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Introduction

Medical imaging modalities such as magnetic resonance 
imaging (MRI),  computed tomography (CT), and 
ultrasound (US) have been used to aid clinical procedures 
and diagnoses for decades. In the field of radiation therapy 
(RT), image guidance using cone-beam CT (CBCT) (1), 
MRI (2-4), or US (5) facilitates accurate localization of  
targets during treatment and reduces the irradiation of 
normal tissues (6,7). These features realize better target 

dose delivery and better management of side effects, which 
has increased the popularity of image-guided radiotherapy 
(IGRT). Many clinical applications require medical 
images to be acquired at different time points, by different 
scanners, and from different patients. After obtaining 
images across these different modalities, image registration 
is used to create a fusion image or match medical images to 
the corresponding method and patient. 

In a typical image registration process, a moving image 
(an image that needs to be moved, also called a source 
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image) and a fixed image (an image that is used as the 
template, also called a target image) are first received by 
an algorithm. The moving image is then moved to match 
the fixed image, based on the parameters determined by 
the algorithm. Medical image registration has been studied 
for decades and remains an actively developing field (8). 
Medical image registration can be categorized based on 
different components of the process, as mono-model and 
multi-model registration (based on the type of input), as 
intra-patient and inter-patient registration (based on the 
objects to be registered), as rigid, affine, and deformable 
image registration (DIR) (based on the type of deformation), 
as three-dimensional (3D)-3D, 3D-two dimensional (2D), 
and 2D-2D registration (based on spatial dimensions), or as 
brain registration, lung registration, prostate registration, 
etc. [based on the region of interest (ROI)]. 

As image registration has become more popular and 
easier to use, it has been applied to various scenarios in 
IGRT, including target motion tracking (9-11), organ 
segmentation (12), and adaptive radiotherapy (13,14). 
However, the demand for more accurate and efficient 
registration has not abated and remains a priority for clinical 
applications. In conventional registration algorithms, 
deformation fields are obtained by iteratively optimizing 
objective functions. This method usually takes a long time 
and limits the applications of image registration in clinical 
settings. Deep learning (DL)-based models can advance 
the iterative optimization process to the training stage and 
yield the desired results with the implementation of a single 
forward computation. Therefore, DL-based models hold 
the promise of improving clinical tasks and meeting their 
requirements of high efficiency. 

The applications of DL to medical images have been 
extensively studied and the field has witnessed significant 
levels of research. There are many systematic reviews on 
DL-based medical image analysis (15-24), but few have 
focused on the role of DL in 3D medical image registration. 
The rapid development of DL models and hardware has 
made DL-based registration more accurate and allowed 
the input shift from 2D slices to 3D volumes. This review 
aimed to summarize the progress made in DL-based 
medical image registration over the past 5 years and identify 
existing challenges and future trends. 

We present a brief background of DL in Section 
“DL”. Research studies on DL-based 3D medical image 
registration published in the last 5 years (2017–2021) are 
surveyed and the statistical analyses are described in Section 
“Statistical analysis”. The details of studies from the three 

categories, which comprise studies grouped in terms of 
their supervision methods, i.e., deep iterative registration, 
supervised registration, and unsupervised registration, are 
discussed in Sections “Deep iterative registration models”, 
“Supervised registration models”, and “Unsupervised 
registration models”, respectively. Finally, existing 
challenges and future research opportunities are discussed 
in Section “Discussion”. 

DL

DL is an important part of machine learning and DL 
models are characterized by their large number of layers 
and parameters. Currently, typical DL models contain 
more than 100 layers and millions of parameters (25), 
enabling them to learn complex textures and make 
accurate predictions. DL models generally have sequential 
architectures (26), the first several layers of which usually 
learn simple features, such as edges. Subsequent layers 
combine these extracted features for advanced object 
detection. This property makes DL a suitable tool for 
image-related tasks, such as computer-aided diagnosis 
(27,28), image enhancement (29), image synthesis (30,31), 
and functional information derivation (32,33).

Convolutional neural network (CNNs)

DL methods have been widely used in computer vision, 
with CNNs being one of the most successful types of 
models. Unlike ANNs, which process the whole image at 
once, CNNs reduce the number of model parameters and 
the computational cost by utilizing shift-invariant filters 
across multiple layers. The “encoder-decoder” architecture 
is a popular choice for CNNs used for medical imaging 
applications, as the outputs, such as a 2D slice, a 3D 
volume, or a dense displacement-vector field (DVF), are of 
higher dimensions. U-Net is a successful example of this 
architecture and has been used in various studies (34,35). 
For registration tasks, CNNs usually receive the moving 
and fixed images as inputs and produce transformation 
parameters and moved images as outputs. 

Generative adversarial network (GAN)

GANs form an important category of DL models (36). 
They usually consist of two competing networks, namely a 
generator and a discriminator. During training, the generator 
is trained to generate artificial data to fool the discriminator, 



4897Quantitative Imaging in Medicine and Surgery, Vol 11, No 12 December 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(12):4895-4916 | https://dx.doi.org/10.21037/qims-21-175

whereas the discriminator is trained to distinguish real 
data from artificial data. GAN-based models have been 
successfully used in medical imaging applications, such as 
image synthesis and translation (30), super-resolution (37), 
and registration (38,39). For medical image registration, 
GAN-based models are usually used to provide additional 
regularization or to translate multi-modality registration to 
mono-modality registration via image synthesis.

