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Abstract

Background: Genome assembly of viruses with high mutation rates, such as Norovirus and other RNA viruses, or
from metagenome samples, poses a challenge for the scientific community due to the coexistence of several viral
quasispecies and strains. Furthermore, there is no standard method for obtaining whole-genome sequences in non-
related patients. After polyA RNA isolation and sequencing in eight patients with acute gastroenteritis, we evaluated
two de Bruijn graph assemblers (SPAdes and MEGAHIT), combined with four different and common pre-assembly
strategies, and compared those yielding whole genome Norovirus contigs.

Results: Reference-genome guided strategies with both host and target virus did not present any advantages
compared to the assembly of non-filtered data in the case of SPAdes, and in the case of MEGAHIT, only host
genome filtering presented improvements. MEGAHIT performed better than SPAdes in most samples, reaching
complete genome sequences in most of them for all the strategies employed. Read binning with CD-HIT improved
assembly when paired with different analysis strategies, and more notably in the case of SPAdes.

Conclusions: Not all metagenome assemblies are equal and the choice in the workflow depends on the species
studied and the prior steps to analysis. We may need different approaches even for samples treated equally due to
the presence of high intra host variability. We tested and compared different workflows for the accurate assembly
of Norovirus genomes and established their assembly capacities for this purpose.
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Background
Many viruses have high mutation and recombination
rates, producing heterogeneous mixtures of viral strains.
This rapid evolution favors the development of func-
tional advantages such as evasion of the host immune
response [1–4] and vaccine/drug resistance [5, 6].
Characteristics of infection and pathogenicity in these vi-
ruses are also influenced by selective pressure [7–9].
The heterogeneity underlying viral genomes complicates

their characterization using sequencing experiments. Over
recent decades, high-throughput sequencing (HTS) has
emerged as an important resource for viral studies [10–12].
Among viruses with high mutation rates and presence

of large numbers of genetic variations or quasispecies
are Noroviruses, a group of the Caliciviridae family.
They are positive and single-stranded RNA viruses with-
out a lipid envelope, with genome lengths varying from
7.5 to 7.7 Kb [13]. These viruses are known to be highly
pathogenic and infectious, and are responsible for most
cases of acute gastroenteritis (50 % of all outbreaks
worldwide), although symptoms are generally non-lethal
[14]. Their genome is composed of three open reading
frames (ORF), the first one encoding a polyprotein
cleaved into six non-structural proteins including an
RNA-dependent RNA polymerase (RdRp) [15]. ORF1
overlaps in a short region with ORF2, which encodes for
the capsid protein VP1 (major capsid protein) while
ORF3 encodes for VP2 (minor capsid protein) [16]. Of
the ten currently identified genogroups, in humans the
represented genogroups causing infections are GI, GII,
GIV, and recently, GVIII and GIX [17]. These
genogroups are established based on a minimum 43 %
difference between VP1-coding sequences [17, 18]. How-
ever, 60 % of norovirus infections are attributable to
genotype GII.4 [16, 19, 20]. As with other RNA viruses,
the intra-genus variability of Noroviruses provides them
with fast evolving capacity and makes their characterization
and sequencing challenging [21–23].
Nowadays, HTS-based short read assemblers are

widely used for reconstructing bacterial and viral ge-
nomes. Although HTS platforms and bioinformatics
methods have evolved over the past few years, “de novo”
assembly is still arduous and computationally expensive.
Many of these assemblers are based on de Bruijn graph
methods [24]. The strategy is to generate substrings of
length k (k-mers) and form a path with overlapping se-
quences, constituting a graph and thus generating large
contigs to reconstruct genomic regions [24, 25]. These
computational algorithms were designed with the in-
creasing use of short-read sequencing approaches to ob-
tain contigs for assembly into scaffolds. Gene-centric
and genome-centric assemblies require different ap-
proaches, as there are different ways to tackle short-read
sequencing in metagenomics. SPAdes and MEGAHIT

are frequently used de Bruijn graph-based assemblers
in genome-centric studies due to their large contig
yield [26].
One notable difference between SPAdes and MEGA-

