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Abstract 

Background:  Liver cancer (Hepatocellular carcinoma; HCC) prevalence is increas‑
ing and with poor clinical outcome expected it means greater understanding of HCC 
aetiology is urgently required. This study explored a deep learning solution to detect 
biologically important features that distinguish prognostic subgroups. A novel architec‑
ture of an Artificial Neural Network (ANN) trained with a customised objective function 
(LRSC) was developed. The ANN should discover new data representations, to detect 
patient subgroups that are biologically homogenous (clustering loss) and similar in sur‑
vival (survival loss) while removing noise from the data (reconstruction loss). The model 
was applied to TCGA-HCC multi-omics data and benchmarked against baseline models 
that only use a reconstruction objective function (BCE, MSE) for learning. With the base‑
line models, the new features are then filtered based on survival information and used 
for clustering patients. Different variants of the customised objective function, incorpo‑
rating only reconstruction and clustering losses (LRC); and reconstruction and survival 
losses (LRS) were also evaluated. Robust features consistently detected were compared 
between models and validated in TCGA and LIRI-JP HCC cohorts.

Results:  The combined loss (LRSC) discovered highly significant prognostic subgroups 
(P-value = 1.55E−77) with more accurate sample assignment (Silhouette scores: 
0.59–0.7) compared to baseline models (0.18–0.3). All LRSC bottleneck features (N = 100) 
were significant for survival, compared to only 11–21 for baseline models. Prognostic 
subgroups were not explained by disease grade or risk factors. Instead LRSC identified 
robust features including 377 mRNAs, many of which were novel (61.27%) compared 
to those identified by the other losses. Some 75 mRNAs were prognostic in TCGA, 
while 29 were prognostic in LIRI-JP also. LRSC also identified 15 robust miRNAs including 
two novel (hsa-let-7g; hsa-mir-550a-1) and 328 methylation features with 71% being 
prognostic. Gene-enrichment and Functional Annotation Analysis identified seven 
pathways differentiating prognostic clusters.

Conclusions:  Combining cluster and survival metrics with the reconstruction objec‑
tive function facilitated superior prognostic subgroup identification. The hybrid model 
identified more homogeneous clusters that consequently were more biologically 
meaningful. The novel and prognostic robust features extracted provide additional 
information to improve our understanding of a complex disease to help reveal its 
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aetiology. Moreover, the gene features identified may have clinical applications as 
therapeutic targets.

Keywords:  Hepatocellular carcinoma, Deep learning, Clustering, Prognostic 
subgroups, Autoencoders, Survival analysis, Liver cancer

Background
Hepatocellular carcinoma (HCC) contributes to around 90% of primary liver cancers [1] 
and is associated with cirrhosis linked to hepatitis B and C infection [2]. In the US, it 
is one of the fastest growing causes of death from cancer [3]. Thus, the expansion of 
knowledge on HCC disease aetiology is important. Identifying patient subgroups that 
stratify by survival due to biological differences will be a step forward towards this goal. 
This information could in future enable precision medicine whereby patients, when pro-
filed using omics technologies, are stratified into subgroups and have their treatments 
tailored accordingly. This approach to patient management could improve overall sur-
vival in HCC. Moreover, the biological information gained through the identification of 
prognostic subgroups could facilitate the discovery of new biomarkers and targets for 
therapies.

Availability of omics data for diseases, including cancers and HCC, is growing expo-
nentially. However, the high dimensionality of this data can make identifying biologically 
relevant patterns extremely challenging. This scenario necessitates the development of 
new analytical solutions that harness the power of artificial intelligence (AI) to reveal 
new information. Deep learning has been explored for patient subgroup identification 
in different cancers using high-dimensional multi-omics data [4, 5]. Chaudhary et  al. 
applied deep learning in the area of HCC [6] to identify significantly different survival 
subgroups using autoencoders. Autoencoders are feedforward neural networks which 
can be used to learn a new representation of data, typically for dimensionality reduc-
tion. They encode their input into a latent space and then decode this latent representa-
tion as their output. The latent space can be used for further analysis, such as clustering 
patients into groups and identifying key features. Autoencoders have proven popular in 
bioinformatics as they can integrate multiple omics and data types [5, 6]. Autoencoder 
transformation can often aggregate genes by pathway, which is useful for biological 
interpretation and revealing the underlying patterns [7].

Training an Artificial Neural Network (ANN), such as an autoencoder, is typically an 
iterative process which uses an objective function, also known as a loss function. The 
loss function comprises of a mathematical formula that is designed for a specific task 
that we are trying to train our model for (e.g. clustering). The loss function is used to 
assess how well the network is performing and to guide the network updates for the 
next iteration to help arrive at the optimum solution for the task at hand. For an autoen-
coder, where the goal is reconstruction of the data (i.e. dimensionality reduction), the 
loss function is used to evaluate how well the original (input) data can be retrieved from 
the learnt (reduced) data representation (referred to as bottleneck). However, the effec-
tiveness of an autoencoder can be measured in a way more suited to the problem space. 
If the latent space an autoencoder produces is used to group patients in a survival sensi-
tive way and identify features of interest, then using an objective function that incen-
tivises a latent space with survival and clustering relevance is important. For an ANN 
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to produce features of survival relevance, a supervised approach can be taken, with the 
inclusion of survival analysis techniques directly into the loss function. The Cox propor-
tional hazards model, a popular survival analysis technique, evaluates variables to assess 
their impact on an event, usually death. It has been utilised in deep learning solutions 
to help make survival predictions [8, 9]. In addition to assessing the survival relevance 
of the latent space in the loss function, the clustering quality of the space can also be 
examined using methods underpinning common clustering techniques such as k-means. 
Incorporating a k-means objective into the loss function of a network has been explored 
singly in order to produce cluster-friendly representations of data [10]. Clustering data 
can formulate substructure to reveal distinct groups that are biologically homogeneous 
and consequently meaningful. In precision medicine, biologically distinct patient groups 
may have clinical relevance for diagnosing patients into disease subtypes and receiving 
their particular treatments.

