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Streptophytes are one of the major groups of the green lineage (Chloroplas-
tida or Viridiplantae). During one billion years of evolution, streptophytes
have radiated into an astounding diversity of uni- and multicellular green
algae as well as land plants. Most divergent from land plants is a clade
formed by Mesostigmatophyceae, Spirotaenia spp. and Chlorokybophyceae.
All three lineages are species-poor and the Chlorokybophyceae consist of a
single described species, Chlorokybus atmophyticus. In this study, we used
phylogenomic analyses to shed light into the diversity within Chlorokybus
using a sampling of isolates across its known distribution. We uncovered
a consistent deep genetic structure within the Chlorokybus isolates, which
prompted us to formally extend the Chlorokybophyceae by describing
four new species. Gene expression differences among Chlorokybus species
suggest certain constitutive variability that might influence their response
to environmental factors. Failure to account for this diversity can hamper
comparative genomic studies aiming to understand the evolution of stress
response across streptophytes. Our data highlight that future studies on
the evolution of plant form and function can tap into an unknown diversity
at key deep branches of the streptophytes.
1. Background
Green algae and land plants (Chloroplastida or Viridiplantae) consist of three
major lineages: the recently pinpointed Prasinodermophyta [1], Chlorophyta
and Streptophyta [2]. Streptophyta are about a billion years old [3,4] and
encompass the main constituents of the land flora, the Embryophyta (land
plants). In addition, Streptophyta include the algal relatives of land plants,
known as streptophyte algae. In the past few years, the phylogenetic backbone
of the green lineage has been brushed up. This was largely thanks to both an
increased effort in sequencing streptophyte algae [5–13] and the use of these
data in phylogenomic analyses to infer a robust green tree of life [2,14,15].
The new phylogenetic framework marked a milestone; it clarified the phylo-
genetic relationships among land plants and their streptophyte algal relatives.
Within streptophytes, the position of Zygnematophyceae as closest relatives
to land plants made quite a splash. However, equally important was the
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Figure 1. Cryptic diversity in Chlorokybus. (a) Maximum-likelihood phylogeny of SSU + ITS rDNA from all eleven isolates currently available in culture (root sensu
figure 3). Branch support are respectively non-parametric bootstrap proportions from neighbour-joining, maximum parsimony, maximum likelihood and Bayesian
posterior probabilities and branch lengths are in expected substitutions per site. Light micrographs correspond to: (b) C. atmophyticus ACOI 1086, (c) C. melkonianii
sp. nov. SAG 2609, (d ) C. bremeri sp. nov. SAG 2611, (e) C. riethii sp. nov. NIES-160, ( f ) C. cerffii SAG 34.98. Scale bar = 10 µm. (Online version in colour.)
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recovery of Mesostigmatophyceae, Spirotaenia spp. [2] and
Chlorokybophyceae as sister to all other Streptophyta [16].
Both Chlorokybophyceae and Mesostigmatophyceae are
thought to encompass, respectively, one or few extant species.
The apparent low diversity in these key lineages complicates
macroevolutionary studies that aim to reconstruct the early
evolution of key traits in the streptophyte ancestor. Recent
genomic and phylogenomic investigations have honed in on
freshwater and terrestrial streptophyte algae because they pro-
vide important insights into the origin of land plants and the
evolution of response mechanisms to terrestrial stressors
[2,5,7,10,12,13,17].

