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Abstract

Autonomous robotic suturing has the potential to improve surgery outcomes by leveraging 

accuracy, repeatability, and consistency compared to manual operations. However, achieving full 

autonomy in complex surgical environments is not practical and human supervision is required to 

guarantee safety. In this paper, we develop a confidence-based supervised autonomous suturing 

method to perform robotic suturing tasks via both Smart Tissue Autonomous Robot (STAR) and 

surgeon collaboratively with the highest possible degree of autonomy. Via the proposed method, 

STAR performs autonomous suturing when highly confident and otherwise asks the operator for 

possible assistance in suture positioning adjustments. We evaluate the accuracy of our proposed 

control method via robotic suturing tests on synthetic vaginal cuff tissues and compare them 

to the results of vaginal cuff closures performed by an experienced surgeon. Our test results 

indicate that by using the proposed confidence-based method, STAR can predict the success of 

pure autonomous suture placement with an accuracy of 94.74%. Moreover, via an additional 25% 

human intervention, STAR can achieve a 98.1% suture placement accuracy compared to an 85.4% 

accuracy of completely autonomous robotic suturing. Finally, our experiment results indicate that 

STAR using the proposed method achieves 1.6 times better consistency in suture spacing and 1.8 

times better consistency in suture bite sizes than the manual results.

I. INTRODUCTION

Robot-Assisted Minimally Invasive Surgery (RAMIS) systems take advantage of highly 

dexterous tools, hand tremor motion filtering and scaling to improve patient outcomes by 

reducing patient recovery times and collateral damage [1]. However, majority of state of 

the art systems for robotic assisted surgeries are based on a tele-operated paradigm. As 

an example, the pioneer and commercially successful da Vinci Surgical System (Intuitive 

Surgical, Sunnyvale, California) [2] has been utilized in a wide range of surgical procedures 

in urology, cardiothoracic, and general surgery. Raven surgical robot developed at the 
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University of Washington [3] and Senhance system from TransEnterix (Morrisville, NC) 

are other examples of tele-operated systems.

Autonomous control algorithms for RAMIS benefit from robotic accuracy and repeatability 

during surgical procedures. Such systems possess the potential to reduce human errors, 

deliver improved patient outcomes independent of surgeon’s training and experience, and 

also allow remote surgeries without high-bandwidth networks [4]. Pre-planned autonomous 

RAMIS was implemented in bony orthopedic procedures (e.g. ROBODOC, Caspar, and 

CRIGOS), radiotherapy, and cochlear implants [5], [6]. Efforts in automating deformable 

and unstructured soft tissue surgeries include knot tying, needle insertion, deformable tissue 

tracking, and executing predefined motions [7]–[12]. Machine learning techniques were 

introduced in robotic suturing to facilitate system calibration [13] and to imitate surgical 

suturing from video demonstrations [14].

However, achieving full autonomy in complex surgical environments is not infallible and 

surgeon supervision and control take over is critical for safe operation. Our goal is to 

develop a supervised-autonomous control strategy that enables performing complex surgical 

procedures via both autonomous robot and surgeon collaboratively with the highest possible 
degree of autonomy, while ensuring safe operations. Thus a critical element in achieving 

this objective effectively is designing algorithms that will make the autonomous robot 

“self-aware” of the limitations of its automation capabilities. Such algorithms innovate by 

maximizing the level of automation of the RAMIS and minimizing the expected errors of 
the variables for which the robot is confident of performing more accurately than its human 

supervisor via an effective collaboration between the two.

Collaborative control strategies take the general form

U t = α t M t + 1 − α t A t , (1)

where M(t) are the manual control commands from a human operator that are combined 

with the autonomous control commands A(t) via complementary scales α(t) ∈ [0, 1] and 

1–α(t) respectively in order to control the robot via the total control input U(t). Typical 

examples of such control inputs include position and velocity profiles, and force/torque.