This study aimed to explore solutions which take advantage of both survival analysis 
and clustering techniques when training an autoencoder with multi-omics data. The 
motivation for considering both metrics (together with the autoencoder reconstruction 
loss) in the training process was to obtain groups of patients which are distinct in terms 
of survival and that are biologically insightful. Methods are applied in HCC, a disease 
that is very heterogeneous and complex due to diverse risk factors. The autoencoder 
architecture used by Chaudhary et al. [6] for multi-omics data analysis is used as a state-
of-the-art baseline. The baseline first trains a standard autoencoder model and then uti-
lises survival information to filter bottleneck features, which are further used for patient 
clustering. In our work, autoencoder architectures were explored that incorporated 
survival-based and clustering-based losses directly into the loss function of an autoen-
coder model. The losses were examined separately and combined together as a hybrid 
model. Evaluation of the five different models and their cluster quality was performed 
using the Silhouette score and with survival analysis via the log-rank test statistic. The 
hybrid model proved to be a superior method as it identified significantly different prog-
nostic groups that were far more homogeneous than those of the baseline models. Prog-
nostic groups were distinguished by a large number of features that were consistently 
identified by the hybrid model. Many of these robust features were novel compared to 
the other losses and a proportion could be validated as prognostic in two HCC cohorts, 
thereby indicating their biological relevance and potential for therapeutic applications as 
biomarkers or targets. This new information increases our understanding of the aetiol-
ogy of this heterogeneous disease. Potentially in future it may also improve the clinical 
diagnosis and treatment of HCC implementing a precision medicine approach.

Methods
Datasets

Multi-omics (miRNA, RNA-Seq, methylation) and survival data for primary liver tumour 
samples of HCC from The Cancer Genome Atlas (TCGA) was analysed. TCGA data was 
downloaded and pre-processed using TCGA-assembler 2 [11], in an approach following 
that of Chaudhary et al. [6] For RNA-seq, normalized counts of genes collected using 
the Illumina HiSeq assay were analysed. For miRNA, data collected using the Illumina 
HiSeq assay was analysed, with hg19 as the reference genome and miRNA information 
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from mirBase 20. For methylation, data collected using the Infinium HumanMethylation 
450 BeadChip assay was selected for analysis. Methylation values were averaged, with 
1500 base pairs ahead of transcription start sites being selected to indicate the genomic 
region for which the average value should be calculated. Only those samples which had 
all three omics types, a non-negative survival value and a histologic diagnosis of HCC 
were selected. For each omics type, features which had either a missing or zero value in 
more than 20% of samples were removed. Next, those samples which had more than 20% 
of their features missing or of zero value were removed. The impute.knn function in the 
impute R package was used to fill in any missing values [12]. Following pre-processing, a 
total of 352 samples were taken forward for further analyses.

The three data types were concatenated into a single vector for each patient creat-
ing the multi-omics matrix, which was used as the input for the proposed model. The 
final dataset consisted of 35,024 features for 352 patients. The Liver Cancer, Riken Japan 
(LIRI-JP) HCC dataset, which also had associated survival data, was utilised as an inde-
pendent cohort for feature validation [13]. The data was accessed using the HCCDB 
platform online (http://​lifeo​me.​net/​datab​ase/​hccdb/​home.​html). Data consisted of 
gene expression measures also collected using RNA-seq for 212 HCC samples from 203 
patients. Both HCC cohorts had similar clinical characteristics (sex ratios, age profiles) 
and underlying health conditions with risk factors such as hepatitis B and C (Table 1).

Model construction

As the baseline, the autoencoder of Chaudhary et  al. [6] was recreated. Herein, their 
autoencoder model was implemented and trained using log loss, also known as binary 
cross entropy (BCE). In addition, mean squared error (MSE), termed LR was used with 
the same baseline autoencoder architecture as a comparison. The formula of LR is pre-
sented in Eq. 1:

where x represents input, φ represents the encoder function of the autoencoder, ψ rep-
resents the decoder function, meaning ψ(φ(x)) represents the final output of the model. 
These baseline models utilise survival information to filter bottleneck features after net-
work training and then use the selected features for clustering. In our implementation 
of the baseline, the bottleneck produced by the autoencoder trained with MSE for ten 
epochs was clustered using the KMeans function from Scikit-learn Python library (full 
algorithm with kmeans++ initialisation) into k groups ranging from 2 to 5. The optimal 
number of k was identified as being two using the Silhouette score, estimated using the 
silhouette_score function from Scikit-learn Python library. This result was in line with 
previous findings presented in the baseline work [6].

For the network construction, the Keras [14] module tf.Keras in Tensorflow was 
used [15]. As before [6], the three omics data types were stacked by sample to form a 
single matrix, which was unit norm scaled. This was done using the normalize function 
from the Scikit-learn pre-processing module [16]. The autoencoder, as before [6], was 
created using hidden layers of dimensions 500, 100 and 500. As before [6] tanh was used 

(1)LR =
1

n

n
∑

i=1

�xi − ψ(φ(xi))�
2

http://lifeome.net/database/hccdb/home.html
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as the activation function throughout, dropout was set to 0.5, an L2 regularization pen-
alty of 0.0001 was applied to the output and an L1 regularization penalty of 0.001 was 
applied to the kernel. Stochastic gradient descent was used as the optimizer with the 
batch size set to one and epochs set to ten.