DL methods in 3D medical image registration

Based on the type of DL methods and the training regime, 
DL-based 3D medical image registration can be classified 
into three categories: deep iterative registration, supervised 
registration, and unsupervised registration. An overview 
of these methods is shown in Figure 1. In deep iterative 
registration, DL models are integrated into conventional 
iterative registration methods. Here, the intensity-based 
similarity metrics are usually replaced by deep similarity 
metrics. Based on which DL methods are applied, deep 
iterative registration can be further classified as deep 
similarity-based registration or reinforcement learning (RL)-
based registration. In supervised registration, DL models 
are trained with either labeled reference data or different 
types of reference data. Based on which type of reference 
data are used, these models can be further classified as fully 
supervised registration, weakly supervised registration, or 
dual supervised registration. In unsupervised registration, the 
DL models can be further classified as similarity metric-based 
registration, in which the models are optimized based on the 
similarity losses between warped and fixed images, or GAN-
based registration, in which the generator and discriminator 
compete and are optimized in an adversarial manner.

Statistical analysis

To include as many relevant studies as possible, various 
keywords were used in our search. The keywords included 
but were not limited to DL, machine learning, image 
registration, image fusion, motion estimation, and deep 
similarity. The publications were obtained from Google 
Scholar, PubMed, Web of Science, and arXiv. Papers of 
poor methods and validations were excluded, including but 
not limited to insufficient subjects in training or test set 
(n<10) and unclear implementation description. After our 
search, we included 68 studies that were closely related to 
DL-based 3D medical image registration. Figure 2 describes 
the results of the statistical analysis of these studies. 

The studies we selected investigated several types of 
ROIs. As shown in Figure 2A, the brain, lung, and prostate 
are the three most popular ROIs in DL-based registration 
studies and account for 40%, 24%, and 10% of all studies, 
respectively. With respect to image modality, both multi-
modality and mono-modality registration have been studied 
using DL-based registration. As shown in Figure 2B,  
MR-MR and CT-CT registration are the most studied 
modalities. Of the three categories of DL-based methods, 
there are significantly higher numbers of supervised and 
unsupervised registration studies than of deep iterative 
registration studies. The corresponding percentages are 
shown in Figure 2C. 

Although the various DL models can differ in terms of 
architecture and training strategies, they are similar in that 
their performance improves as the size of the training dataset 
increases. Compared to self-collected datasets, training and 
evaluating DL models on multiple public datasets can also 
demonstrate their generalizability and help compare their 

Figure 1 An overview of DL-based 3D medical image registration methods. DL, deep learning; 3D, three-dimensional; GAN, generative 
adversarial network.
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accuracy on fair benchmarks. In addition, public datasets can 
also make the studies easier to be reproduced and adapted 
to new scenarios. The public datasets that have been used 
in DL-based registration studies are summarized in Table 1, 
and the datasets utilized by. Brain MR and lung CT images 
constitute the majority of the datasets and datasets with 
annotated images are more frequently used. For example, 
the most used datasets for brain (LONI LPBA40) and 
lung (DIR-Lab) images provide brain MR images with 
segmentation labels and four dimensional (4D)-CT images 
with 300 surrogates, respectively. 

Registration evaluation is another challenge of using 
DL models. The commonly used evaluation metrics can be 
classified into three categories: image-based metrics, label-
based metrics, and deformation-based metrics. Image-
based metrics are often used when no labels are available 
and focus either on absolute values or the distribution of 
voxel intensities. The commonly used metrics are mean 
absolute error (MAE), mean square error (MSE), cross-
correlation (CC), normalized cross-correlation (NCC), 
mutual information (MI), feature similarity index metric 

(FSIM), peak signal-to-noise ratio (PSNR), and structural 
similarity index measure (SSIM). When labels are provided, 
label-based metrics that focus on the differences between 
warped and ground truth labels can be used. For organ 
segmentation masks, Dice coefficient (DSC), average 
symmetric surface distance (ASSD), surface registration 
error (SRE), Hausdorff distance (HD), and mean surface 
distance (MSD) are commonly used. For point-wise 
surrogates, target registration error (TRE) and fiducial 
registration error (FRE) are the most popular metrics. The 
metrics of the first two categories measure the accuracy 
of image matching, whereas deformation-based metrics 
are used to measure the accuracy and plausibility of the 
deformation. For example, the Euclidean distance measures 
the numerical difference between predicted and reference 
deformations, the Jacobian determinant (Jaco. Det.) of 
DVFs is used to quantify the singularity of the deformation 
field and bending energy (BE) is used to measure its 
smoothness. Figure 2D shows the corresponding percentage 
values for each category; it can be seen that label-based 
metrics are most used to evaluate image registration. 

Figure 2 Statistical analysis of selected publications. CBCT, cone-beam computed tomography; CT, computed tomography; MR, magnetic 
resonance; US, ultrasound; ROI, region of interest.
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Deep iterative registration models

Deep similarity-based registration

The past few decades have witnessed the development of 
several conventional iterative registration methods and 
toolboxes, including optical flow (69), demons (70), Elastix (71),  
advanced normalization tools (ANTS) (72), and the 
hierarchical attribute matching mechanism for elastic 
registration (HAMMER) (73). In most cases, a cost function 
is designed to measure the similarity between the warped 
image In in the n-th iteration and the fixed image J. The 
general mathematical formula for the cost function L is:

 ( ) ( ),n nSim I J Reg= +  	 [1]

where Reg(Tn) regularizes the transform Tn in the n-th iteration 
for plausibility. The commonly used similarity metrics, such 
as MAE, MSE, CC, NCC, and MI, are usually intensity-
based (74,75). In general, they perform well when applied to 
mono-modality registration. However, these metrics primarily 
focus on voxel intensity values [except HAMMER (73)]  
and are sensitive to image artefacts. Moreover, they treat 
all components of the image equally and therefore may not 
capture the most effective features. The optimal metrics for 
registration vary across modalities and the choice of metric 
relies on experience, which may introduce human errors. 
CNNs have shown great promise in image recognition 
and segmentation and are therefore more likely to capture 
underlying features. To make full use of the feature extraction 
capability of CNNs, some research groups have replaced the 
intensity-based similarity metrics with CNN-based metrics 
and achieved high registration performance. The general 
workflow of deep similarity-based registration is shown in 
Figure 3. An overview of these studies is described in Table 2. 