Here, we investigate the diversity within the Chlorokybo-
phyceae using a phylotranscriptomic approach with broad
sampling of isolates across its known distribution (Eurasia,
Central and South America). We pinpoint that the Chloroky-
bophyceae consist of a cryptic species complex of at least five
extant members.
2. Results and discussion
(a) Chlorokybophyceae is an oligotypic class
Chlorokybophyceae is thought to be a monotypic class with a
single described species, Chlorokybus atmophyticusGeitler 1942.
Chlorokybus is a subaerial alga inhabiting soil and rock surfaces
and cracks [18–21]; it has been isolated from Europe and Cen-
tral and South America, although it is thought to have a
cosmopolitan distribution, despite being rare (electronic sup-
plementary material, ‘Portrait and history of Chlorokybus’). To
further explore the distribution and diversity of Chlorokybus,
we searched four large soil environmental sequencing datasets
(Neotropical forest, Swiss Alps, meadow and agricultural soils
from the UK and Tibet, and a set of globally distributed soils;
approximately 128 Mio. reads total). Only a single amplicon
sequence variant (ASV) of Chlorokybus was obtained, which
was composed of 32 reads total (less than 0.01% abundance;
electronic supplementary material, table S1). This ASV origi-
nated from a high-altitude Swiss Alpine soil sample [22].
Phylogenetic analyses confirmed the identity of this ASV as
Chlorokybus, but its precise phylogenetic position could not
be determined because the SSUV4 region has limited phyloge-
netic signal [23] (electronic supplementary material, figure S1).
None of the primer sets used in the above studies were biased
against Chlorokybus and DNA extraction methods are unlikely
to be so, but the lack of rocky outcrop samples in the above
studies could have exacerbated the reported low abundance.
Currently, 11 strains of Chlorokybus are available in public cul-
ture collections, none of them were isolated from the type
locality and therefore no authentic strain is available (electronic
supplementary material, table S2). We performed a phyloge-
netic analysis including all available Chlorokybus strains with
two commonly used nuclear markers (SSU and ITS rDNA).
This phylogeny suggested a deep genetic structure within
Chlorokybus (figure 1a). Extensive observations under light
microscope revealed no obvious morphological differences
among the studied isolates, despite marked genetic diver-
gences: all studied Chlorokybus isolates form sarcinoid,
cubical packets of two to eight cells with a gelatinous matrix;
cells are spherical or broadly ellipsoidal and contain a parietal
slightly lobated chloroplast with two types of pyrenoids
(figures 1 and 2; electronic supplementary material, figure
S3; full description is provided below). The life cycle is haploid
and was studied by Rieth [21] (figure 2). Since the phenotype
did not give away hints as to the differences among the
Chlorokybus strains, we garnered more sequence data.

(b) A phylotranscriptomic framework for Chlorokybus
Using the Illumina NovaSeq6000 platform, we generated
224 million paired-end reads (greater than 47 Gbp of raw
sequence information) on four isolates of Chlorokybus from
across its known distribution range. Combining these data
with published genomic and transcriptomic information
from other algae and land plants (electronic supplementary
material, table S3), we inferred a robust phylogenomic tree
based on 529 densely sampled loci (17% missing data). The
maximum-likelihood tree, which was inferred with IQ-TREE
under the LG + F+ I + Γ4 + C60 mixture model, unambigu-
ously recapitulated the accepted phylogeny of the green
lineage (Chloroplastida), including the position of Chlorokybus
(Chlorokybophyceae), Mesostigma (Mesostigmatophyceae)
and Spirotaenia minuta as the sister group to all other
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Figure 2. Life cycle of Chlorokybus. (a) Zoospore with two unilaterally inserted flagella in slightly under apical position. (b) A young vegetative cell is formed after
the zoospore is settled and (c) cell division can begin. (d ) Two-cell stage of daughter cells are contained within the same gelatinous matrix and (e) cubic cell
packages can contain groups of two to eight cells each. ( f ) Mature packages produce mucilage and (g) cell cycle can proceed through the production of autospores
for asexual reproduction (g to e). (h) Zoospores might be formed by differentiation from autospores (g to h) or directly from mature packages ( f to h). (i) Zoospores
can form groups of up to 32 cells called ‘Maulbeerstadium’. Cell cycle based on Rieth [21]. (Online version in colour.)
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streptophytes [1,13,14] (figure 3a). A summary coalescent
analysis recovered an almost identical tree topology, except
the interrelationships between SAG 34.98 (C. cerffii sp. nov.)
and NIES-160 and UTEX 2591 (C. riethii sp. nov.) could not
be resolved with certainty (electronic supplementary material,
figure S2). Our phylotranscriptomic trees show unmistakable
deep genetic structure within Chlorokybus, represented here
by eight isolates. The genetic distances among Chlorokybus
isolates are often more than twice as those recovered among
three different species of Arabidopsis (figure 3a). The inferred
patristic (maximum-likelihood) distances among Chlorokybus
species are between 0.0254 and 0.0874 substitutions per site
(p-uncorrected distances: 0.0245–0.0730), whereas the dis-
tances among the three Arabidopsis species are between
0.0149 and 0.0346 (p-uncorrected distances: 0.0147–0.0332)
(table 1). A Bayesian relaxed molecular clock analysis
calibrated with eight fossils (uniform priors) found that diver-
gences within Chlorokybus could be as old as 76 Ma (95% HPD
interval: 54–102 Ma) and thedivergencebetween the twoclosest
isolates described here as species—C. atmophyticus and
C. melkonianii sp. nov., see below—was 24 Ma (95% HPD
15–34 Ma) (electronic supplementary material, figure S4). The
use ofmore informative prior distributions for fossil calibrations
(t-cauchy and skew-t) produced slightly younger divergences,
as expected, but differenceswere not substantial (average differ-
ences within Chlorokybus were 0.47 and 1.47 Ma, respectively)
(electronic supplementary material, figure S4). In contrast to
Chlorokybus, the divergences among Arabidopsis species were
13 Ma (95% HPD 7–19 Ma) and 28 Ma (95% HPD 18–39 Ma).

