Skip to main content
. 2021 Nov 23;11:22767. doi: 10.1038/s41598-021-01358-4

Table 3.

Evaluation of different models for estimating BP from PAT or PTT.

A posteriori models Population-based models
Model RMSE MAE MAD Model RMSE MAE MAD
PAT BP = aPAT + b SBP 5.50 3.63 4.14 Poon16 SBP 11.04 7.10 8.46
DBP 4.49 3.42 2.92 DBP 8.37 6.12 5.71
BP = aPAT2 + b SBP 5.48 3.61 4.12 Gesche18 SBP 43.76 21.63 38.06
DBP 4.49 3.42 2.92 DBP 46.70 22.93 40.71
BP = a×ln(PAT) + b SBP 5.53 3.66 4.15 Fung37 SBP 8.51 5.70 6.33
DBP 4.50 3.42 2.92 DBP 8.02 5.90 5.43
PTT BP = aPTT + b SBP 3.98 2.82 2.81 Poon16 SBP 8.49 5.40 6.56
DBP 4.02 3.12 2.54 DBP 7.72 5.64 5.26
BP = aPTT2 + b SBP 3.91 2.78 2.76 Gesche18 SBP 4542 1773 4185
DBP 4.01 3.12 2.53 DBP 4546 1776 4188
BP = a×ln(PTT) + b SBP 4.05 2.86 2.87 Fung37 SBP 30.69 20.77 22.61
DBP 4.03 3.12 2.55 DBP 33.80 22.45 25.29

All values are given in units of mmHg. Best performing models for PAT and PTT are highlighted in bold.