To explore a cluster-based loss and determine whether it could identify prognostic 
subgroups in HCC that were biologically distinct, a custom autoencoder was created. 
For the custom autoencoder construction, hidden layers of dimension 1000, 100 and 
1000 were used, with Sigmoid activation throughout. Data from the three omics types 
was stacked by sample to form a single matrix. The matrix was scaled in the range of 0 
to 1 using the MinMaxScaler from Scikit-learn [16]. Batch size was set to sample size 
(N = 352) and the Adam optimiser selected. An L1 regularization penalty of 0.001 was 
applied to the kernel to control exploding gradients. The overall clustering loss used LR 
and LC to form: LRC = αLR + βLC where α and β are the parameters of the model.

The clustering-based loss LC was used to evaluate the quality of cluster produced as an 
output of the k-means clustering on the bottleneck of the autoencoder. With a k-means 
clustering algorithm, samples are divided into k groups, where k is a pre-defined parameter. 

Table 1  Clinical characteristics and risk factors of the TCGA and LIRI-JP HCC cohorts

A summary of the clinical characteristics and risk factors associated with the TCGA (N = 352) and the LIRI-JP HCC cohorts 
(N = 203)

TCGA​ Gender

Male 239

Female 113

Grade G1 52

G2 165

G3 120

G4 11

Not available 4

Age at diagnosis < 18 2

18–29 10

30–49 53

50–69 209

70+ 78

Risk factors Alcohol consumption 114

Hepatitis B 103

Hepatitis C 53

Non-alcoholic fatty liver disease 19

Hemochromatosis 5

Alpha-1 antitrypsin deficiency 1

No history of primary risk factors 83

Other 21

LIRI-JP Gender Male 153

Female 50

Age 30–49 15

50–69 94

70+ 94

Risk factors Hepatitis B 57

Hepatitis C 121

Non-B Non-C 29
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This is an iterative process where each group is represented by a centroid which is calcu-
lated as the mean of the data points (samples) within this group. Samples are assigned to 
the cluster with the nearest centroid. Following group assignments, centroids are recalcu-
lated. Typically, this process continues until group assignments no longer change. The LC 
was driven from the Silhouette score, commonly used for cluster evaluation. The Silhouette 
score [17] of a data point i from a cluster A is formulated as per Eq. 2:

where a(i) is the mean distance of i to all other data points in A and b(i) is the small-
est mean distance between i and all data points of any other cluster of which i is not a 
member. With our model, the LC aims to minimise the distance of each sample to its 
nearest centroid and to maximise the distance to its next closest centroid. The formula 
of LC is presented in Eq. 3.

where µi represents the centroid closest to the bottleneck vector of input xi ( φ(xi) ). Con-
versely �i represents the next nearest centroid to the bottleneck vector of input xi.

In order to determine the initial centroids and group assignments for losses utilising LC, 
the custom autoencoder was initially run with only the LR loss for one epoch. All data was 
then passed through the network and the bottleneck layer predicted. The two vectors with 
the furthest Euclidean distance were selected to be the initial centroids. Each sample was 
then assigned to the centroid with the shortest squared Euclidean distance to their bot-
tleneck vector. With the seed centroids and group assignments determined, the custom 
autoencoder was then trained using LRC. After each epoch, centroids were updated by tak-
ing the mean of each bottleneck feature for the samples in the relevant group, followed by 
the reassignment of groups as before. For losses using LC, samples were not shuffled during 
training for the purposes of maintaining the group assignments.

Survival-based losses were explored to see if embedding survival analysis techniques 
directly into the autoencoder training can produce a latent space which, when clustered, 
produces better (in terms of survival) and more biologically meaningful groupings. Like 
Bello et al. [9], a branch of dimension 1 stemming from the bottleneck layer was added to 
the custom autoencoder (Fig. 1) and a Cox partial likelihood inspired loss LS was applied. 
For losses using LS, survival information was used to sort the samples in descending order 
of survival before being fed to the autoencoder for the functioning of the survival loss 
implementation. For losses using LS, samples were not shuffled during training for the pur-
poses of maintaining the survival ordering. The formula for calculating LS is presented in 
Eq. 4.

(2)s(i) =
b(i)− a(i)

max
{

a(i), b(i)
}

(3)LC =
1

n

{

n
∑

i=1

�φ(xi)− µi�
2 −

n
∑

i=1

�φ(xi)− �i�
2

}
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The log L(β) estimates the coefficients, denoted by β , of predictor variables repre-
sented by vector z . δ is an indication of whether subject i is alive (0) or dead (1) and 
R(ti) is the risk set (subjects still alive at the time subject i died). Coefficients describe 
the effect size of a particular variable, with positive β suggesting a worse prognosis 
and negative β suggesting a protective effect for that variable. For example, in a Cox 
model a positive coefficient for a variable such as age could mean that increasing age 
results in poorer prognosis. In LS, W ′φ(xi) represents the single scaler output for the 
input of sample i from the single dimension branch stemming from the bottleneck 
layer. Like before [9], LS is combined with LR forming: LRS = αLR + βLS. For both, LRC 
and LRS different parameter values were evaluated, with α = 0.25 and β = 0.75 found 

(4)

log L(β) =

n
�

i=1

δi







β ′zi − log
�

j∈R(ti)

eβ
′zj







LS = −

n
�

i=1

δi







W ′φ(xi)− log
�

j∈R(ti)

eW
′φ(xj)







Fig. 1  Custom autoencoder construction. The construction of the custom autoencoder with hidden layers, a 
bottleneck layer and a survival branch of dimension 1
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to be the optimal combination that allowed for the largest portion of the loss to be 
dedicated to the losses custom purpose.