To further scrutinize the deep genetic structure within
Chlorokybus, we performed a maximum-likelihood analysis of
75 plastid proteins using IQ-TREE and the best-fit cpREV +
F + I + Γ4 + C60 mixture model. The plastid phylogeny
was moderately resolved and statistically supported; it further
confirmed the deep divergences among Chlorokybus isolates,
even though internal relationships in Chlorokybus differed
from the nuclear tree (electronic supplementary material,
figure S5). Similar plastid-nuclear incongruences are often
observed in algae, for example in Volvocales [24], and might
be due to eithermethodological or biological reasons (e.g. intro-
gression), or both. While biological confounding factors cannot
be excluded, the failure to recoverAmborella as sister to all other
flowering plants suggests the presence of biases and/or limited
phylogenetic signal in the plastid dataset. At any rate, both plas-
tid and nuclear marker phylogenies agreed on the presence of
deep divergences among Chlorokybus isolates.

The final assessment of the genetic diversity within
Chlorokybus is based on themore robust nuclear phylotranscrip-
tomic dataset. On the basis of the inferred deep divergences, we
propose a new taxonomic arrangement by describing four
new species and assigning a lectotype and an epitype for
C. atmophyticus, for which no authentic strain is available in
public culture collections (see ‘Systematic botany’).

Taking advantage of the fact that the new isolates were
grown simultaneously under the same experimental con-
ditions, we explored whether the genetic distances among
species are reflected in differences in global gene expression pat-
terns. Clean Illumina readsweremapped against the annotated
Chlorokybus genome using STAR [25] and expression quantified
with RSEM [26], followed by TMM (trimmed mean of M-
values) cross-sample normalization.While the lack of biological
replicates prevented us from inferring differential gene
expression, we observed marked differences in steady-state
gene expression levels among the four new isolates (figure 3b,
c). The clustering of expression valuesmirrored the species phy-
logeny, with NIES-160 (C. riethii sp. nov.) showing the most
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Figure 3. Transcriptomic evidence for deep phylogenetic divergences and expression differences within Chlorokybus. (a) Maximum-likelihood phylogeny based on
529 densely sampled loci, inferred with IQ-TREE under LG + F + I + Γ4 + C60 and support values from 1000 pseudoreplicates of UFBoot2 and SH-aLRT (all branches
received 100% support). Branch lengths are in expected substitutions per site. (b,c) Gene expression differences (TMM, trimmed mean of M-values) among four
isolates grown simultaneously under the same experimental conditions. Heatmaps correspond to (b) the 9300 annotated proteins in the C. melkonianii genome (no
filtering) and (c) the top 200 proteins with the highest expression differences. (Online version in colour.)

Table 1. Genetic distances among Chlorokybus isolates and Arabidopsis species measured from concatenated amino acid alignments of 529 loci (178 397 aligned
amino acids). p-uncorrected (upper triangle) and maximum-likelihood distances (lower triangle; figure 1) are shown, with intra-specific comparisons in italics.