Based on the application, different methods have been proposed for defining the function 

α(t). The goal is to determine α(t) dynamically based on an independent variable while 

the robotic control task is on the fly to fulfill certain performance criteria. Some examples 

include, dynamically changing α(t) based on position tracking accuracy [15], proximity to 

obstacles and/or desired locations [16], the prediction of human intentions in controlling 

the robot [17], and the trust of human to the autonomous controller of robot [18]. In 

surgical applications, the robot autonomously constrains the roll-pitch-yaw motion of the 

surgical tool for precision drilling by the surgeon [19] or for avoiding collisions, joint limits, 

and singularities [20]. Shared autonomy has also been proven effective for reducing the 

complexity of steering flexible robotic endoscopes [21] and flexible surgical manipulators 

[22]. Such techniques have been utilized for improving the tissue cutting precision of 

surgical robots [23].
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In our previous work we developed and examined a confidence-based shared control strategy 

for our Smart Tissue Autonomous Robot (STAR) with applications in electrosurgery [23]. 

In this work, we extend the “self-aware” confidence-based strategies to robotic suturing 

with an application in vaginal cuff closure via the tesbed shown in Fig. 1. This requires 

the design and development of new methods for a discrete-time human intervention in 

a supervised autonomous strategy which can be extended to similar surgical tasks. In 

our proposed method, the robotic system generates a suture plan and continuously tracks 

tissue deformations as common disturbances during surgery to update the produced plan. 

However, the system dynamically assesses the confidence levels in completing each step 

of the suturing process autonomously (based on tissue deformation) and suggests to the 

operators to intervene and fine-tune a suture point location if it is not feasible for the robot 

to complete that specific suture purely autonomous. Compared to our previous work [24], 

the new method takes advantage of human supervision to reduce the chance of sporadic 

autonomous control mistakes specially when the robot has to complete a long task in 

pure autonomous mode. This method can also provide an easier path towards regulatory 

approvals for the resulting RAMIS.

In summary, the contributions and novelty of the paper include: i) developing a confidence

based supervised control strategy for robotic suturing tasks, ii) assessing the performances 

of the autonomous control resource and identifying the confidence models for robot as 

well as the confidence-based allocation function α(t), and iii) experimentally evaluating 

the accuracy of our proposed control strategy via multiple tests on synthetic vaginal cuff 

models and comparing them with pure manual vaginal cuff closures. The first contribution 

allows the human operator to intervene in the control system from a higher level (i.e. 

sporadic command adjustments instead of continuously sharing the control with the robot), 

which is different than the method in [23]. Moreover, the confidence model novelties focus 

on a different surgical task which include different inputs and performance criteria and 

decision-making processes. Our proposed shared control strategy is depicted in Fig. 2. The 

remainder of this paper is organized as follows. The robotic system and the planning and 

control methods are detailed in Section II. The results of tests via the proposed method are 

presented in Section III and discussed in Section IV. Section V concludes the paper.

II. METHOD

A. Experiment Setup

The experiment setup for our STAR system is shown in Fig. 1.a. A 7-DOF KUKA LBR 

Med lightweight arm (KUKA AG, Augsburg Germany) and an actuated suturing tool based 

on commercial Endo360° suturing device from EndoEvolution (North Chelmsford, MA, 

USA) were used to perform the suturing tasks. The tool was modified by adding two DC 

brush motors (Maxon Motors, Sachseln, Switzerland) to drive a circular needle and control a 

pitch rotation of the tool tip [25]. EPOS2 controllers (Maxon Motors, Sachseln, Switzerland) 

were used for precise positioning control, and were connected into a host computer using 

a controller area network (CAN). An multi-axis force sensor (ATI industrial automation, 

NC, USA) was used to measure the tensioning force to prevent tissue from damage during 

suturing tasks.
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The dual camera imaging system (Fig. 1.b.) consists of a RGBD camera, Realsense D435 

(Intel Corp., Santa Clara, California), and 845nm±55nm 2D NIR camera (Basler Inc., Exton, 

PA). The 3D camera detects 3D tissue surface information and the 2D Near-infrared (NIR) 

camera detects the location of NIR markers. In the study, a light source with 760 nm 

light-emitting diode (North Coast Technical Inc., Chesterland, OH) was used to excite the 

fluorophore, enabling the NIR markers to be visualized with the NIR camera, shown in 

Fig. 1.c. The coordinate system of the 2D NIR image was registered to that of 3D camera 

through camera calibration. The 3D position of the NIR markers can be found by ray tracing 

the NIR marker positions via a coregistered point cloud from the 3D camera, shown with 

color points in Fig. 1.d. A hand-eye calibration registered the 3D camera coordinate system 

onto the robot coordinate system by using a calibration rod and a checkerboard [26]. The 

3D location of the markers w.r.t. robot frame were obtained and used by STAR for suturing 

tasks.