Finally, it was investigated whether combining a cluster-based loss with a survival-
based loss could produce a latent space which, when clustered, produced prognos-
tic groups that were both significantly different in survival and biologically insightful. 
A combination cluster and survival loss was proposed: LRSC = αLR + βLS + γLC with the 
optimal parameters values set as α = 0.25, β = 0.50 and γ = 0.25. Pseudocode of the 
training using LRSC is shown in Fig. 2. For all losses the entire dataset was used during 
the training and predicting phases. Loss stabilisation occurred at around 40 epochs for 
LRC, LRS and LRSC so this was considered to be optimal for these losses. After autoen-
coder training, the entire matrix was passed through the trained autoencoder’s encoder 
function to produce a 352 × 100 matrix, a bottleneck vector for each sample.

It can be noted that LR was included in each of the three loss functions. This is because 
LR is used as a reconstruction loss in autoencoder models, which ensures that key infor-
mation from the original data representation is encoded in the compressed bottleneck 
representation. Removing LR from the loss would allow the bottleneck to diverge into a 
representation which is completely irrelevant to the original input data. That is why the 
final loss function needs to be balanced between LR and LC/LS.

Identifying prognostic subgroups and key features

Latent spaces produced by each model were clustered to identify subpopulations of 
patients with the aim that they would differ in survival (i.e. prognostic subgroups). For 
the baseline BCE and MSE losses, univariate Cox models were used, as before [6], to 
filter features for significance before clustering (unlike the other losses where all features 
were utilised during clustering). Thus, bottleneck feature selection was conducted after 
training. For the BCE and MSE models, the coxph function from the R survival library 
[18] was used to construct a univariate Cox model for each bottleneck feature as before 
[6]. Those features resulting in a significant model (log-rank test, P-value < 0.05) were 
selected and brought forward to the clustering phase. For those loss functions which 

Fig. 2  Pseudocode demonstrating the flow of training an autoencoder with LRSC loss. The custom 
autoencoder is initially trained with an MSE loss in order to predict a bottleneck from which to identify seed 
centroids and group assignments which can then be used in the LRSC loss during training. After each epoch 
training with LRSC the centroids and group assignments are updated
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utilized LS or LC, all 100 bottleneck features were used to group patients as a part of the 
training process of the autoencoder. For BCE, MSE, and LRS their cluster labels were cre-
ated by clustering the relevant features using the KMeans function from Scikit-learn (16) 
(full algorithm with kmeans++ initialisation). For LRC and LRSC the group assignments 
were determined using the final centroids after the last training iteration. The quality 
of clusters was assessed using the Silhouette score, estimated using the silhouette_score 
function from Scikit-learn [16]. The Silhouette score can range from 1 to − 1 where 1 is 
the best score and indicates confidence in sample assignment to a cluster. The difference 
in survival between clusters was measured using a survival analysis with the pairwise_
logrank_test function from lifelines [19]. The KaplanMeierFitter function from lifelines 
[19] was used to produce Kaplan Meier survival curves for the clusters.

Using cluster labels determined for each model in each run, the most important omics 
features in differentiating clusters were identified (Fig. 3). Before identifying the key fea-
tures differentiating clusters, the three omics sets initially underwent a two-step scaling 
process, like that used in the baseline [6]. First, all omics types underwent median norm 
scaling. RNA-seq and methylation then underwent robust scaling using the RobustScaler 
from Scikit-learn [16], with miRNA undergoing unit norm scaling. An analysis of vari-
ance (ANOVA) was then performed with the f_oneway function from scipy [20]. Ran-
domness introduced by factors such as the initialisation of weights could lead to slightly 
different cluster labels being identified and therefore different top features being selected 
each time the pipeline is run. For this reason, the entire pipeline was run 10 times for 
each model, with clusters being evaluated and top features derived. To derive top fea-
tures from the ANOVA, the P-values were sorted from smallest to largest for each omics 
type. Of the top 10% of features, only those that had a significant P-value following cor-
rection for multiple testing of ten runs using Bonferroni (P-value < 0.005) were selected. 
For RNA-seq, 10% of features before filtering for significance was approximately 1561, 
for methylation this was approximately 1899 and for miRNA this was approximately 42. 
The top features identified by each of the ten runs of the different models were com-
pared, and frequently identified features in six, eight and all ten runs quantified. While 
some features may have been identified by a small number of runs in a number of losses, 
the focus was on those features that were consistently identified. Thus, a feature was des-
ignated as robust if it was consistently identified i.e. it appeared as a top feature in all 10 
runs for a loss. The robust omics features that were consistently identified as top features 
for each loss were compared to see if there were any features consistently detected by 
LRSC that were not consistently identified by the other losses. The consistently identified 
omics features from each loss were also compared with the top omics features identified 
by the baseline paper’s ANOVA as these differed from the recreation in this work.

Gene‑enrichment and functional annotation analysis and prognostic validation

A Gene-enrichment and Functional Annotation Analysis (GEFA) was conducted 
using only those mRNA features consistently identified by LRSC. GEFA was imple-
mented with DAVID, the online bioinformatics portal [21]. Entrez Ids were converted 
to gene symbols using DAVID and a KEGG pathway analysis was performed using 
significant mRNA features that were successfully mapped. An EASE score thresh-
old of 0.10 was used for significance. In each omics type, the consistent top features 
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identified by LRSC were then used in a survival analysis to assess their prognostic sig-
nificance. Using the scaled data, median expression was used for patient separation in 
the Kaplan meier survival curve. The prognostic significance of resulting clusters was 
assessed using the log-rank test (P-value < 0.05). The low expression cluster included 

Fig. 3  A flowchart of the autoencoder training process. The flowchart demonstrates how multi-omics data is 
combined into a single matrix, before being transformed by the autoencoder to produce bottleneck features. 
If the loss is BCE or MSE these bottleneck features are reduced by univariate Cox models as in the baseline 
before clustering to create group labels. For LRC and LRSC group labels from the final iteration of autoencoder 
training are used whereas for LRS group labels are derived by clustering all bottleneck features. Using the 
identified cluster labels the top original omics features are identified for the run using ANOVA
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those whose values were below or equal to the median and the high expression cluster 
included those whose values were above the median.