1 2 3 4 5 6 7 8

1 C. cerffii (SAG 34.98) 0.0573 0.0619 0.0781 0.0690 0.0718 0.0730 0.0722

2 C. riethii (NIES-160) 0.0621 0.0133 0.0646 0.0507 0.0482 0.0539 0.0522

3 C. riethii (UTEX 2591) 0.0677 0.0135 0.0648 0.0501 0.0501 0.0529 0.0517

4 C. bremeri (SAG 2611) 0.0874 0.0710 0.0713 0.0424 0.0446 0.0497 0.0486

5 C. atmophyticus (ACOI 1086) 0.0762 0.0543 0.0536 0.0452 0.0245 0.0289 0.0277

6 C. melkonianii (ERR364371) 0.0798 0.0514 0.0536 0.0479 0.0254 0.0044 0.0002

7 C. melkonianii (SAG 2609) 0.0811 0.0580 0.0569 0.0537 0.0302 0.0045 0.0037

8 C. melkonianii (CCAC 0220) 0.0801 0.0559 0.0553 0.0523 0.0288 0.0002 0.0037

1 2 3

1 A. halleri 0.0332 0.0147

2 A. thaliana 0.0346 0.0288

3 A. lyrata 0.0149 0.0296
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different expression profile, followed by SAG 2611 (C. bremeri
sp. nov.), and the more similar profiles shown by ACOI 1086
(C. atmophyticus) and SAG 2609 (C. melkonianii sp. nov.). Yet,
even the two latter isolates showed marked differences in
gene expression, which together with the reported genetic dis-
tances support the notion that they are not only different species
but might also exhibit different cell physiologies.
3. Conclusion
Here, we report on the presence of consistent deep structure
within Chlorokybus after analysing all currently available iso-
lates. These divergences might date back to approximately
76 Ma and are twice as large as those among some flowering
plant species (e.g. Arabidopsis). Deep genetic divergences
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among Chlorokybus isolates are further supported by substan-
tial gene expression variation when grown under the same
experimental conditions. Yet, these genetic differences
are not reflected in appreciable morphological differences,
which suggest the presence of undescribed cryptic diversity
within this lineage. All this genetic diversity has remained
unnoticed under the umbrella name Chlorokybus atmophyticus,
the only validly described species so far. To remedy this, we
describe four new species of Chlorokybus and designate
a cryopreserved culture as epitype for C. atmophyticus.
Chlorokybus species are probably cosmopolitan but rare, as
further supported byour search across global soil metabarcod-
ing datasets that identified a single sequence of this genus.
Properly recognizing the existing diversity within Chlorokybus
is paramount, given the key phylogenetic position of Chloro-
kybophyceae, which together with Spirotaenia spp. [27] and
Mesostigmatophyceae are the sister lineage to all other
streptophytes. This diversity has to be taken into account for
the adequate comparison of current and future data fromdiffer-
ent Chlorokybus strains [2,8,13]. In fact, the reported gene
expression differences might even suggest certain interspecific
variability in responding to environmental factors and ade-
quately accounting for this will be essential in comparative
genomic studies that aim to understand the evolution of key
traits (such as phytohormone or stress response pathways
[17]) along the backbone phylogeny of streptophytes. Our
phylogenetic analysis of genomic data can aid in uncovering
key cryptic diversity, which together with the discovery of
new deep-branching lineages [28–30], are revealing important
pieces in the puzzle that is the Eukaryotic Tree of Life.
4. Systematic botany
In the following, we describe four new species of Chlorokybus
and designate a lectotype and an epitype for C. atmophyticus,
given that no cultured material is available from the different
locations studied by Geitler [18–20]. We further provide a
formal description of the class Chlorokybophyceae, which
was originally proposed by Bremer [31] without formal
description nor page numbers, and thus being invalid
under articles 38.1 and 41.5 of the International Code of
Nomenclature (ICN) for algae, fungi and plants [32].

Class Chlorokybophyceae class. nov. (figure 2)
Description: Green algae forming sarcinoid, cubical pack-

ets. Single chloroplast containing two pyrenoids. First
pyrenoid located in the middle of the chloroplast and sur-
rounded by starch grains. Second naked pyrenoid (or called
pseudopyrenoid) located at the edge of the chloroplast.
Reproduction can occur asexually by breaking cell packages
into separate cells or by zoospores (figure 2). Zoospores are
produced one per cell and possess two laterally inserted
flagella. The flagella and body are covered with square
scales. The flagellar apparatus is non-cruciate unilateral and
contains multi-layered structures (MLS). After settling of
the zoospores, the flagella are retracted at the point of their
insertion. Cell division type phragmoplast-like, presence of
advanced cleavage furrow and VII type of mitosis (sensu
van den Hoek et al. [33]). Sexual reproduction is not observed.
The class is supported by SSU rDNA, plastid and nuclear
transcriptomic data.

Type order (designated here): Chlorokybales ordo nov.
Order Chlorokybales ordo nov.
Description: With features of the class.
Type family (designated here): Chlorokybophyceae fam.

nov.

Family Chlorokybaceae fam. nov.
Description: With features of the class.
Type genus (designated here): Chlorokybus Geitler 1942,

Österr. Bot. Z. 91: 51.
Comment: Rogers et al. (1980) proposed the order Chlor-

okybales and the family Chlorokybaceae without Latin
diagnosis. They referred to the Latin diagnosis of Geitler
(1942/43), but he published the Latin diagnosis in 1942 (see
detailed citation below).

Type species: Chlorokybus atmophyticus Geitler 1942,
Österr. Bot. Z. 91: 51; Geitler 1942/43, Flora 136, fig. 2 (lecto-
type designated here).