In our previous studies [27], the Near-infrared florescent (NIRF) marking technique plays 

a key role to enable our 3D vision tracking system to successfully track markers location. 

NIR markers have high signal to noise ratio (SNR) and strong signal penetration to improve 

target detection from background even under obstruction of blood and tissue, and therefore 

are suitable for intra-operative robot guidance [28]. The spatial locations of NIR markers are 

extracted by a dual camera system and can be utilized for vision-guidance tasks.

B. Surgical Task and Evaluation Criteria

In this paper, we utilize STAR to perform vaginal cuff closure on synthetic vaginal cuff 

tissue (3-Dmed, Ohio, United States). Synthetic tissue, with 5 cm diameter and 5 mm wall 

thickness, was chosen since it is designed for surgical training in vaginal cuff closure. The 

test samples were fastened within a 3D printed ring with two stay sutures coming from the 

side and two alligator clips clamping sample’s edge from the bottom to simulate the clinical 

scenario including the attachment of the vaginal cuff to surrounding tissue [24]. The test 

sample with the 3D printed ring was placed in front of the dual camera system with distance 

of 35-38 cm which satisfies the minimum sensing distance of the camera. NIR markers 

were used manually placed on the cross section edge of the tissue prior to the suturing 

task only performed by STAR. The suturing results performed by STAR were compared to 

manual results of our previous study [24] on i) total time to complete, ii) suture spacing 

(i.e. the distance between consecutive stitches), and iii) bite size (i.e. distance from where 

a stitch enters into tissue to the tissue surface). The latter two measures are relevant to post 

surgical complications such as infection and dehiscence [29]. Statistic analysis including 

T-test and Levene’s test were utilized to compare averages and variances, respectively, for 

the evaluation criteria. Furthermore, to compare the new confidence-based method with pure 

autonomous control, we compared the number of hit and misses (correct/incorrect suture 

placements) and the percentage of human intervention.

C. Control System

Fig. 3 shows the block diagram of the autonomous controller with occasional confidence

based human interventions for fine adjustments on the tool position. In the control loop, 

finding the 3D position of the NIR markers via the dual-camera system was explained earlier 
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in Secion II-A. A suture planner utilizes the NIR markers and the point cloud to determine 

the desired location of each knot and running stitch. The suture planner incorporates a 

planning method developed in our previous work [24] consisting of a point cloud path 

planning method to initialize a suture plan based on the NIR marker positions followed by 

a non-rigid registration method for updating a new suture plan on a deformed tissue during 

the suturing steps. The details of the path planning method can be found in [24] and are not 

discussed here since they are not the focus of this paper.

The confidence based allocation subsystem, via the method detailed in Section II-D which 

is the main focus of the paper, will determine which sutures from the suture planner can be 

done autonomously and which ones will require a possible human intervention. In the GUI 

(shown in Fig. 2), autonomous suture points are highlighted in green and manually adjusted 

points highlighted in red. The user modifies the suture point location via slider bars in 3 

dimensions if the initial semi-autonomous suture placement attempt for the red points results 

in a misplaced suture. Thus, operator supervises the robot when manual mode with α = 1 

is selected (also referred to as assisted mode here) and only modifies the target suture point 

location if needed.

Finally, a high-level suturing logic and task planner then receives the resulting 3D 

coordinates of the suture points in the robot frame and plans the sequence of robot motions 

to complete the knot and running stitches on the desired and equally spaced positions [30]. 

This includes a combination of approaching the tissue, biting (firing the needle), tensioning, 

and releasing the suture. For completing knots, the process of approaching and biting the 

tissue is executed twice in the same place to form a tie and lock the knot into place. For 

completing the running stitches, STAR only executes one round of approaching the tissue, 

biting, tensioning, and releasing. For each suture, the high-level task planner will stop 

tensioning once a maximum tension force of 2 N or a tension distance of 20 cm (dropping 

by 5mm after each stitch) was reached without tearing the tissue.