HIT is that the former is more computationally expen-
sive, working with the whole set of sequences in all
assembly iterations, whereas the latter saves computa-
tional resources by considering only k-mers occurring
over a determined cutoff length. metaSPAdes (SPAdes
with --meta flag) is an alternative since it constructs a
consensus sequence from different strain variants [27].
Compared with other organisms, virus genomes are

generally difficult to assemble, not only because of the
interspecies variability present in metagenome samples,
but also due to the high genetic variability presented in
viral particles [28–32]. Our goal was to reconstruct the
genomes of Norovirus strains from stool samples from
patients with gastroenteritis and diarrhea, testing differ-
ent workflows and evaluating the use of read binning
along with metagenome assembly. Our aim was to ob-
tain large contigs spanning the whole genome of Noro-
virus for all the non-related samples, for which we used
different analysis strategies along with MEGAHIT [33]
and SPAdes [34].

Results
Assembly
Raw data obtained from eight human Norovirus samples
passed FASTQC (v0.11.5, Babraham Bioinformatics)
quality filters regarding the parameters per base se-
quence quality, per sequence average quality, N content
and adapter sequences after the trimming steps de-
scribed in the methods section. Mean read length was
100 bp as expected from library preparation. As shown
in Table 1, sequencing experiments yielded a mean of 40
million total paired reads.
Different workflows with varying filtering steps before

assembly were tested (Fig. 1). Identity percentages be-
tween the assembled genomes and the most related ref-
erences from the viral RefSeq genomes database are
represented in Table 1.
After the characterization with Norovirus genotyp-

ing tool of the longest NoV contig obtained by means
of BLAST against the selected GenBank references
(Additional File 1; filtered BLAST results for contigs
>7 kb), completeness was assessed using checkV [35].
Four different strategies were tested: pipelines A, B, C
or D (pA, pB, pC or pD, respectively). As complete
NoV genomes were obtained from different strategies
for the same samples (Table 2), final complete contigs
were chosen and made publically available [36, 37].
The final contig chosen for sample A was from raw
SPAdes, and CD-HIT SPAdes for sample C. For the
rest, MEGAHIT was chosen: raw MEGAHIT in the
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case of sample B, and CD-HIT MEGAHIT in the case
of samples D, E, F, G and H. (Table 1). Even though
these were the final contig genomes published, all
complete contigs are detailed in Table 2, and a sum-
mary with the average completeness per strategy can
be found in Table 3. Identity percentages shared be-
tween final contigs and the rest of contigs yielded by
different strategies are detailed in Additional File 2;

alignment images between the main contig per strat-
egy in a sample and the closest GenBank reference
genome are presented in Additional files 8, 9, 10, 11,
12, 13, 14 and 15. In the case of SPAdes, only contigs
obtained with custom kmer-lengths are indicated as
autoadjusted kmer-lengths (21, 33, 55) used by default
did not result in complete NoV genome contigs for
most samples (Additional File 3).

Table 1 General Assembly Statistics
Sample A Sample B Sample C Sample D Sample E Sample F Sample G Sample H Average

Total number of reads 68.7 M 15.6 M 47.3 M 35.5 M 23.1 M 45.4 M 45.3 M 44.1 M 40.6 M

Ct value qRT-PCR 25.1 21.38 26.3 13.91 13.91 24.3 21.6 23.9 -

%Total NoV reads
(paired, unique reads
mapping norovirus)

18.5 15.6 1.4 93.9 34.4 42.9 98.6 76.5 47.7

%Total number of reads
not mapping hs37d5

60.5 80.6 76 78.2 80 66.1 68.9 71.7 72.75

Completeness YES YES YES YES YES YES YES YES -

Mean coverage depth
against final contigs

453.05x 2690.55x 2587.67x 7671.9x 6309.99x 7712.23x 7805.97x 7743.57x 5371.87x

% of total reads
identified by mapping
(final contig)