Emended description: Cell size 16.9–20.0 µm length ×
12.0–16.5 µm wide. Other features are identical to the class
description. SSU-ITS sequence (MW696194) and NCBI
BioSample accession SAMN18221336 (RNA-Seq), ITS-2
Barcode: BC-1 in electronic supplementary material, figure S6.

Diagnosis: Differs from other species of Chlorokybus by
SSU-ITS and transcriptome sequence.

Epitype (designated here): Strain ACOI 1086 cryopre-
served in metabolically inactive state at the Culture
Collection of Algae (SAG), Georg-August-University Göttin-
gen, Germany (figure 1c; electronic supplementary material,
figure S3a–d ).

Chlorokybus melkonianii sp. nov.
Description: Cell size 10.3–13.5 µm length × 7.7–10.6 µm

wide. Other features are identical to the class description.
SSU-ITS sequence (MW696189), NCBI BioSample accession
SAMN18221334 (RNAseq), ITS-2 Barcode: BC-2 in electronic
supplementary material, figure S6.

Diagnosis: Differs from other species of Chlorokybus by
SSU-ITS and transcriptome sequence.

Holotype (designatedhere): Strain SAG2609 cryopreserved
in metabolically inactive state at the Culture Collection of
Algae (SAG), Georg-August-University Göttingen, Germany
(figure 1b; electronic supplementary material, figure S3e–h).

Type locality: Europe, Ukraine, regional landscape park
‘Trakhtemyriv’, sandstone outcrops, in crack.

Etymology: The species epithet honours Prof. Dr Michael
Melkonian (University of Cologne, Germany) for his impor-
tant contributions to understanding the diversity and
evolution of algae.

Comment: The strain CCAC 0220 represents another isolate
of this species and the SSU-ITS sequence and NCBI BioSample
accession are available under SAMEA2242428 (RNAseq) and
SAMN10351691 (genome assembly), respectively.

Chlorokybus bremeri sp. nov.
Description: Cell size 13.1–16.8 µm length × 9.7–11.5 µm

wide. Other features are identical to the class description.
SSU-ITS sequence (MW696196) and NCBI BioSample acces-
sion SAMN18221335 (RNA-Seq), ITS-2 Barcode: BC-3 in
electronic supplementary material, figure S6.

Diagnosis: Differs from other species of Chlorokybus by
SSU-ITS and transcriptome sequence.

Holotype (designated here): Strain SAG 2611 cryopreserved
inmetabolically inactive state at the Culture Collection of Algae
(SAG), Georg-August-University Göttingen, Germany
(figure 1d; electronic supplementary material, figure S3i–l ).
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Type locality: South America, Chile, national park ‘La
Campana’, granite outcrops, in crack.

Etymology: The species epithet honours Prof. Dr Kåre
Bremer (University of Stockholm, Sweden), who first
proposed the class name Chlorokybophyceae.

Chlorokybus riethii sp. nov.
Description: Cell size 13.1–16.8 µm length × 9.7–11.5 µm

wide. Other features are identical to the class description.
SSU-ITS sequence (MW696190) and NCBI accession
SRX025846 (RNA-Seq), ITS-2 Barcode: BC-4a/b in electronic
supplementary material, figure S6.

Diagnosis: Differs from other species of Chlorokybus by
SSU-ITS and transcriptome sequence.

Holotype (designatedhere): Strain SAG48.80 cryopreserved
inmetabolically inactive state at the Culture Collection of Algae
(SAG), Georg-August-University Göttingen, Germany
(figure 1e; electronic supplementary material, figure S3m–r).

Type locality: Europe, Italy, Neaples, in enrichment cul-
ture of Porphyridium purpureum from the Mediterranean Sea.

Etymology: The species epithet honours Prof. Dr Alfred
Rieth (Institute for Genetics and Crop Plant Research Gate-
rsleben) for his detailed observations of Chlorokybus.

Comment: The strain NIES-160 represents another isolate
of this species and the SSU-ITS sequence and NCBI Bio-
Sample accession are available under MW696195 and
SAMN18221337 (RNA-Seq), respectively.

Chlorokybus cerffii sp. nov.
Description: Cell size 13.1–16.8 µm length × 9.7–11.5 µm

wide. Other features are identical to the class description.
SSU-ITS sequence (MW696191) and NCBI BioSample acces-
sion SAMN07525888 (RNA-Seq), ITS-2 Barcode: BC-5 in
electronic supplementary material, figure S6.

Diagnosis: Differs from other species of Chlorokybus by
SSU-ITS and transcriptome sequence.