Using the pre-processed omics data before scaling, significant mRNA and methyla-
tion features consistently identified by LRSC were visualised in prognostic clusters using 
heatmaps. Heatmaps were produced using Seaborn [22] with expression shown as a 
z-score, which is a representation of standard deviations of expression of each gene from 
the mean. Scale was limited to − 3 + 3 using vmin and vmax in the clustermap function 
in Seaborn to improve the visualisation of differences between the prognostic clusters 
being presented.

Results
Cluster evaluation

Cluster quality metrics were compared between models (Table 2). The clusters obtained 
by the baseline models BCE and MSE had lower Silhouette scores (0.18–0.31), indicat-
ing poorer cluster quality, i.e. more heterogeneous. For BCE and MSE, the number of 
significant bottleneck features to be used in clustering following filtering, as identified by 
the univariate Cox models, was quite low and ranged from 11 to 21 out of the bottleneck 
dimension of 100. By comparison, some of the highest Silhouette scores were achieved 
by LRC, demonstrating that the k-means inspired loss produced better quality clusters 
compared to the other losses. This provided greater confidence in sample assignment to 
clusters by the LRC and indicated that they comprised of more homogeneous and conse-
quently more biologically meaningful groupings. For loss functions using LC, the bottle-
neck layer was clustered according to group labels derived after each epoch. For LRC and 
LRSC, the Silhouette score of the bottleneck improves as epochs increase (Fig. 4). With 
the heavy influence of LC the ascent of the Silhouette score in LRC (Fig. 4A) is smoother 
than LRSC (Fig. 4B). The Silhouette score steadily rises with continued training with LRC, 
thereby indicating a continuous improvement in sample assignment for both models.

Clusters were also assessed for their significance in terms of prognosis (Table 2). Clus-
ters identified by the best run using the log-rank test P-value for each loss function were 

Table 2  A comparison of the cluster quality metrics for each loss, including the highest and lowest 
Silhouette scores and the highest and lowest log-rank P-values across ten runs for each loss function

A summary of the highest and lowest Silhouette scores and log-rank P-values across 10 runs for each loss function. The log-
rank P-values for MSE and BCE varied between significant and non-significant, whereas the survival-based losses produced 
the lowest log-rank P-values. Silhouette scores for MSE and BCE remained below 0.4, indicating low confidence in group 
assignments whereas the clustering-based loss LRC was able to produce the highest Silhouette scores, indicating high 
confidence in group assignments

Method Loss Function Log-rank 
P-value 
(lowest)

Log-rank 
P-value 
(highest)

Silhouette 
score 
(highest)

Silhouette 
score 
(lowest)

Baseline-binary cross entropy 
loss

BCE 6.68E−04 1.38E−01 0.29 0.2

Baseline-mean squared error 
loss

MSE/LR 4.07E−04 1.51E−01 0.31 0.18

Clustering loss LRC 9.11E−02 3.83E−01 0.92 0.59

Survival loss LRS 1.89E−96 6.70E−62 0.77 0.62

Combined survival and Cluster‑
ing loss-hybrid model

LRSC 1.55E−77 2.62E−61 0.7 0.59
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Fig. 4  Silhouette scores per epoch for best run (by Silhouette score) of LRC and LRSC. A comparison of the 
Silhouette scores for each epoch for the best run (as determined by Silhouette score) for LRC (0.92) and 
LRSC (0.7). A For LRC the Silhouette score rises in a steep and linear fashion due to the heavy influence of the 
clustering loss LC. B LRSC shows an upward trend, albeit with more fluctuations due to the heavy weight of the 
survival-based LS loss compared to the clustering-based LC

Fig. 5  Comparing prognostic significance of groups identified by clustering relevant deep learning features 
produced by each loss function. A BCE (P = 6.68E-04); B MSE (P = 4.07E-04); C LRS (P = 1.89E-96); D) LRC was 
non-significant (P = 9.11E-02) and E) LRSC (P = 1.55E-77). Kaplan–Meier plot results presented are based on the 
best run out of ten as determined by the log-rank P-value
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examined (Fig. 5). Separation between prognostic survival groups was greatest for LRS 
(1.89E−96; Fig. 5C) followed by LRSC (Fig. 5E; 1.55E−77). Size split between clusters dif-
fered between models. BCE, MSE and LRC all had a relatively even split in group sizes, 
which were 158 v 194, 181 v 171 and 169 v 183, respectively (Figs. 5A, B, D). The sur-
vival-based loss produced a more uneven split (302 v 50) compared to that created by 
the LRSC loss (271 v 81). In general, those losses which included LS had a more uneven 
split in group sizes compared to the other losses. Cluster membership for all models did 
not have any evidence that they related to HCC disease grade or risk factors (Table 3).