0.026 15.79 1.43 94.31 34.32 42.97 98.77 76.93 45.57

Genotype GII.17[P17] GII.2[P2] GII.17[P17] GII.17[P17] GII.17[P17] GII.4[P4] GII.4[P31] GII.4[P4] -

Final contig length (bp) 7551 7548 7560 7594 7589 7620 7674 7634 -

Published genomes
assembly strategy+

pC SPAdes pC MEGAHIT pD SPAdes pD MEGAHIT pD MEGAHIT pD MEGAHIT pD MEGAHIT pD MEGAHIT -

% identity final contig
against closest RefSeq
reference*

99.6 98.6 99.6 99.5 98.5 98.1 98.5 98 -

number total variants
above 1 % against final
genome

230 180 187 15 55 43 23 32 95.6

NoV: norovirus, *closest reference norovirus genomes: -LC369255.1: samples A, C, D, E.; -MW305627.1: sample B ; -MW284782.1: samples F, H; -MW305617.1|:
sample G. +(36,37) (note that these are not the best assembly strategies for each sample, more than one strategy yielded complete contigs)

Fig. 1 Analysis workflow. Yellow boxes are common steps and green boxes represent variable steps, indicated with YES or NO according to whether
or not each step was performed in each approach. In all four workflows developed, final assembly was tested with both SPAdes and MEGAHIT
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Overall, MEGAHIT performed better than spades in
most approaches, with at most 2 NoV contigs with
length < 7.5 kb (1 in pA; 2 in pB; 1 in pC and 1 in pD).
pA showed the best results for MEGAHIT with an aver-
age of NoV genome completeness of 99.82 %. 7/8 final
NoV contigs were 100 % complete excepting sample G
(98.59 %). In the case of SPADES, the strategies pA, pB
and pC left 3 samples with genome completeness below
97 %. With the use of read binning (pD) along SPAdes
8/8 samples were completely assembled (samples B and
F nearly complete in 99.26 and 99.34 % respectively).
Regarding pA, an average of 72.75 % of total reads

were selected after removing host-mapped reads (de-
tailed by sample in Table 1). These reads were selected
for assembly using SPAdes and MEGAHIT.
With MEGAHIT, complete NoV contigs were ob-

tained for 8/8 samples (sample G was nearly complete
98.59 %). In the case of SPAdes with custom kmer-
lengths, genomes surpassing 7.5 kb were reached for 4/8
samples (A, C, E, G). Sample H had a level of complete-
ness of 97.23 % (7354). The rest had a completeness of
96.52 % (B; length 7284), 93.96 % (D; 7092) and 89.31 %
(F; 6732).
Percentages of unique reads mapping NoV reference

genomes used in pB strategy were not even for the dif-
ferent samples as shown in Table 1. The average of these
percentages was highly similar to that of the unique
number of reads covering the complete genomes assem-
bled (47 % vs. 45 %), indicating that NoV reads mapped
successfully against the references used and that is re-
sembled in the completeness achieved with this strategy.
Adjusted kmer-lengths for SPAdes accomplished contigs
over 7.5 kb in 4/8 samples NoV genomes (A 100 %, B
99.8 %, C 100 % and E 99.75 %). The rest were sample H
(covered 97.02 %; length 7338), D (covered 93.99 %;
length 7094), F (covered 89.31 %; length 6732) and G
(covered 82.47 %; length 6216). In the case of MEGA-
HIT, 6/8 complete genomes were reached. The rest,
sample D and G had a completeness of 98.6 (length
7420) and 95.75 % (length 7227), respectively.
pC consisted of the assembly of trimmed raw reads

with MEGAHIT and SPAdes without additional read
filtering. In the case of MEGAHIT 7/8 samples were

completely assembled. Sample G NoV genome was in-
complete with length 6781 (completeness 91.16 %). Two
others had levels of completeness below 100 (sample B
99.8 %; sample H 99.63 %). SPAdes accomplished 7.5 kb
genomes in 4/8. From the incomplete genome samples,
H had a level of completeness of 97.02 % (contig length
7338), whereas D, F, G were below 7 kb and complete-
ness percentages were 91.39, 89.31 and 82.55,
respectively.
Regarding pD, after read-binning, MEGAHIT assem-

blies yielded 7/8 NoV genomes over 7.5 kb. The incom-
plete sample was sample A with genome length 7163
(95.23 % complete). Sample C was nearly covered at
97.8 %; length 7570. In the SPAdes counterpart 8/8 sam-
ples were completely assembled (sample B 99.26 % and
sample F 99.34 % nearly complete).