Holotype (designatedhere): Strain SAG34.98 cryopreserved
inmetabolically inactive state at the Culture Collection of Algae
(SAG),Georg-August-UniversityGöttingen,Germany(figure1f
and electronic supplementary material, figure S3s–v).

Type locality: Central America, Costa Rica, Province
Heredia, Barreal coffee plantation, soil.

Etymology: The species epithet honours Prof. Dr Rüdiger
Cerff (Braunschweig University of Technology, Germany) for
his contributions on endosymbiosis research and plant
evolutionary biology.
5. Material and methods
(a) Culturing conditions
Details about isolate origins are available in electronic sup-
plementary material, table S2. Four isolates (NIES-160, SAG
2611, ACOI 1086, SAG 2609) were cultivated on 3N-BBM+V
medium (medium 26a in Schlösser [34]) at 18°C, with 20 µmol
photons m−2 s−1 provided by daylight fluorescent tubes (TL-D
18 W 640, Osram, Munich, Germany), and light : dark cycle of
16 : 8 h. Data for the strain SAG 34.98 were obtained from de
Vries et al. [8], cultured in ES (medium 1 in Schlösser [35]) at
20°C with 50 µmol of photons m−2 s−1 from LED light source
and light : dark cycle of 12 : 12 h. Three-week-old cultures were
used for morphological identification, comparing them to the
original species descriptions. Light microscopy used an Olympus
BX-60 microscope (Olympus, Tokyo, Japan), a ProgRes C14plus
camera, and the ProgRes CapturePro imaging system (v2.9.0.1)
(Jenoptik, Jena, Germany).
(b) rDNA phylogeny
DNA was extracted with the DNeasy Plant Mini kit (Qiagen,
Hilden, Germany) following the manufacturer’s instructions.
The SSU and ITS were amplified using the Taq PCR MasterMix
Kit (Qiagen) with primers EAF3 and ITS055R [36]. PCR reactions
had initial denaturation at 95°C for 5 min followed by 30 cycles of
1 min at 95°C, 2 min at 55°C and 3 min at 68°C, and a final step at
68°C for 10 min. PCR products were purified and sequenced as in
Darienko et al. [37]. A multiple sequence alignment of SSU was
performed according to the predicted secondary structures (elec-
tronic supplementary material, figure S6). ITS-1 and ITS-2 were
folded according to Darienko et al. [38]. SSU/ITS sequences
were concatenated into a dataset containing 11 OTUs (2,424 bp).
We used PAUP 4.0a build 169 [39] to select the best-fit evolution-
ary model (GTR + I) according to the Akaike information criterion
(AICc). Neighbour-joining, maximum parsimony, maximum like-
lihood and Bayesian inference were conducted following
Darienko et al. [34], using PAUP v4.0a build 169 [39], RAxML
v8.2.12 [40], MrBayes v3.2.7a using the doublet approach [41]
and PHASE package v2.0 [42].
(c) Metabarcoding
Environmental eukaryotic SSU amplicon sequences were obtained
from previous studies [22,43–45] (electronic supplementary
material, table S1). Short-read data were cleaned and denoized
into Amplicon Sequence Variants (ASV) using DADA2 [46]. SSU
of the C. mekonianii genome (RHPI01002076.1:1257-3060) was
used to search the datasets with BLASTN v2.11.0+ [47] using a
95% sequence similarity threshold. Primers from the original
studies were tested in silico with the TestPrime function in SILVA
[48] to discard biases against Chlorokybus. The identified Chloroky-
bus ASV was aligned to other Chlorokybus rDNA using MAFFT
v7.304b [49] (default settings) and a phylogeny was inferred
with IQ-TREE v1.6.12 [50] using the BIC-selected model and
1000 non-parametric bootstrapping pseudoreplicates.
(d) RNAseq and transcriptome assembly
Algae were scraped off the agar and transferred into 1 ml Trizol
(Thermo Fisher, Carlsbad, CA, USA), ground using a Tenbroek
tissue homogenizer and RNA isolated according the manufac-
turer’s instructions. RNA samples were treated with DNAse I
(Thermo Fisher, Waltham, MA, USA) and quality and quantity
assessed with a formamide agarose gel and Nanodrop (Thermo
Fisher), respectively. RNA was shipped on dry ice to Genome
Québec (Montreal, Canada). After Bioanalyzer (Agilent Technol-
ogies Inc., Santa Clara, CA, USA) quality check, libraries were
built using the NEBNext mRNA stranded library preparation
kit (New England Biolabs, Beverly, MA, USA). Libraries were
checked with Bioanalyzer and sequenced using NovaSeq 6000
(Illumina) with NEBNext dual adapters: 5’-AGATCGGAAGAGC
ACACGTCTGAACTCCAGTCAC-30 for read 1 and 5’-AGATCGG
AAGAGCGTCGTGTAGGGAAAGAGTGT-30 for read 2. FastQC
(www.bioinformatics.babraham.ac.uk/projects/) reports are
available in Dryad.