Table 1 Public datasets used in deep learning-based three- 
dimensional medical image registration

ROI Dataset Modality

Brain OASIS (40) MRI

LONI LPBA40, IBSR18, CUMC12, 
MGH10 (41)

MRI

MindBoggle101 (42) MRI

IXI† MRI

ABIDE (43) MRI

ADHD (44) MRI

MCIC (45) MRI

PPMI (46) MRI

HABS (47) MRI

Harvard GSP (48) MRI

FreeSurfer Buckner40 (49) MRI

BraTS18 (50) MRI

ANDI (51) MRI

ALBERTs (52) MRI

Simulated Brain(53) MRI

RESECT(54) MRI, US

Knee OAI‡ MRI

Lung POPI(55) CT

DIR-Lab (56-58) CT

VISCERAL (59) CT

SPREAD (60) CT

SPARE (61) CT

Abdomen KITS19 (62) CT

Medical Segmentation Decathlon (63) CT

Pancreas-CT (64) CT

Spine SpineWeb library (65) MRI, CT

Prostate Prostate Fused-MRI-Pathology(66) -

Prostate-3T (67) MRI

PROMISE12 (68) MRI

†, available online at http://brain-development.org/ixi-dataset/; 
‡, available online at https://nda.nih.gov/oai/. ROI, region of 
interest; CT, computed tomography; MRI, magnetic resonance 
imaging.

Figure 3 General workflow for deep similarity-based DL models. 
DL, deep learning.
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Applications
Wu et al. developed stacked autoencoders (SAEs) to learn 
discriminative features from input images and quantify their 
similarities (76). Given that SAEs can learn intrinsic image 
features, conventional algorithms integrated with SAEs 
have consistently shown improved registration accuracy 
across several datasets. Simonovsky et al. modeled the 
registration into a classification task, in which a CNN was 
used to identify whether the input image pairs were well 
aligned (77). Then, they replaced the MI in a conventional 
registration algorithm with the CNN and observed that 
the resulting algorithm gave significantly better T1–T2 
brain MR image registration. Sedghi et al. adopted a similar 
idea and further developed this method for groupwise 
registration (78). Their deep metric performed well on 
difficult registration cases that the traditional MI metric had 
previously failed to manage.

In addition to discrete classification, deep metrics 
can also assign continuous values of physical meanings. 
For example, Haskins et al. used a deep CNN to learn 
a similarity metric for registration between MR and 
transrectal US (TRUS) images (79). The network took the 
MR-TRUS image pairs as inputs and estimated TREs to 
evaluate the registration. The training was supervised using 
the difference between the ground truth and the estimated 
TREs. The CNN outperformed classical MI-based and 
state-of-the-art modality-independent neighborhood 
descriptor (MIND) feature-based registration methods 

with smaller TREs. Czolbe et al. used a pre-trained 
segmentation network to extract image features, and used 
the differences in image features between the moving and 
warped images as the cost function (80). They reported 
higher registration accuracy and faster convergence speeds 
compared to conventional methods. So et al. utilized a 
learning-based metric called Bhattacharyya Distances for 
both rigid and DIR and showed superior performance to 
MI (81). 

Aside from the s imilar i ty  term in Eq.  [1] ,  the 
regularization term can also be optimized via training. For 
example, Niethammer et al. integrated a shallow CNN 
for spatial adaptive regularization (82). Conventional 
transform regularization penalizes the spatial gradient of the 
deformation field for smoothness, which is shift-invariant 
and may over-smoothen regions with sharp changes. 
The integrated CNN received a precalculated DVF with 
corresponding images and outputted a locally smoothed DVF 
that was supervised by positive semidefinite matrices. This 
method improved the structure overlap after registration and 
reduced the number of negative points in the Jaco. Det. of 
the DVFs compared to the precalculated methods. 

Summary
Deep similarity-based methods have shown great potential 
in obtaining image- and purpose-specific metrics. These 
novel metrics are better suited to registration tasks and 
have outperformed conventional intensity-based similarity 

Table 2 Overview of deep iterative registration studies

Study Learning Transform Modality ROI Public dataset for training/validation Evaluation metrics

(76) Metric Deformable MRI-MRI Brain LONI LPBA40 DSC

(77) Metric Deformable MRI-MRI Brain IXI, ALBERTs DSC

(78) Metric Deformable MRI-MRI Brain IXI FRE, DSC

(79) Metric Rigid MRI-US Prostate PROMISE12, Prostate-3T TRE

(80) Metric Deformable MRI-MRI Brain OASIS, ABIDE DSC

(81) Metric Rigid & Deformable MRI-MRI Brain Simulated brain DSC

(82) Metric Deformable MRI-MRI Brain LPBA40, CUMC12, MGH10, IBSR18 DSC, Jaco. Det.

(83) RL agent Rigid CT-CBCT Spine and heart N/A TRE

(84) RL agent Deformable CT-CT Thorax, abdomen, and pelvis N/A Euclidean distance

(85) RL agent Deformable MRI-MRI Prostate PROMISE12, Prostate-3T DSC, HD

(86) RL agent Affine MR-CT Brain N/A TRE

CBCT, cone-beam computed tomography; CT, computed tomography; DSC, Dice coefficient; FRE, fiducial registration error; HD,  
Hausdorff distance; MRI, magnetic resonance imaging; RL, reinforcement learning; ROI, region of interest; TRE, target registration error.
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metrics. However, the CNNs used for obtaining deep 
similarity metrics need to be trained separately and the 
ground truth data used for training is difficult to obtain. 
Although the registration process developed by Czolbe  
et al. did not require ground truth labels, their segmentation 
network nevertheless required labeled images for  
training (80). Another limitation is that deep similarity 
metrics are difficult to interpret and validate, and errors 
can accumulate due to insufficient training. Finally, the 
implementation of deep similarity-based registration is 
most severely limited by the iterative process that is used 
by conventional registration methods. As more studies 
demonstrate the feasibility of one-shot registration using 
DL, deep similarity methods may be less attractive in the 
future. Compared to previous years (15,16), the number 
of studies in this category has decreased and this trend is 
expected to continue. 