Assembly statistics
We compared assembly qualities between MEGAHIT
and SPAdes data from the approaches tested. Tables 4
and 5 show the results obtained. Tables with assembly
statistics per sample are in Supplementary Data
(Additional File 4 for all obtained contigs and Additional
File 5 for Norovirus contigs).
Regarding MEGAHIT, the total number of contigs ob-

tained in pD was reduced by 22 % compared to pC.
From the total number of assembled contigs, 0.22 %
belonged to NoV in pC, whereas using CD-HIT (pD)
this value was 2.41 times higher (0.53 %), being the num-
ber of NoV contigs 1.88-fold higher in pD. Mean N50
was also increased with CD-HIT to 5010 in NoV contigs
(pC mean N50 4554), improving the assembly from
98.83 to 99.14 % average completeness.
MEGAHIT assembled Norovirus whole genomes in

the whole set of samples with pA (sample G 98.59 %
completed). Average completeness for this approach was
the highest for MEGAHIT (99.82 %). Average NoV con-
tigs N50 value was 4567, highly similar to that in pC,
and average NoV contigs proportion (0.39) was lower to
that in pD. The number of contigs respecting to pC was
reduced by 16 %. pB MEGAHIT had an average genome
completeness of 99.30 %. The number of total contigs
was 9-fold lower than pC and from these, 1.8 % belonged
to NoV.
MEGAHIT performed successfully assembling

complete NoV genomes along all the approaches and
even though pC had the lowest average completeness,
the results are almost equivalent in the 4 strategies.
Regarding SPAdes, the percentage of NoV contigs was

7.7-fold higher in pC (1 %) than pD (0.13 %). The total
number of NoV contigs was reduced by 11 % using pD.
However, the proportion of useful NoV contigs
(>5000pb) was 7.75 times higher in pD. N50 was similar
in the two approaches considering all contigs and only

Table 3 Average completeness of NoV genomes in the
approaches tested

average completeness

MEGAHIT SPAdes

pA 99.82 % 97.13 %

pB 99.30 % 95.30 %

pC 98.83 % 95 %

pD 99.14 % 99.83 %

. pA, pB, pC and pD: pipelines A, B, C or D respectively
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norovirus-matching contigs. With pC, (average com-
pleteness 95 %), 4/8 samples had contigs longer than
7000 bp (3 completely assembled and 1 nearly assembled
99.74 % sample E), whereas with pD the average com-
pleteness was 99.83 % and 8/8 samples had a Norovirus
whole-genome candidate contig, surpassing 7.5 kb
length. 6/8 of them accomplishing complete NoV ge-
nomes and 2/8 nearly assembled (B 99.26 %; F 99.34 %).
In this case strategies pA and pB did not present any ad-
vantage compared to pC which is the simplest approach.
The level of completeness in pB was 95.3 % and even
though in pA this value was improved (97.13 %), 4/8
samples do not reach NoV contig lengths over 7.5 kb (so
as in pC and pB). The proportions of NoV contigs over
5 kb were 0.6 and 0.8 % in pA and pB for SPAdes. Again,
this proportion was 11 and 8-fold higher in pD (pipe-
lines A, B and C produced more NoV contigs but only a
few reached completeness, whereas in pD the number of
total NoV contigs was lower).