Univariate Cox models created using bottleneck features from the best run of LRSC 
by log-rank test P-value are presented in Table S1. A hazard ratio of one suggests that 
there was no difference in survival between groups. Hazard ratios for all of the 100 bot-
tleneck features produced by the combined loss LRSC differed greatly from one (range: 
2.29E−45 to 2.82E+45; Additional file 1: Table S1). This provided evidence that all the 
LRSC bottleneck features were highly explanatory for HCC survival and conveyed either 
a massively increased risk, or a massively reduced risk. This indicated that by using the 
combined loss we can learn a new joint representation of the multi-omics data that is 
highly informative for the task of prognostic subgroups identification. Using the new 
data representation (i.e. bottleneck features), we were able to identify new subgroups 
with greater differences in survival (log-rank P-value) and more biologically meaningful 
(Silhouette score) in comparison to the baseline.

Top features identified by the loss functions

Top features frequently identified in the three omics types for 6, 8 and 10 runs were 
examined for each loss function (Table 4). The baseline BCE model achieved the great-
est number of consistent mRNA features across 10 runs. For miRNA and methylation, 
the clustering loss LRC produced by far the greatest number of overlapping top features 
across 10 runs. This demonstrates that LRC is robust to randomness when it comes to 
identifying these types of omics features across runs. In total, 377 mRNA features were 
consistently identified by the hybrid model LRSC. Of these, 231 (61.27%) were novel i.e. 
they were only consistently identified by LRSC compared to the features consistently iden-
tified by the other losses as well as the baseline paper’s top 100 RNA-seq features derived 
from ANOVA. The results of the GEFA with the 229 of the 231 genes that mapped in 
DAVID identified seven pathways including cell cycle and DNA replication (Table 5).

Fifteen miRNAs were identified as robust features. Two miRNAs, hsa-let-7g and 
hsa-mir-550a-1, were also novel, i.e., they were consistently identified by LRSC but not 
consistently identified by the other losses or by the baseline paper’s top 50 miRNA as 
identified by ANOVA. These miRNAs were not prognostic, however, as their expres-
sion did not show a significant difference in separation of patients in terms of survival. 
For methylation, 328 features were consistently identified by LRSC compared to the other 
losses or the paper’s top methylation features as identified by ANOVA. Of these 233 
were prognostic as the log-rank test was significant using a median expression for sur-
vival group separation (Additional file 1: Table S2). For these 233 features, a subtle differ-
ence in the expression patterns between clusters was observed (Fig. 6).

Of the 231 mRNAs of interest, 75 significantly grouped patients in terms of survival 
in the TCGA HCC cohort when separated by median expression (Table 6). Expression 
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of these 75 mRNAs varied subtly between prognostic clusters (Fig. 7). The 75 mRNAs 
were validated using a survival analysis carried out online using the HCCDB interactive 
tool. In total, 29 of the 75 mRNAs were also significant for prognosis in the LIRI-JP HCC 
cohort (Table 6).

Discussion
In future, greater data volumes generated by testing for a wider array of markers will 
be routinely available for all patients and used to assist with their clinical diagnosis and 
stratification into groups based on disease subtype. Implementing a precision medicine 
approach, patients may then receive tailored treatments thereby improving their overall 
survival. Developing analytical methods for prognostic group identification is therefore 
vital to further understand key drivers in cancers of unmet need. This study explored 
a novel deep learning approach for prognostic group identification. For the first time, 
both cluster quality and survival metrics were included into a combined loss function 
for training an autoencoder model. The hybrid model, LRSC had bottleneck feature repre-
sentation that was tailored specifically for grouping HCC patients by prognosis. All one 
hundred bottleneck features identified by LRSC were significant for survival, indicating 

Table 4  Common features identified across runs for the different omics data types

A summary of the common features identified for the different omics data types (mRNA, miRNA, methylation) across six, 
eight and ten replicate runs of models with the five different losses

Omics type No. of runs Loss functions

BCE MSE LRC LRS  LRSC

mRNA 6 runs 1296 1319 1268 422 888

8 runs 929 986 742 256 633

10 runs 451 295 439 124 377

miRNA 6 runs 31 34 36 9 16

8 runs 22 21 20 1 9

10 runs 12 1 15 1 3

Methylation 6 runs 1676 1593 1794 647 1135

8 runs 1252 1203 1388 330 856

10 runs 675 520 1097 89 434

Table 5  Results of the Gene-enrichment and Functional Annotation Analysis for mRNAs of interest 
identified by LRSC

A summary of the results of the Gene-enrichment and Functional Annotation Analysis (GEFA) for the mRNAs of interest 
identified by LRSC. In all, 231 overlapping genes were only consistently identified by LRSC, 229 of these genes mapped in 
DAVID and were included in the GEFA

KEGG pathway Count % P-value/EASE Genes

Aminoacyl-tRNA biosynthesis 7 3.06 1.40E−04 YARS, LARS, PARS2, MARS, TARS, HARS, QRSL1

Cell cycle 8 3.49 7.49E−04 ORC1, PLK1, CUL1, TTK, MCM6, SMC1A, BUB1, 
MAD2L1

Purine metabolism 7 3.06 2.02E−02 POLA1, ADSL, RRM2, PRIM1, PPAT, PDE2A, GMPS

Oocyte meiosis 5 2.18 4.63E−02 PLK1, CUL1, SMC1A, BUB1, MAD2L1

RNA transport 6 2.62 5.86E−02 NDC1, NUP155, GEMIN5, GEMIN8, EIF2S1, NUP37

Alanine, aspartate and gluta‑
mate metabolism

3 1.31 6.76E−02 ADSL, PPAT, CAD

DNA replication 3 1.31 7.11E−02 POLA1, PRIM1, MCM6
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their strong predictive power for increased / reduced risks to HCC survival. By com-
parison, only 11–21 significant bottleneck features could be identified by the baseline 
models following training. The LRSC latent space, when clustered, provided more insight-
ful patient groups than the baseline method [6]. Pipelines utilising survival informa-
tion, either to filter bottleneck features after network training (BCE, MSE) or directly 
within the loss function (LRS, LRSC) were able to separate patients in terms of survival 
more significantly than the unsupervised LRC loss, as assessed using the log-rank test. 
As expected, the clustering loss LRC produced quality clusters that had higher Silhouette 
scores (best = 0.92) than the other loss functions. This was likely due to the high weight 
of LC in the loss, meaning that the latent spaces produced were more complementary 
to clustering. It was interesting to note that applying LRS led to very distinct clusters in 
terms of survival but it also gave good quality clusters in terms of the Silhouette score 
(best = 0.77). However, the structure of the clusters obtained by LRC and LRS differed. 