RL-based registration 

RL is a subfield of machine learning. In an RL framework, 
an intelligent agent performs a sequence of actions in an 
environment designed to maximize rewards via successive 
trials and errors. RL has been widely studied in several 
decision-making tasks, such as robotic control, stock 
market trading, and recommendation systems. Recently, the 
combination of RL with DL, known as deep reinforcement 
learning (DRL), has been applied to image registration. 
As shown in Figure 4, RL-based registration is an iterative 
observer-action process that runs in a reward-driven system. 
The target and moving-image pair are constructed in a 
specified environment, and an artificial agent is trained by 
interacting with this environment to perform sequential 

alignments (i.e., registration parameters).  

Applications
Liao et al. were the first to use an RL framework to perform 
3D rigid-body image registration (83). In this approach, a 
neural network-based agent is designed to predict sequential 
movements (i.e., ±1 mm for translations or ±1º for rotations) 
for image alignment. The AI agent is trained in a greedy 
deep-supervised learning (DSL) fashion, which precludes 
the exploration history of the agent to improve training 
efficiency. In a similar design, Ma et al. utilized a deep 
Q-learning framework to extract image contextual features 
for rigid registration (84). In contrast to the above-mentioned 
rigid registration approach, Krebs et al. applied RL to 
deformable registration, and used a statistical deformation 
model to restrict the dimensionality of the action space (85).  
Recently, Hu et al. applied asynchronous RL to 2D affine 
registration (86). They incorporated a convolutional long-
short-term-memory (conLSTM) module into the RL 
framework to extract spatiotemporal image features. 

Summary
Recent studies have demonstrated that RL has immense 
potential in image registration applications. For certain tasks, 
RL-based methods can achieve similar or higher registration 
accuracies compared to other registration methods. A 
major challenge faced by RL-based registration is the long 
training time that arises due to difficulties in convergence. 
For example, Ma et al. spent 4 days in training (84)  
and Hu et al. spent approximately 13 hours, even with 
accelerated training (86). Very few studies have used RL for 
image registration. Improvements in computational power 
are expected to accelerate the development of RL-based 

Figure 4 General workflow of reinforcement learning-based registration.
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approaches for image registration. 

Supervised registration models

Supervised training for DL models is a straightforward 
idea upon which many registration models are based. Based 
on the type of supervision used during model training, 
these models can be divided into three sub-categories: 
fully supervised, weakly supervised, and dual supervised 
registration. In fully supervised registration, ground truth 
DVFs from conventional registration algorithms are used 
to supervise the training. Here, the loss function is usually 
the difference between the ground truth and the predicted 
DVFs, as shown in Figure 5A. In the weakly supervised 
registration, certain indirect reference labels are used for 
training instead of reference DVFs, which are the most 
commonly anatomical contours, as shown in Figure 5B. 
In dual supervised registration, more than two kinds of 
reference data are used for training, typically consisting of 
a combination of image similarity, reference DVFs, and 
anatomical structure contours. An overview of supervised 
registration models was shown in Table 3.

Applications

Fully supervised registration
A few of the studies we selected predicted the motions at 
patch centers for convenience and obtained dense DVFs 
via interpolation. For example, Cao et al. used a CNN 
model with three neurons in the output layer, with each 
neuron representing the motion amplitude along the x, y 
and z directions, respectively, at the center of a small patch 
(87,109). They achieved accuracies that were comparable 
to conventional algorithms. Teng et al. built a patch-based 
CNN to perform inter-phase registration of lung 4D-CT 
and 4D-CBCT (88). The inputs were moving and target 

patch pairs and the deformable vectors in the centers of the 
moving patches were predicted. Three evaluation metrics, 
CC, MSE, and SSIM, were used to evaluate registration 
performance in the diaphragm region. Other studies have 
utilized CNNs to directly predict dense DVFs. For example, 
Yang et al. used a U-Net-like CNN model to learn DVFs 
of the same resolution as that of input brain MR images, 
and achieved high registration accuracy across multiple  
datasets (89). Rohé et al. used a similar network architecture 
for cardiac MR image registration, and obtained comparable 
results with conventional methods in terms of contour 
overlap (90). Wang et al. introduced a framework to tune the 
regularization parameter for smoothness of diffeomorphic 
transformations in brain MR images (91). They built 
a CNN predictive model to learn the regularization 
parameters from pairwise image registration. Their network 
predicted appropriate regularization parameters in a time-
efficient and memory-saving manner. 

To overcome the shortage of training data, some studies 
on supervised registration used artificial DVFs to supervise 
DL model training. Artificially created DVFs would alleviate 
the cost of collecting densely labeled data and supervise the 
training in voxel level. Sokooti et al. used a fully supervised 
DIR method for registering lung CT images, in which 
the reference DVFs were artificially created by combining 
different spatial frequencies to mimic both large and 
small motions (92,93). This method achieved a reasonable 
registration accuracy across multiple datasets. There are also 
other methods by which artificial DVFs can be generated. 
For example, Eppenhof et al. sampled random numbers from 
a specified range in a coarse-to-fine grid to generate artificial 
motions (94,95), and Guo et al. used an error-scaling method 
to generate a training dataset with a target distribution (96). 
The registration accuracy of all of these methods was either 
comparable to or better than that of conventional algorithms, 
in terms of TRE and the Dice score. 