SPAdes kmer-lengths
Spades autoadjusted kmer-lengths used for assembly re-
garding read length (100 bp) to 21, 33 and 55 were used
for the assembly at first but SPAdes did not yield contigs

near 7Kb in the majority of samples (Additional file 3).
After obtaining notable differences in the number of as-
sembled NoV genomes using SPAdes versus MEGAHIT
we sought to test whether these differences were due to
the kmer-lengths used by each assembler. Kmer-lengths
used by MEGAHIT were 21, 29, 39, 59, 79, 99 and 119.
For that reason, we tested all the strategies with SPAdes
using a set of kmer-lengths of 21, 33, 55, 77, 99 and 119
(intermediate kmer-lengths chosen are the recommended
in the SPAdes manual for 250 × 2 bp read lengths). The
last kmer-length was not used as it surpassed read length.
The rest of the parameters used were the same and the
option –meta was also included. As shown in Table 2,
contigs over 7k were accomplished but excepting pD
strategy, only half of the samples NoV genomes were as-
sembled. In other words, complete assemblies were only
reached with pD strategy and custom kmer-lengths. Be-
sides, some assemblies were reached at different kmer-
lengths and in certain cases, these were lost in the follow-
ing kmer-length steps (Table 2 shows kmer-lengths at
which the contig was assembled in the case of SPAdes
complete or nearly complete contigs; contigs marked with
^ are lost in the following kmer steps), not reporting the
longest contig in the final assembly FASTA file. In the

Table 4 General statistics from all contigs retrieved in the assembly approaches

Mean total
number of
contigs

Mean number of
contigs >5 kb

Mean number of
contigs >10Kb

Mean total length
of contigs > 5 kb

Mean total length
of contigs > 10 kb

Mean
largest
contig

Mean N50
value length

Human filter MEGAHIT (pA) 6851 16 1 114,901 25,288 20,422 1057

NoV filter MEGAHIT (pB) 734 3 0 18,951 0 7753 1257

Raw MEGAHIT (pC) 8142 18 1 132,123 28,435 20,662 1001

MEGAHIT + CD-HIT (pD) 6402 15 1 115,282 27,543 19,538 1018

Human filter SPAdes (pA) 11,250 3 0 25,351 6508 10,274 890

NoV filter SPAdes (pB) 1404 1 0 7335 0 6681 1146

Raw SPAdes (pC) 13,175 4 1 31,236 9095 9558 852

SPAdes + CD-HIT (pD) 11,948 13 1 89,159 13,571 13,530 928

pipelines A, B, C or D respectively

Table 5 General statistics from all contigs assigned to Norovirus using BLAST algorithm

Mean total
number of
contigs

Mean number of
contigs >5 kb

Mean number of
contigs >10Kb

Mean total length
of contigs > 5 kb

Mean total length
of contigs > 10 kb

Mean
largest
contig

Mean N50
value length

Human filter MEGAHIT (pA) 27 1 0 9282 0 7638 4567

NoV filter MEGAHIT (pB) 14 1 0 9527 0 7286 4953

Raw MEGAHIT (pC) 18 2 0 10,153 0 7501 4555

MEGAHIT + CD-HIT (pD) 34 1 0 10,700 1635 8293 5010

Human filter SPAdes (pA) 138 1 0 6099 0 6556 3632

NoV filter SPAdes (pB) 131 1 0 7335 0 6681 3861

Raw SPAdes (pC) 138 1 0 7954 0 6623 3733

SPAdes + CD-HIT (pD) 16 1 0 7273 0 6332 3682

. pA, pB, pC and pD: pipelines A, B, C or D respectively
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case of MEGAHIT, all contigs generated are reported in
the final assembly FASTA file. Despite the fact that pD
was the strategy with more assembled NoV genomes, 4/8
samples are assembled in an intermediate kmer-length
that was no longer reported in subsequent assembly steps.
Sample A was completely assembled with SPAdes pC

with the use of default kmers (additional File 3). As it
can be seen in Table 2 is the only sample appearing
complete at step K55, which was the last used by default
SPAdes.