We downloaded RNAseq data for Chlorokybus atmophyticus
SAG 34.98 [8] (SRX3107749-SRX3107751), Chlorokybus melkonianii
[2] (ERR364371), Chaetosphaeridium globosum [2] (ERR364369),
and Coleochaete orbicularis [51] (SRR1594679). For all samples, tran-
scriptomes were assembled de novo using Trinity v2.11.0 [52] after
adapter trimming (—trimmomatic). SuperTranscripts [53] were
inferred by collapsing splicing isoforms, as implemented in
Trinity. Transcriptome completeness was assessed with BUSCO
v4.1.0 [54] with the ‘chlorophyta_odb100 reference set. All new
assemblies recovered greater than 75% complete BUSCOs (elec-
tronic supplementary material, table S4). Protein-coding genes
were identified with Transdecoder v5.5.0 using Chlorokybus’s

http://www.bioinformatics.babraham.ac.uk/projects/
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annotated proteins (CCAC 0220) as reference in BLASTP searches
and retaining only the longest open reading frame (ORF) per tran-
script (—single_best_only).A total of 19 147 transcripts forC. riethii
UTEX 2591 (published as C. atmophyticus [55]) were downloaded
from GenBank, assembled from GS FLX Titanium 454.

(e) Phylotranscriptomic dataset construction
Likely contaminants were removed by sequence similarity
searches against a database containing proteins from (i) Chloroky-
bus melkonianii (CCAC 0220) [13] and possible contaminants
including (ii) RefSeq representative bacterial genomes (11 318
genomes) and (iii) fungi (2397), (iv) all available viruses (125),
(downloaded from GenBank on 17/08/2020), (v) Chlamydomonas
reinhardtii, and (vi) a Vermamoeba vermiformis transcriptome [56].
Vermamoeba and Chlamydomonas were identified as likely con-
taminants in some cultures. MMseqs2 [57] was used with an
iterative search with increasing sensitivities, real sequence iden-
tity, and keeping 10 hits maximum (--start-sens 1 --sens-steps
3 -s 7 --alignment-mode 3 --max-seqs 10). As strict decontamina-
tion criterion, only sequences whose best hit corresponded to a
predicted Chlorokybus nuclear proteins were kept for phyloge-
netic analyses (4817–19 566 proteins per species; 8690–10 917
for new transcriptomes).

( f ) Phylotranscriptomic phylogeny
A representation of chlorophytes and streptophytes were used as
outgroups (electronic supplementary material, table S3). Orthofin-
der v2.4.0 [58] was used to infer orthogroups using a species
tree following Leebens-Mack et al. [2] with unresolved relation-
ships within Chlorokybus. We selected phylogenetic hierarchical
orthogroups at the tree root [58]. In total, 2386 orthogroups con-
tained data for all major lineages (in practice, at least one
sequence each for Chlorokybus, Mesostigma or Spirotaenia minuta,
Coleochaete or Chaetosphaeridium, Chara or Klebsormidium, Zygne-
matophyceae, chlorophytes, bryophytes, and vascular plants).
Homologous sets were aligned with MAFFT v7.304b [49] (default
settings) and subjected to maximum-likelihood inference with
IQ-TREE v1.6.12 [50] using fast searches, BIC-selected best-fit
nuclear models, and SH-like aLRT branch support (-m TEST
-msub nuclear -fast -alrt 1000). Phylopyrpruner v1.2.3 (Thalen
et al., https://pypi.org/project/phylopypruner/) was used to
prune orthologue sets (--prune MI --mask pdist --trim-lb 5
--trim-freq-paralogues 4 --trim-divergent 1.25 --min-pdist 1 ×
10−8 --min-support 0.75 --min-taxa 10 --min-gene-occupancy 0.1
--min-otu-occupancy 0.1), resulting in 946 orthologue sets. After
applying the above taxonomic filter, we selected 529 final loci,
which were masked with PREQUAL v1.02 [59], aligned with
MAFFT ginsi v7.304b with a variable scoring matrix (‘--allowshift
--unalignlevel 0.80) [60], and columns greater than 75% gaps
removedwith ClipKIT v0.1 [61]. Trimmed alignments were conca-
tenated into a matrix containing 32 taxa and 529 loci (17%missing
sequences) and 178 397 aligned amino acid positions. Maximum-
likelihood trees were inferred using IQ-TREE under BIC-selected
homogeneous (LG + F + I + Γ4) and mixture (LG + F + I + Γ4 +
C60) models and branch support assessed with 1000 pseudorepli-
cates of UFBoot2 [62] and SH-like aLRT [63]. ASTRAL v5.7.5 [64]
was run on gene trees inferred by IQ-TREE with BIC-selected
models (branches with less than 10% bootstrap were collapsed).
P-uncorrected distances were calculated with MEGAX v10.2.4
[65] on the phylotranscriptomic dataset, whereas patristic
distances were obtained from the LG + F + I + Γ4 + C60 tree.