Figure 5 General workflow of (A) fully supervised registration and (B) weakly supervised registration. CNN, convolutional neural network; 
DVF, displacement vector field.
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Table 3 Overview of supervised registration studies

Study Supervision Transform Modality ROI Public dataset for training/validation Evaluation metrics

(39) Real DVF Deformable MRI-CBCT Head & Neck N/A DSC, MSD, HD

(87) Real DVF Deformable MRI-MRI Brain LONI LPBA40, ADNI DSC, ASSD

(88) Real DVF Deformable 4D-CT/CBCT Lung N/A CC, MSE, SSIM

(89) Real DVF Deformable MRI-MRI Brain LPBA40, IBSR18, MGH10,  
CUMC12, OASIS

DSC

(90) Real DVF Deformable MRI-MRI Heart N/A DSC, HD, Jaco. Det.

(91) Real DVF Deformable MRI-MRI Brain ADNI, OASIS, LPBA40 Regularization parameter 
difference

(92,93) Artificial DVF Deformable CT-CT Lung SPREAD TRE, Jaco. Det.

(94,95) Artificial DVF Deformable CT-CT Lung DIR-Lab, POPI TRE

(96) Artificial DVF Deformable MRI-TRUS Prostate N/A SRE

(97) Real DVF Deformable MRI-TRUS Prostate N/A DSC, MSD, HD

(98) Contours Deformable MRI-MRI Brain N/A DSC, BE

(99) Contours Deformable MRI-MRI Brain N/A MI, DSC

(100) Contours Deformable MRI-MRI Brain, Knee MindBoogle101, OAI DSC

(101) Contours Affine &  
Deformable

MRI-MRI Brain Mindboggle101, LPBA40, IXI DSC, HD, ASSD

(102) Contours Deformable CT-CT Abdomen KITS19, Medical Segmentation  
Decathlon, Pancreas-CT

DSC

(103) Contours Deformable CT-CT Lung DIR-Lab DSC

(104) Dual Deformable MRI-MRI Brain LONI LPBA40 DSC

(105) Dual Deformable MRI-MRI Brain LONI LPBA40, IXI DSC, HD

(106) Dual Deformable CT-CT Abdomen VISCERAL DSC

(107) Real DVF Deformable CT-CT Lung N/A Euclidean distance

(108) Contours Deformable MRI-MRI Prostate N/A DSC, TRE

ASSD, average symmetric surface distance; CBCT, cone-beam computed tomography; CC, cross-correlation; CT, computed tomography;  
DSC, Dice coefficient; DVF, displacement vector field; FRE, fiducial registration error; HD, Hausdorff distance; Jaco. Det, Jacobian  
determinant; MI, mutual information; MRI, magnetic resonance imaging; MSD, mean surface distance; MSE, mean square error; ROI,  
region of interest; RL, reinforcement learning; SRE, surface registration error; SSIM, structural similarity index measure; TRE, target  
registration error; TRUS, transrectal ultrasound.

In addition to accuracy, reference deformations can 
also provide biomechanical information and increase the 
feasibility of DL models. For example, Fu et al. designed 
a registration framework for MR-TRUS prostate image 
registration (97), in which the ROIs were first segmented 
and then volumetric point clouds were generated from 
the segmentation using tetrahedron meshing. Reference 
deformations were obtained from these point clouds via 
finite-element modeling with biomechanical constraints. 
The registration framework demonstrated a promising 

registration performance when evaluated using DSC, MSD, 
HD, and TRE. To demonstrate its generalizability, Fu  
et al. further applied this registration framework to register 
multi-parametric MR images with CBCT (39). This 
method performed better in terms of TRE compared to 
traditional intensity-based rigid registration.

Weakly supervised registration
The idea of including segmentation in registration training 
has been adopted by several researchers for brain MR-MR 
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registration. Hu et al. used a deformable registration method 
that used global and local label-driven learning with CNN, 
and obtained high-accuracy intra-subject and inter-subject 
registration of brain MR images (98). Li et al. and Estienne 
et al. developed hybrid CNNs that achieved both image 
registration and segmentation within a single framework 
(99,110). The segmentation similarity aided the registration 
process and improved the efficiency and the accuracy of 
registration. Xu et al. adopted a different approach (100), 
in which they introduced the existing segmentation as an 
input to the network. Balakrishnan et al. mainly focused 
on unsupervised registration, but also provided an option 
to perform weak supervision using contours (111). 
All the above-described networks achieved promising 
registration accuracy across various datasets. Moreover, 
aside from purely deformable registration, Zhu et al.  
used a registration scheme that combined both affine and 
deformable MR-MR brain registration methods (101). The 
affine network used global similarity as the loss function, 
whereas the deformable network used local similarity. In 
addition, overall anatomical similarity was used to supervise 
the training of the registration network. This method 
outperformed state-of-art methods when evaluated using 
different metrics. 

Weakly supervised registration has also been successfully 
implemented for CT images. Estienne et al. used a 
registration method that applied spatial gradients and noisy 
segmentation labels to abdominal CT-CT registration (102).  
They developed a symmetrical formulation that predicted 
transformations from source to target and from target to 
source. They also integrated various publicly available 
datasets into the training process. Hering et al. used a 
multilevel variational image-registration network to 
perform large-scale CT-CT lung registration (103). Their 
multi-level approach was able to achieve significantly better 
registration results than conventional methods.