Variants
The eight studied samples had an average number of
95.6 mutations against the final assembled genomes (in-
cluding variants present in over 1 % of reads). The num-
ber of variants found against the final contigs for each
sample were 230, 180, 187, 15, 55, 43, 23, 32 in the order
A-H. A, B and C exhibited the highest number of vari-
ants (230, 180 and 187) over 1 %. However, when con-
sidering higher variant frequencies (>=10 %), only
sample A maintains high variability, being the number
of nucleotide changes identified 70, 5, 13, 3, 1, 7, 4, 3
variants in order from A to H. In general, variation fre-
quencies are higher towards the 3’ end of the virus gen-
ome (Fig. 2).
Sample A could exhibit a co-infection of various NoV

strains due to the presence of a high number of nucleo-
tide changes with respect to the final contig assembled
(variant frequencies ranging from 10 to 57 %; Fig. 2).
Interestingly, all the strategies shown in Table 2 result in
the assembly of the same contig genotype although they
represent a small part of the reads corresponding to
NoV strains. The percentage of total reads covering the
final contig with genotype GII.17 was 0.026 %. In
Additional File 6 the 20 GenBank NoV references with
most reads mapped for all samples are reported, showing
different genotypes in the case of sample A (GII.12,
GII.4, GII.17, GII.3, GII.2), whereas in the rest the ma-
jority were consistent with the final contig genotype.

Computation resources
We compared the computational resources used by both
MEGAHIT and SPADES with the raw assembly and
after read-binning. MEGAHIT in pC used maximum
50Gb memory for the four samples tested, taking 7 h to
complete assembly (1.75 h/sample). Use of the 16 CPUs
was 12 %. With the pD strategy, it required 20 % CPU
and a peak memory of 60Gb, assembling all tested sam-
ples in just 1 h.
We studied the time and resources used by SPAdes

with four test samples using intra-sample threading. It
took 8 days to assemble these samples (mean, 44.25 h
per sample) without error correction, 186 Gb of memory
and 16 threads with metaSPAdes. Use of CPU was 100 %

with peak memory of 160Gb. With the pD binning strat-
egy, the same test required 30 min for all samples with
45Gb peak memory and maximum CPU usage under
10 %.

Discussion
Different strategies are needed for de novo genome as-
sembly, especially for RNA virus genomes, which present
a higher substitution rate than any other microorganism
(10−3-10−5/site/year) [22, 23, 38–40]. Although there are
plenty of assemblers and even specific viral assembly
pipelines [41, 42], they do not always ensure genome
completion. Due to the variable nature of metagenomic
data, there is no strict workflow to obtain the best as-
sembly and results show high variability. Even with sam-
ples treated equally, different assembly strategies may be
required to obtain optimal results. Data exploration
prior to data analysis is crucial and rigorous analysis is
needed to achieve genome completion. Accordingly, in
this study we explored several different strategies used
to assemble Norovirus genomes in non-related patients.
Interspecies and intraspecies variability was a major

limitation in the analysis, and the diversity present in
our data is further confirmed by the low proportion of
contigs belonging to NoV in Table 1. Assembly quality
did not present any advantage with respect to the raw
assembly pipeline when a specific NoV reference-
oriented analysis was performed. Only the host-reads fil-
ter presented improvements when filtering or gathering
reads that could belong to Norovirus in the case of
MEGAHIT. When attempting to select reads mapping
against NoV genomes, a great number of reads were
filtered out, with a highly variable percentage of
mapped reads between samples (Table 1). Neither
were advantages found when removing human reads
(pA) in the case of SPAdes, even though some studies
have used mapping to host genomes to remove non-
viral reads. Several studies address the use of
reference-guided assemblies to reconstruct viral ge-
nomes. However, the presence of intra-host variability
can cause biased alignments and references have to
be chosen carefully [43, 44].
The mRNA isolation strategy enabled Norovirus viral

representation with read fractions ranging from 0.02 to
98.5 % due to a large variability in virus load of each pa-
tient (Table 1, total Norovirus reads covering contig and
Ct value qRT-PCR). The variability in Norovirus repre-
sentation suggested a need for metagenomic assembly,
for which purpose we preferred to use the “meta” var-
ieties in the case of SPADEs, expecting that contigs and
scaffolds for other organisms would also be present.
Our strategy to counteract this variability was to use a