(g) Relaxed molecular clock
Bayesian molecular dating was performed with MCMCTree [66]
within the PAML package v4.9 h [67]. We used the phylotran-
scriptomic tree (figure 3) and eight fossil calibrations with
uniform, t-cauchy and skew-t prior distributions, following para-
metrizations in Morris et al. [3] (their electronic ssupplementary
material, table S8). We assumed relaxed uncorrelated lognormal
molecular clocks (clock = 2) and birth–death tree priors. Analyses
used approximate-likelihood calculations [68] on the phylotran-
scriptomic dataset (single partition) under the LG + Γ model.
A diffuse gamma Dirichlet prior was used for the prior on mean
rates as 0.1407 replacements site−1 108 Myr−1 (‘rgene_gamma’;
α = 2, β = 14.21). The rate drift parameter reflected considerable
rate heterogeneity across lineages (‘sigma2_gamma’; α = 2, β = 2).
A 100 Ma time unit was assumed. Two independent MCMC
chains were run for each analysis, consisting of 22 million gener-
ations and the first 2 000 000 were excluded as burnin.
Convergence was checked using Tracer v1.7.1 [69]; all parameters
reached effective sample size (ESS) > 1000.

(h) Plastid phylogeny
A plastid dataset of 75 proteins [70] was extended by adding the
22 missing species to mimic the phylotranscriptomic nuclear tree
(different species of the same genus were sometimes used). Hom-
ologous proteins were identified by BLASTP (e-value < 1 × 106)
from available plastomes or transcriptomes. Genes were aligned
with default MAFFT options and trees inferred with IQ-TREE
under BIC-selected models and 1000 SH-aLRT. Alignments and
gene trees were visualized with FigTree (https://github.com/
rambaut/figtree) and SeaView [71] to remove paralogues and
contaminants. Cleaned gene sequences were masked with PREQ-
UAL, aligned with MAFFT (--allowshift --unalignlevel 0.8), and
positions greater than 33% gaps removed with ClipKIT so that
final alignments had lengths similar to Ruhfel et al. [70]. After
concatenation, the plastid dataset consisted of 28 taxa and
16 085 aligned amino acid positions (32% missing data). Maxi-
mum-likelihood trees were inferred using IQ-TREE under BIC-
selected homogeneous (cpREV + F + I + Γ4) and mixture
(cpREV + F + I + Γ4 + C60) models and branch support assessed
with 1000 UFBoot2 [62] and SH-like aLRT [63] pseudoreplicates.

(i) Quantification of gene expression
Filtered and trimmed reads were mapped against the Chlorokybus
genome (CCAC 0220) [13] using STAR v2.7.3a [25] (--runMode
alignReads --outFilterMultimapNmax 20 --alignSJoverhangMin
8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999
--outFilterMismatchNoverLmax 0.05 --alignIntronMin 20
--alignIntronMax 1 000 000 --alignMatesGapMax 1 000 000
--twopassMode Basic --sjdbScore 1 --quantMode Transcriptome-
SAM --quantTranscriptomeBan IndelSoftclipSingleend). Gene
expression was quantified with RSEM [26] (default parameters),
followed by cross-sample normalization (TMM) using edgeR as
implemented in Trinity (abundance_estimates_to_matrix.pl).
Heatmaps were plotted ComplexHeatmap v2.6.2 in R v4.0.3 [72].

Data accessibility. RNAseq data are available on NCBI (Bioproject
PRJNA708203). RNAseq FastQC reports, transcriptome assemblies,
preliminary orthogroups, final concatenated alignments, phylogenetic
trees, and molecular clock results are available from the Dryad Digital
Repository: https://doi.org/10.5061/dryad.0gb5mkm25 [73].
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