Dual supervised registration
Although reference DVFs facilitate efficient supervision, 
they are not foolproof. DL models will never surpass 
conventional methods if they are trained only with reference 
DVFs. To compensate for imperfect DVFs, Fan et al. 
designed a fully convolutional network with dual guidance to 
register brain MR images (104). The network was supervised 
using both the Euclidean distance between predicted and 
reference DVFs and the MSE between the warped and fixed 
image. Unlike classical U-Net models, their model was 
equipped with gap filling and hierarchical loss capabilities 

to improve performance. They also implemented multi-
source strategies to augment the training data. Compared 
to state-of-the-art methods, their method showed 
promising registration accuracy and efficiency on a variety 
of datasets. Ahmad et al. demonstrated a two-step process 
to register brain MR images (105). In their method, before 
implementing DL training in a manner similar to that used 
by Fan et al. (104), the input images were represented using 
a graph and clustered through iterative graph coarsening. 
This deformation initialization enabled groupwise 
registration to converge significantly faster and with a 
competitive level of accuracy compared to conventional 
methods, thereby facilitating large-scale image studies. Ha 
et al. developed a concept for large-scale image deformation 
of abdominal CTs using supervised learning (106).  
The network architecture was designed to predict discrete 
heatmaps for the relative displacement between two scans 
using graph and deformable-field convolutions. The MSE 
of DVFs and the smoothness of transformation were used 
to estimate the sparse displacement between two scans. This 
method showed a clear improvement in accuracy compared 
to state-of-the-art DL approaches for abdominal CTs.

Summary

The fully supervised registration method has been 
successfully used on various ROIs. The reference 
deformations from well-developed conventional registration 
algorithms have allowed certain challenging registrations 
to be achieved, including multi-modality and large motion 
registration, with performance efficiencies comparable to 
those of conventional methods. Reference DVFs play an 
important role in fully supervised registration, and special 
constraints can be learned using specifically prepared 
training samples, such as biomechanical constraints. 
Despite the presence of these advantages, the shortage 
of training data severely limits the applications of fully 
supervised registration. This problem can be addressed 
using artificial DVFs and data augmentation strategies. 
These two methods can track the exact motions between 
moving and fixed images and eliminate the uncertainties 
introduced by imperfect reference deformations. This is 
particularly applicable to multi-modality registration, for 
which reference deformations are less likely to be accurate. 

However, both these strategies may fail to reflect true 
physiological motions. Therefore, concerted efforts are 
required to generate more realistic training samples. 
Weakly supervised registration is another important sub-
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category. Unlike reference DVFs, which are difficult to 
obtain and can be potentially imperfect, organ contours are 
more available and reliable. This makes weakly supervised 
training easier to conduct. The supervision provided by 
contours could also solve difficult registration problems, 
such as noisy labels and large movements (102,103). Dual 
supervision combines the advantages of the above-described 
supervision methods and, as expected, outperforms both 
methods. However, the sample preparation for dual 
supervision is more laborious. 

In summary, supervised registration has been successfully 
implemented and is particularly suitable for scenarios in 
which non-differentiable biomechanical constraints are 
considered. In light of its promise, we expect that supervised 
registration will be developed further in the future. 

Unsupervised registration models

Although many methods (including data augmentation and 
weak supervision) have used to address the data shortage 
problem of supervised registration, the preparation of 
training samples remains a time-consuming process. 
Thus, it is more convenient to implement unsupervised 
registration, wherein the input only consists of moving 
and fixed image pairs from which the DL model learns 
the deformation. An overview of this category is shown in 
Table 4. This category nevertheless requires a loss function 
in training that is very similar to the loss function used in 
conventional iterative registration. As shown in Eq. [1], 
the loss function usually comprises an image similarity 
term and a DVF regularization term. Specifically, due to 
the nature of intrinsic convolution, a few similarity metrics 
such as localized NCC (LNCC) are modified to focus on 
small patches. Additionally, special loss terms can be added 
to perform adjustments, such as cycle-consistency loss to 
reduce singularity and identity loss to avoid over-fitting. 
The general workflow of similarity-based unsupervised 
registration is shown in Figure 6A. GAN-based unsupervised 
registration is a special sub-category of this method. Here, 
instead of intensity-based metrics, a discriminator quantifies 
the similarity between warped and fixed images, as shown in 
Figure 6B. This method is similar to deep similarity-based 
registration, which focuses not only on superficial voxel 
intensities but also on underlying textures and information. 

Similarity metric-based registration

Balakrishnan et al. used an encoder-decoder-like network 

named VoxelMorph to perform DIR of brain MR  
images (111). The network predicted dense DVFs with 
paired brain MR images as inputs. The network training 
was supervised using an intensity-based metric, which 
was either MSE or NCC depending on image modalities 
in implementation. The plausibility of the DVFs was 
regularized using their spatial gradient. Similarly, Estienne 
et al. also developed an encoder-decoder-like network 
named U-ReSNet for brain MR image registration (110). 
Their network was novel in that segmentation was achieved 
by extracting image features using a shared encoder that 
was also used for registration and reconstructing anatomical 
labels using a separate decoder. These segmentation results 
guided training and improved registration accuracy. 

To better regularize DVFs, some researchers modified 
the training strategy to a cycle-consistent way. To achieve 
this, they processed the warped image through the network 
and transformed it back to the moving image (112,113,134). 
This strategy reduced the number of negative values in the 
Jaco. Det. and allowed more plausible DVFs to be obtained. 
Kim et al. further added an identity loss term in which 
identical images were inputs and any deformation was 
penalized (113). 

Registration across multiple stages and the integration of 
affine registration are popular methods by which researchers 
account for large motions. de Vos et al. implemented both 
affine and deformable registration in a multi-resolution 
and multi-level manner (114). They down-sampled source 
images in multiple stages such that both large and small 
motions could be captured. Other studies utilized a similar 
coarse-to-fine strategy for lung images and achieved high 
registration accuracies (38,115,116). Shen et al. and Shao  
et al. also integrated affine registration into their DL models 
and successfully addressed large deformations in prostate 
and knee images (118,119).

In addition to simple intensity-based metrics, pre-trained 
CNNs can be used to extract image features and quantify 
their similarities. Some researchers have used separate 
networks to learn deep metrics for better registration, which 
is a process termed perceptual loss. For example, Duan et al. 
used a spatial weighting-based metric network to learn the 
deep similarity between CT and CBCT, and demonstrated 
a high capability of tolerating CBCT artefacts (120). 