clustering algorithm to reduce raw data complexity,
selecting for the purpose CD-HIT, a tool widely used in
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Fig. 2 Variant frequencies across assembled Norovirus genomes on each individual (A to H)
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metagenomics specifically for reducing redundancy and
sequencing replicates in metagenomic samples.
Among assemblers, MEGAHIT performed better

than SPAdes, as samples were successfully assembled
independently of CD-HIT use (all strategies were
successful). CD-HIT was most advantageous when ap-
plied before SPAdes assembly, as it is computationally
more expensive and could not yield Norovirus contigs
reaching 7.5 kb in 4 samples without read binning in
any of the approaches (Table 2). By default, SPAdes
worked better with samples with lower coverage
(Table 1; the only sample (A) fully assembled with
raw SPAdes with the default autoadjusted kmer-
lengths up to 55 had 455x mean coverage, 11-fold
lower than the average coverage obtained in all sam-
ples). Samples with higher coverage obtained better
assembly results after kmer-length 77 and read bin-
ning. The stringency used along CD-HIT may vary
depending on the raw data and tuning steps are ad-
visable to avoid the loss of coinfecting strains.
As reported in previous studies [14, 32, 45], SPAdes

is a widely-used short-read assembler for general use
in viruses, including Norovirus studies. Nevertheless,
in our specific scenario we obtained more optimal re-
sults with MEGAHIT. All approaches assembled com-
pletely 6/8 samples with MEGAHIT. Moreover, pC
MEGAHIT assemblies improved slightly when com-
bined with CD-HIT (pD) in completeness, and also
regarding the previously described efficient perform-
ance and low computational resource requirements.
Our data thus support use of MEGAHIT for in-depth
Norovirus assembly and by extension for other RNA
viruses with high sequencing depths, whereas SPAdes
will perform optimally with lower-coverage sequen-
cing experiments. Combined with a step to reduce se-
quence redundancy, SPAdes will improve assembly
quality while reducing data complexity [26, 46, 47].

Conclusions
We tested different workflows for the accurate and
complete assembly of Norovirus genomes. These included
different filtering steps and their subsequent assembly with
both SPAdes and MEGAHIT. Even though there is no uni-
versal workflow for viral RNA assembly, NoV genome-
oriented strategies did not present advantages compared to
assembly without filters for any of the strategies, with the
exception of host-filtering for MEGAHIT. We describe
the performances of MEGAHIT and SPAdes and the use
of read-binning to improve assembly statistics.

Methods
Norovirus-targeted Next Generation Sequencing (NGS)
Fecal samples from eight patients affected by acute non-
bacterial gastroenteritis were collected for Norovirus

study and metagenomic analysis from November 2015
to September 2017. All patients were treated in Hospital
Clínico Universitario of Valencia, Spain. The present
study was carried out in accordance with the Declaration
of Helsinki and was approved by the Ethics Committee
of the Hospital Clínico Universitario of Valencia
(Approval No. F-CE-GEva-15). Patients accepted to par-
ticipate and gave their written consent.
Samples were processed using Trizol (Invitrogen

Corp.) for RNA extraction according to the manufac-
turer’s instructions. Sequencing libraries were prepared
for Norovirus sequencing by means of polyA enrichment
(TruSeq RNA Sample Prep Kit v2, Illumina, California,
EEUU) and sequenced by Macrogen (Seul, South Korea).
Samples were sequenced on an Illumina HiSeq 2000,
obtaining paired end reads with an average length of
100 bp. Raw data from all samples is available at the se-
quence read archive (SRA), accession number PRJNA497363.
GenBank Accessions: sample A: MH997861, sample B:
MK789430, sample C: MK789431, sample D: MK789432,
sample E: MK789433, sample F: MK789434, sample G:
MK789435, and sample H: MK789436 (the strategies chosen
for the final published genomes are detailed in Table 1).