Fig. 6  Visualisation of the methylation patterns of robust significant methylation features that were 
consistently identified by LRSC. A visualisation of the methylation patterns of the 233 significant methylation 
features consistently identified across all ten runs by LRSC. Cluster labels were taken from the best run of LRSC 
as determined by log-rank P-value. Methylation is shown as a z-score. Scale was limited to − 3 + 3 using vmin 
and vmax in the clustermap function in Seaborn to improve visualisation of differences between prognostic 
clusters. The distribution of HCC grades between clusters appears to be relatively even
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Table 6  Results of the survival analysis of the 75 significant mRNAs identified by LRSC

Entrez ID Symbol TCGA median log-rank LIRI-JP 
median 
log-rank

5036 PA2G4 1.47E−03 5.30E−06

3838 KPNA2 1.40E−02 1.30E−05

57405 SPC25 3.05E−02 1.55E−05

8550 MAPKAPK5 2.79E−02 4.44E−05

55143 CDCA8 2.61E−02 7.28E−05

1776 DNASE1L3 2.16E−02 2.49E−04

54538 ROBO4 1.37E−02 2.98E−04

5138 PDE2A 6.89E−03 3.17E−04

25956 SEC31B 1.85E−03 3.22E−04

6421 SFPQ 8.09E−04 1.37E−03

55706 NDC1 4.12E−02 2.01E−03

51380 CSAD 1.70E−02 2.02E−03

2665 GDI2 4.79E−02 2.78E−03

8520 HAT1 1.35E−02 3.04E−03

2519 FUCA2 4.19E−02 3.06E−03

51026 GOLT1B 2.92E−03 6.00E−03

29889 GNL2 2.63E−03 7.94E−03

790 CAD 2.63E−02 1.03E−02

8243 SMC1A 2.27E−02 1.07E−02

339327 ZNF546 2.67E−02 1.14E−02

1478 CSTF2 6.14E−03 1.50E−02

79022 TMEM106C 4.48E−04 1.64E−02

84253 GARNL3 2.01E−02 2.14E−02

9361 LONP1 2.18E−02 2.27E−02

23381 SMG5 2.95E−02 2.67E−02

9532 BAG2 1.32E−02 2.74E−02

55131 RBM28 1.23E−02 2.91E−02

4038 LRP4 1.06E−03 4.07E−02

83941 TM2D1 3.81E−02 4.84E−02

90355 c5orf30 8.13E−03 6.17E−02

23657 SLC7A11 2.26E−03 7.32E−02

10489 LRRC41 4.73E−02 8.07E−02

65244 SPATS2 3.16E−02 8.16E−02

3913 LAMB2 8.27E−03 8.52E−02

7444 VRK2 1.95E−02 8.66E−02

8807 IL18RAP 1.34E−03 8.75E−02

79739 TTLL7 3.94E−02 8.88E−02

2764 GMFB 7.68E−03 1.00E−01

51253 MRPL37 1.81E−02 1.02E−01

1965 EIF2S1 5.40E−03 1.22E−01

127544 RNF19B 6.66E−03 1.32E−01

60682 SMAP1 4.86E−03 1.46E−01

3931 LCAT​ 1.92E−02 1.48E−01

56829 ZC3HAV1 4.36E−02 1.70E−01

5514 PPP1R10 4.66E−02 1.81E−01

8565 YARS 5.54E−04 1.90E−01

55056 FLJ10038 3.73E−02 2.03E−01

10626 TRIM16 2.97E−02 2.04E−01
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The combined loss LRSC produced a set of clusters that balanced the requirements of 
both LC and LS. In this study, the Silhouette score was lower for LRSC (0.59–0.7) than 
for LRS (0.62–0.77). While LRSC wasn’t able to produce lower P-values in the log-rank 
test and higher Silhouette scores than LRS, combining LC with LRS produced more robust 
and biologically meaningful clusters. Baseline models BCE and MSE had low Silhouette 
scores (0.18–0.31) indicating less accurate sample assignment to clusters.

Despite the complexity of the patient cohorts and their underlying conditions in 
addition to HCC, the hybrid model successfully identified robust features of biological 
and prognostic significance in different omics data types (mRNA, miRNA, methyla-
tion). Features were identified consistently across ten runs of the model. This included 
377 mRNAS, 231 of which were novel compared to the other losses explored and 
those listed in the baseline paper’s top 100 mRNA features as identified by ANOVA. 
A total of 75 of the 231 mRNAs were significant for prognosis in the TCGA cohort 
when groups were separated by median expression. Amongst the mRNAs identified 
by LRSC was LCAT. Low expression of LCAT has been linked to poor survival in HCC, 

A summary of the results of the survival analysis of the mRNAs identified by LRSC. A total of 75 genes were prognostic in 
the TCGA HCC cohort as indicated by a significant log-rank result; 29 of these were also prognostic in the LIRI-JP cohort, 
indicated here in bold. NA—Not applicable for testing as gene not available in validation dataset

Table 6  (continued)