GAN-based registration

Yan et al. applied a GAN-based DL model to MR-
US image registration (121), which for a long time had 
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Table 4 Overview of unsupervised registration studies

Study
Similarity 
loss

Transform
GAN-
based

Modality ROI
Public dataset for  
training/validation

Evaluation metrics

(38) NCC Deformable Yes CT-CT Lung DIR-Lab TRE

(109) NCC Deformable No CT-MRI Prostate N/A DSC, ASSD

(97) CC Deformable No PET-PET Chest N/A MSE

(110) MSE/NCC Affine & Deformable No MRI-MRI Brain OASIS DSC

(111) MSE/LNCC Deformable No MRI-MRI Brain OASIS, ABIDE, ADHD200, MCIC, 
PPMI, HABS, Harvard GSP,  
FreeSurfer Buckner40

DSC

(112) CC Deformable No MRI-MRI Brain MindBoggle101 DSC, Jaco. Det.

(113) CC Deformable No CT-CT Liver N/A TRE, Jaco. Det.

(114) NCC Affine & Deformable No CT-CT Lung DIR-Lab DSC, TRE, HD, 
ASSD, Jaco. Det.

(115) NCC Deformable No CT-CT Lung SPARE TRE

(116,117) N/A Deformable Yes CT-CT Lung N/A NCC, MAE,  
PSNR, TRE

(118) MSE Affine & Deformable No MR-Histology Prostate Prostate Fused-MRI-Pathology DSC, HD, TRE

(119) NCC Affine & Deformable No MRI-MRI Knee N/A DSC

(120) Perceptual Deformable No CT-CBCT Lung N/A SSIM, TRE, DSC, 
ASSD

(121) N/A Affine Yes MR-US Prostate N/A DSC, TRE

(122) NCC Deformable Yes CT-CT Prostate N/A ASSD, HD

(123,124) N/A Deformable Yes MRI-MRI Brain LPBA40, IBSR18, CUMC12, MGH10 DSC, ASSD

MRI-CT Pelvic N/A

(125) LNCC Deformable No MRI-MRI Brain LONI LPBA40, IBSR18, CUMC12, 
MGH10

DSC, HD,  
Jaco. Det. 

(126) RMSE Deformable No CT-CBCT Head & Neck N/A MSE, MI, FSIM

(127) NCC Deformable No MRI-MRI Brain ADNI, LPBA40 DSC

(128) MSE Affine & Deformable No MRI-MRI Lung N/A DSC, TRE

(129) MSE Deformable No MRI-US Brain RESECT TRE

(130) CC Affine & Deformable No CT-CT Liver N/A DSC, Jaco. Det.

MRI-MRI Brain N/A

(131) NCC Deformable No PET-CT Body N/A NCC

(132) SSD Deformable No MRI-MRI Brain IXI, ANDI SSIM, PSNR, SSD

(133) MSE Deformable No CT-CT Lung DIR-Lab TRE

ASSD, average symmetric surface distance; CBCT, cone-beam computed tomography; CC, cross-correlation; CT, computed  
tomography; DSC, Dice coefficient; FRE, fiducial registration error; FSIM, feature similarity index metric; GAN, generative adversarial 
network; HD, Hausdorff distance; Jaco. Det., Jacobian determinant; LNCC, localized normalized cross-correlation; MAE, mean absolute  
error; MI, mutual information; MRI, magnetic resonance imaging; MSD, mean surface distance; MSE, mean square error; NCC,  
normalized cross-correlation; PET, positron emission tomography; PSNR, peak signal to noise ratio; RMSE, root mean square error; ROI, 
region of interest; RL, reinforcement learning; SRE, surface registration error; SSD, symmetric surface distance; SSIM, structural similarity 
index measure; TRE, target registration error; TRUS, transrectal ultrasound; US, ultrasound.
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been regarded as a challenge because of the significant 
differences in image appearance and the large variations in 
image correspondence. They used a generator to predict 
the affine transformation parameters and a discriminator 
to distinguish warped and fixed images. Using this method, 
they obtained significantly higher DSCs and lower TREs 
after registration compared to conventional methods. 
Elmahdy et al. demonstrated the feasibility of using a 
shallow discriminator to perform joint prostate CT DIR 
and segmentation (122). Other researchers cropped the 
images to obtain small patches and integrated dilated 
convolutional layers into generators and discriminators 
to capture motions at multiple scales (38,116). Fan et al. 
further developed the discriminator such that it received a 
pair of images rather than a single image (123). In addition, 
they defined a positive case, i.e., a well-aligned image pair, 
as a fixed image and a combination of moving and fixed 
images to loosen the impractical requirements of perfect 
matching. 

Deformations are rarely evenly distributed along the 
body, and therefore focusing on areas prone to larger 
deformations can improve the registration accuracy. Fu 
et al. and Lei et al. included attention modules in their 
DL models to assign higher weights to regions with large 
motions (38,117). Furthermore, Huang et al. cropped 
images into small patches and classified them into easy-to-
register and hard-to-register patches based on the attention 
amplitude of each patch (125). The hard-to-register patches 
were further refined after classification.  

Summary

Compared to supervised registration, unsupervised 

registration is preferred, due to its convenient training 
process. Consequently, the number of publications on 
unsupervised registration has grown rapidly in recent years 
(15,16). Several groups have achieved accuracies that are 
either comparable to or higher than those of conventional 
algorithms (38,115). However, most studies on unsupervised 
registration focus on mono-modality registration, and thus 
unsupervised multi-modality registration warrants further 
investigation in the future. Unsupervised registration is also 
generally more challenging than supervised registration as 
no reference DVFs or anatomical contours are provided. 
Therefore, in addition to common network training, 
complex pre-processing procedures are required to achieve 
accurate registration. For example, Guo et al. (134) applied 
rigid registration before using the DL model to reduce 
motion amplitudes, whereas other groups applied binary 
masks to focus on ROIs (38,115). Fu et al. segmented and 
increased the intensity of pulmonary vessels by a factor of 
1,000 to enrich the image details (38). Such pre-processing 
improves registration accuracy but complicates the training 
process and can affect model generalizability. In summary, 
unsupervised registration methods have easy training 
protocols and offer promising results. Accordingly, we 
expect research interest in this sub-category to continue 
growing. 