Norovirus genome assembly
All assembly steps were performed on a local server (16
Intel ® Xeon ® CPU E5-2650 0 @ 2.00 GHz processors,
190 GB of RAM and 41 TB disk space) using 16 CPU
threads. Use of computational resources was coordinated
using GNU Parallel [48]. Tests with a fraction of the
samples were performed to study time and RAM mem-
ory required to complete assemblies using NMON v14g
[49] with both assembly from raw reads (pC) and read
binning (pD).
Before assembling the Norovirus genomes, we per-

formed read quality control using FASTQC (v0.11.5,
Babraham Bioinformatics), and quality filtering using
seqtk 1.2-r101-dirty with the default parameters (trim-
ming up to 30 bp from each side following a 0.05 error
rate threshold) [50].
Metagenome assemblies were performed on quality-

trimmed FASTQ files using metaSPAdes v3.11.1 [51]
with auto adjusted k-mer lengths of 21, 33 and 55 nucle-
otides and in parallel, using MEGAHIT v1.1.3 [33] with
optimized k-mer lengths of 21, 29, 39, 59, 79, 99 and
119. After incompleteness of SPAdes NoV contigs, we
decided to test kmer-lengths 21, 33, 55, 77, 99 and 119.
The longest kmer was chosen to be equal to MEGAHIT
and the rest are the recommended in SPAdes manual
for Illumina longer reads (250 × 2).
Four variations of the assembly strategy were imple-

mented to obtain Norovirus genomes (Fig. 1). Since our
biological data is poly-A RNA, we expected to find hu-
man mRNA representation. Therefore, in the first
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derivation (pipeline pA), human reads were removed
(Fig. 1; pA). Trimmed FASTQ files were mapped on the
hs37d5 reference assembly (ftp://ftp.1000genomes.ebi.a-
c.uk/vol1/ftp/.../hs37d5.fa.gz) using BWA mem v0.7.25-
r1140 [52]. Reads not mapped against this reference
were selected for assembly using both MEGAHIT and
SPAdes with the previously described parameters, as well
as --meta flag in SPAdes.
Pipeline pB directly selected Norovirus reads from the

original FASTQ files by mapping against GenBank NoV
genome sequences (483 genomes: updated in July 2021;
Additional file 7 includes accession numbers) (Fig. 1;
pB). Trimmed FASTQ files were mapped against the
former FASTA reference file as in pA, selecting mapped
reads against the NoV genomes reference for assembly
in this case. Pipeline pC consisted of assembling
trimmed FASTQs without applying any filtering steps
(Fig. 1; pC).
Finally, pipeline pD consisted of performing sequence

binning via CD-HIT [53] on the raw quality-trimmed
FASTQ files, clustering sequencing reads at 80 % identity
to reduce sequence redundancy. SPAdes and MEGAHIT
were run with the same parameters as previously used
for a final round of metagenome assembly, using CD-
HIT preprocessed FASTQ files as input (Fig. 1; pD).
Norovirus contigs were identified using a local BLAST

database built from reference Norovirus genomes ob-
tained from GenBank (483 genomes: updated in July
2021; disclosed in Additional File 7). All assembled con-
tigs were subjected to BLASTN [54] v2.2.31+ search,
and Norovirus contigs were retrieved.
Quality statistics from all generated assemblies and

filtered Norovirus contigs were assessed using QUAST
v4.6.3 [55]. Raw quality-trimmed sequencing reads were
mapped to the assembled Norovirus contigs using BWA
mem to assess the volume of reads corresponding to
Norovirus.
Mean depth of coverage for each complete Noro-

virus genome per sample was calculated using Sam-
tools v1.7 [56], on BAM files generated by mapping
all sample reads to their corresponding final de novo
assembled genomes using BWA mem. Open reading
frames were predicted with GeneMark v3.25 [57] and
inspected using Norovirus Genotyping tool v2.0 [58].
Final assemblies were chosen according to compari-
sons based on N50, contig length and completeness
assessed with checkV [35].
For the sake of comparing the accuracy of the two as-

semblers used, the different workflows tested were com-
pared (Fig. 1).

Norovirus variability among samples
After raw read mapping to the final assembled Noro-
virus contigs, variant calling was performed using

Freebayes v1.2.0 [59]. Only variants at 1 % VAF and at
least six alternate reads were considered.
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