Skip to main content
. 2021 Nov 24;73:103371. doi: 10.1016/j.bspc.2021.103371

Table 1.

Related works on COVID-19 segmentation approache.

Literature Segmentation approach CT-IM Patients Performance
Zhou et al. [17] U-Net and Focal Tversky 473 Dice = 83.1%, SEN = 86.7%, SPE = 99.3%
Cao et al. [18] U-Net architecture 2
Gozes et al. [19] Deep Learning CT Image 157 AUC = 0.99, SPE = 92.2%
Qiu et al. [20] MiniSeg 100 SPE = 97.4%, Dice = 77.2%
Jin et al. [21] UNet+, CNN 723 AUC = 0.99, SEN = 0.97, SPE = 0.92
Fei Shan et al. [22] VB-Net 249 249 Dice = 91.6%
Xie et al. [23] Contextual two stage U-Net 204 IOU = 0.91, HD95 = 6.44
Shen et al. [24] Region growing 44 R = 0.7679, P < 0.05
Yan et al. [25] COVID-SegNet 861 Dice = 72.60%, SEN = 75.10%.
Jun et al. [26] UNet++ 46,096 106 SPE = 93.5%, ACC = 95.2%
Zheng et al. [27] Pretrained UNet 540 ROC-AUC = 0.959
Xiaowei et al. [28] VNET 618 106 ACC = 86.7%
Fan et al. [29] Semi-Inf-Net 100 Dice = 73.9%, SEN = 72.5%
Cheng et al. [30] 2D-CNN 970 496 ACC = 94.9%, AUC = 97.9%
Chen et al. [31] U-Net Res 110 Dice = 94.0%, ACC = 89.0%
Ophir et al. [19] U-net architecture 56 AUC = 0.99, SEN = 98.2%, SPE = 92.2%
Lin Li [32] U-Net 4356 3,322 SEN = 90%, SPE = 96%