Discussion

Although image registration has been studied for decades, 
the emergence of DL and its application have rejuvenated 
the field. The rapid development of DL models and 
hardware has allowed the applications of DL-based 3D 
medical image registration to range from mono-modality to 

Figure 6 General workflow of (A) similarity metric-based registration and (B) GAN-based registration. CNN, convolutional neural 
network; GAN, generative adversarial network.
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multi-modality registration tasks, from patch-based to whole 
image-based registration tasks, and from label-supervised 
to label-free registration tasks. DL models are capable 
of rapidly completing registration in a single forward 
calculation, within seconds or even milliseconds (111,114). 
In addition to the high computational efficiency, DL models 
also show comparable accuracy with conventional methods. 
For example, on the public benchmark DIR-Lab, Fu  
et al. (38) achieved a TRE of 1.59±1.58 mm, which is very 
close to the lowest TRE of 0.92±0.15 mm in conventional 
methods (135).

In this review, we selected 68 studies on DL-based 3D 
medical image registration that were published over the past 
5 years. The studies were classified into three categories; for 
convenience, studies that belonged to multiple categories 
were listed in only one category. For example, the networks 
used for deep iterative registration require training to learn 
specific similarity metrics, and this training can be either 
supervised or unsupervised. Although both supervised and 
unsupervised methods could technically be combined into 
a third sub-category of dual supervision, for the purposes 
of this review we classified dual supervision as a sub-
category of supervised registration. With respect to the 
registration accuracy of the three categories, several studies 
on deep iterative registration reported better performance 
than conventional methods (76,77), whereas supervised 
or unsupervised registration was either only comparable 
to or slightly better than state-of-the-art conventional 
registration methods. However, both supervised and 
unsupervised registrations omit the iterative process and 
are thus preferred due to their high efficiencies. Duan et al. 
integrated the deep similarity metric into an unsupervised 
DL model and obtained promising results (120). In future, 
the advantages of all of these categories may be combined, 
to better balance requirements for accuracy and efficiency. 

Given the recent increases in GPU memory, several 
groups have adopted whole image-based DL model training, 
whereas others have opted to retain patch-based training. 
Both strategies have unique advantages and disadvantages. 
Whole image-based training has large receptive fields and is 
more capable of capturing large motions. It does not require 
patch processing, thereby reducing computation time (123). 
However, whole image-based DL models usually comprise 
down-sampling layers to save GPU memory, which may 
cause information loss and compromise registration 
accuracy. In addition, whole image-based training usually 
suffers from data shortage. In contrast, patch-based training 
does not face this problem, as sufficient patches can be 

sampled from a single image volume. Moreover, DL models 
that undergo patch-based training can be deeper, and due 
to their smaller input size have fewer down-sampling layers, 
thereby improving local performance. 

A key challenge of patch-based training is patch 
fusion before obtaining the final deformation. An overly 
large stride between patches can cause discontinuous 
deformation, whereas large overlaps between patches can 
significantly increase the computational cost. Some research 
groups have adopted multi-scale registration to combine the 
advantages of whole image-based and patch-based training 
and achieved promising results (115,117). Despite this, 
more rigorous studies are needed to validate this multi-scale 
strategy across different ROIs and image modalities. 

Irrespective of the training strategy, the loss function 
remains the core of DL model training. This is especially 
true for unsupervised registration. Almost all loss functions 
are combinations of intensity-based similarity metrics, deep 
similarity metrics, a deformation smoothness constraint, a 
deformation physical fidelity constraint, error loss between 
predicted and reference deformation, adversarial loss, and 
other auxiliary losses. Intensity-based and deep similarity 
metrics are used to quantify the dissimilarities between 
warped and fixed images. A deformation smoothness 
constraint is used to make predicted DVFs smooth and is 
usually the first- or second-order derivative of the DVF. 
The deformation physical fidelity loss encourages the 
deformation to be physically realistic and comprises cycle-
consistency loss, identity loss, and negative Jaco. Det. loss. 
The error loss between predicted and reference deformation 
is only used for fully supervised registration. The adversarial 
loss is specifically used for GAN-based DL models, and is a 
Boolean value generated by the discriminator that describes 
how similar the input image is to the fixed image. Auxiliary 
losses are used only if organ contours or surrogates are 
provided together with the training data. These losses are 
often represented as the DSC of contours or the TREs of 
pointwise surrogates. 

Conventional registration algorithms have more types 
of losses that can improve registration accuracy. For 
example, on the public benchmark DIR-Lab, Vishnevskiy 
et al. achieved the lowest TRE by including isotropic total 
variation constrain (135). However, those losses are non-
differentiable with simple chain-rule and special optimizers 
are needed, which are impractical for current DL 
libraries. DL-based registration can be further improved if 
differentiable approximations of these advanced losses can 
be developed. 
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Conclusions

DL-based 3D medical image registration has been 
successfully implemented in several studies. In this review, 
recent progress in DL-based 3D medical image registration 
is summarized. The collected studies are classified into 
three categories based on the supervision methods used. 
Our statistical analysis indicates that direct deformation 
prediction has increased in popularity, whereas the use 
of deep iterative registration is gradually decreasing. 
However, deep similarity metrics can be integrated into 
other categories to obtain higher registration accuracies. 
The number of studies on supervised and unsupervised 
registration are approximately equal, and both strategies 
have unique advantages and disadvantages. We expect the 
number of studies in both categories to increase, and new 
methods that combine the advantages of both strategies will 
become an emerging area of research. 
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