GUT–LIVER AXIS
The following model of the gut–liver axis was proposed. Gut dysbiosis, SIBO, and 
intestinal barrier alteration lead to bacterial translocation, resulting in systemic inflam-
mation in cirrhosis. The latter leads to vasodilation, arterial hypotension, and 
hyperdynamic circulation, the consequence of which is the aggravation of portal 
hypertension, which contributes to the development of complications of cirrhosis, 
resulting in a poorer prognosis[64]. The gut-liver axis can be simplified as a chain with 
the aforementioned links (Figure 1).

Most of the data underlying this model were obtained initially from animal 
experiments and were further reproduced in studies including patients with cirrhosis 
(Table 2), the results of which are described in this article. However, the clustering of 
the described data is noteworthy. Thus, the cluster of pathogenetic relations between 
the pathology of the gut microbiota, intestinal barrier disorders, bacterial translo-
cation, and systemic inflammation and that between systemic inflammation, increased 
formation of vasodilators (e.g., NO), hemodynamic changes, and complications of 
cirrhosis are well described. Several studies have shown that the pathology of the gut 
microbiota, intestinal barrier disorders, and bacterial translocation are associated with 
the development of complications of cirrhosis and poor prognosis. However, the direct 
relations between the pathology of the gut microbiota, intestinal barrier disorders, and 
bacterial translocation on the one hand and hemodynamic changes on the other in 
patients with cirrhosis have been poorly studied. Only the following relations have 
been reported: HVPG was positively correlated with blood LPS level and negatively 
correlated with blood butyrate levels[42]. The blood isobutyrate levels were directly 
correlated with SVR and inversely correlated with cardiac index[42]. The blood 
butyrate level was inversely correlated with NO levels[38]. There were correlations 
between blood LPS and NO levels[42]. The portal venous LPS levels were inversely 
correlated with systolic blood pressure and portal venous blood flow velocity[73].
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Figure 1 Links of the gut-liver axis in cirrhosis. SIBO: Small intestinal bacterial overgrowth.

Cirrhosis with SIBO had a significantly higher incidence of hyperdynamic 
circulation and vasodilatation compared with cirrhosis without SIBO. Cardiac output 
was higher and SVR was lower in cirrhosis with SIBO than in cirrhosis without SIBO
[26]. Patients with detected bacterial DNA in blood had lower MAP and SVR and 
higher blood levels of NO, renin, TNF-α, and IL-12. No significant differences in 
cardiac output, heart rate, stroke volume, WHVP, and HVPG were noted between 
patients with and without bacterial DNA in blood[74]. In addition, there were no 
significant differences in the hemodynamic parameters and blood levels of NO, TNF-α, 
IL-12, and renin between patients who had DNA of gram-positive bacteria and who 
had DNA of gram-negative bacteria in their blood[74]. Patients with ascites and a 
higher level of the bacterial translocation marker LBP had lower MAP and SVR and 
higher cardiac index and blood levels of renin, aldosterone, and NO metabolites[75]. 
The blood levels of LBP, TNF-α, and NO metabolites and SVR were correlated with 
each other[75]. The TNF-α levels were also inversely correlated with MAP[74].

No studies on the association of gut dysbiosis (except for reports of the association 
of the increased abundance of Enterococcaceae with circulatory failure[24]) with 
hemodynamic disorders have been described in cirrhosis. The only study on the 
association of SIBO and hemodynamic disorders in cirrhosis was published[26]. An 
uncontrolled small study showed that probiotics can correct hemodynamic changes in 
cirrhosis[76]. Randomized controlled trials are required to confirm these findings.

CONCLUSION
In conclusion, hemodynamic changes remain a missing link of the gut-liver axis in 
cirrhosis, which should be studied in future research.
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