Entrez ID Symbol TCGA median log-rank LIRI-JP 
median 
log-rank

10487 CAP1 4.08E−02 2.29E−01

10570 DPYSL4 1.36E−02 2.35E−01

201229 LYRM9 5.58E−03 2.66E−01

4359 MPZ 3.41E−02 3.00E−01

79989 TTC26 8.51E−04 3.53E−01

308 ANXA5 1.85E−04 4.24E−01

57181 SLC39A10 2.64E−02 4.35E−01

5256 PHKA2 4.46E−02 4.40E−01

6611 SMS 1.48E−02 4.49E−01

95681 CEP41 1.59E−02 4.70E−01

64175 P3H1 1.38E−03 4.81E−01

6897 TARS 2.13E−02 5.20E−01

10206 TRIM13 1.47E−02 5.23E−01

55212 BBS7 9.59E−03 5.35E−01

3939 LDHA 3.08E−04 5.37E−01

201798 TIGD4 3.85E−02 5.43E−01

169200 TMEM64 8.06E−03 5.66E−01

84725 PLEKHA8 3.97E−02 5.96E−01

5097 PCDH1 1.37E−02 6.23E−01

84085 FBXO30 6.83E−03 6.56E−01

8790 FPGT 2.03E−02 7.22E−01

79879 CCDC134 2.67E−04 8.10E−01

3312 HSPA8 3.49E−03 9.06E−01

11096 ADAMTS5 4.80E−04 9.14E−01

51520 LARS 2.06E−03 9.46E−01

80723 SLC35G2 3.38E−02 9.46E−01

90110 LOC90110 4.47E−02 NA
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and furthermore it has been used in prognostic models for the disease [23, 24]. In all, 
29 of the 75 (38.67%) mRNA features significant for prognosis in the TCGA cohort 
were also significant in the LIRI-JP cohort. The complexity of underlying risk factors 
of the HCC patients in the different cohorts may have accounted for why only a pro-
portion of features could be validated as prognostic in both cohorts. A total of 15 
robust miRNAs were also identified by the hybrid model. Of the two miRNA features 
of interest that were novel, hsa-let-7g has been linked to inhibition of HCC cells pro-
liferation [25]. The other novel miRNA identified, hsa-mir-550a-1, has not previously 
been linked with HCC and would warrant experimental investigation perhaps. Of the 
328 methylation features consistently identified by LRSC, 233 were significant for prog-
nosis. Some of these genes have been previously linked with HCC, including RIC-
TOR, which was found to be dysregulated in cancers, including HCC [26].

Fig. 7  Visualisation of the 75 mRNAs consistently identified by LRSC that were significant for prognosis. A 
visualisation of the gene expression patterns of the 75 mRNAs that were consistently identified across all ten 
runs by LRSC and were significant for prognosis using a median split in gene expression. Cluster labels were 
taken from the best run of LRSC as determined by log-rank P-value. Expression is shown as a z-score. Scale 
was limited to − 3 + 3 using vmin and vmax in the clustermap function in Seaborn to improve visualisation 
of differences between prognostic clusters. The distribution of HCC grades between clusters appears to be 
relatively even
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It was interesting to note the differences in the expression / methylation profiles of 
the top omics features between the prognostic clusters derived by the hybrid loss. These 
features tended to exhibit only low and subtle expression and methylation differences 
between prognostic groups. Thus, it remains to be established whether the features 
identified by the hybrid approach could have utility in diagnostics as biomarkers with 
current approaches using expression or pyrosequencing assays. Also a limitation of the 
method is that the methylation specific CpG site information was collapsed during data 
pre-processing, therefore changes to this stage would be required to identify key meth-
ylation features that differed in order to be able to design a diagnostic assay.

Nevertheless, mRNA and methylation patterns were differential between prognostic 
groups, which would warrant further testing for their clinical application as targeted 
therapies for HCC or other. It may be that other biological processes might distinguish 
how these genes function differently between prognostic groups. For example, patient 
groups may differ in their epigenetic profiles or post-transcriptional processing or modi-
fication of these mRNAs, whereby some are silenced whilst others go on to become a 
protein with functional impact. Thus, in future, assays that focus on other RNA pro-
cesses related to those features perhaps may prove more useful for diagnostics compared 
to traditional tests.

Certainly the hybrid approach developed here identified a suite of unbiased features 
that may be more representative of the aetiology. This is because only the significant fea-
tures in the top 10% of the omics ANOVA results for each run were considered here. 
Also examining the key features consistently identified across ten multiple runs should 
have prevented any oversight of the most important features of interest. In this work, 
a single Gene-enrichment and Functional Annotation Analysis was conducted on the 
features that were most different between clusters. The reason for this was to focus on 
uncovering the biological pathways that differed between prognostic patient groups. 
Prognostic subgroups for the losses did not appear to be explained by clinical charac-
teristics such as disease grade or risk factors. Instead many of the robust features identi-
fied by the hybrid model that distinguished prognostic groups were novel and had not 
been previously described for HCC by similar models. Thus, further investigation of the 
robust features that distinguished prognostic groups could determine whether any of 
these genomic alterations that distinguished patients in groups would be of interest from 
a clinical perspective for diagnosing new HCC survival subtypes.

Conclusions
Autoencoders trained using LRS and LRSC produced more statistically robust results. This 
work demonstrates that utilising a joint clustering and survival objective function can 
identify new patient subgroups that are prognostic and provide biological insights for 
target identification for therapeutics. This information is important for discovery within 
precision medicine and the development of new therapies for patient interventions. 
Future directions of this work would be the application of the proposed analysis pipeline 
to other cancers of poor clinical outcome, such as brain tumours (gliomas), or other dis-
eases where survival and omics information is becoming more routinely available.
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