D. Confidence Level Evaluation

In this section, we explain the process of initial data collection for confidence level 

evaluation and model fitting. A variation of this process determining which sutures can 

be performed autonomously and which possibly require human intervention is implemented 

and detailed later in Section III.

The main factor affecting the correct suture placement that we discovered in our prior study 

[24] is whether the location of a new suture point was accurately estimated on an actual 

tissue for a robot to successfully reach. Fig. 4.a shows an example of a planning scene with 

new suture points updated by the planner. The suture point in Fig. 4.b is placed on the inside 

edge of the vaginal cuff, which indicates a lower chance for the needle to successfully catch 

the tissue. The suture point shown in Fig. 4.c, has a higher chance for a stitch to be placed 

successfully since its location is in middle from both side of the tissue. The suture point 

placed on empty area in Fig. 4.d has no chance for the robot to complete a stitch since no 

physical target is present at the target location.
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In addition to how accurately the suture point is estimated by the planner, the geometry of 

the suture tool also affects the chance of successfully reaching the target. If the tissue portion 

appears more in the needle jaw as the suturing tool approaches the target, as shown in Fig. 

4.e, the suture tool has a higher chance to catch the target, and vice versa (Fig. 4.f). Our 

hypothesis is that the robot confidence for placing a stitch successfully on a suture point is 

associated with tissue information near the suture point, and the geometrical information of 

the tool-tip projected at the suture point. After collecting this information, an identification 

process will be carried out to determine a confidence model. In the real-time experiments, 

the resulting model will be used to evaluate the confidence level for success in completing a 

stitch on a suture point and hence autonomy allocation. Next, we explain the data collection 

process for the model identification.

Data Collection: In the data collection step, we collect the point cloud near a target 

location within a region based on the geometrical information of the suture tool-tip. A 

vaginal cuff phantom tissue is used as a target and is placed in the dual camera view (Fig. 

4.g). We first command the robot to reach a target location which is manually selected from 

the RGBD camera view through a software interface. We define a rectangular box, shown 

in green in Fig. 4.g, with the same dimensions (10mm × 3mm × 8mm) of the needle jaw 

and collect point cloud within the box using a passthrough filter in Point Cloud Library 

(PCL) [31]. The orientation of the box is assigned with an identical orientation of the actual 

tool-tip w.r.t. the robot base frame. The collected point cloud in the box are categorized 

into two groups (Fig. 4.h): points in jaw (PIJ), shown as green points, and points on tool 

(POT), shown as red points. PIJ are points that are projected to be within the tool jaw if the 

tool moves exactly to the suture position, whereas POT are the counterpart points that are 

projected to collide with the tool jaw. The boxes are used to collect the PIJ and POT on the 

selected locations, shown in Fig. 4.i. An additional information of whether the robot hits or 

misses (HM) is recorded by commanding the robot to reach each target location and visually 

examining whether the needle penetrates the target. The data is evaluated through MATLAB 

(MathWorks, Natick, MA, USA) to find a confidence model.

III. RESULTS

A. Data Collection for Identification of Confidence Models

Fig. 5.a shows the result of the data collection process. A total of 94 data points were 

collected by using the methods described in section II-D. Each data point encapsulates three 

sets of information: PIJ, POT, and HM. Notice that the resolution of point cloud in an area 

can be affected by how far the target is placed away from the RGBD camera. In this study, 

the target tissue was located within a 35-38 cm distance from the RGBD camera which 

satisfies minimum sensing distance of the camera as well as sufficient workspace for the 

robot to operate. In Fig. 5.a, both axes were cut off at 20 since there are no more than 20 

points observed in each categories under chosen camera distance. The HM data is plotted 

with 0 representing a miss and 1 representing a hit. Examples of individual data points 

are shown in the in Fig. 5.a. Fig. 5.a.I shows data points with low PIJ which indicate low 

chances for robot to place suture in the correct location. Data points with high PIJ and high 

POT, as shown in Fig. 5.a.II, result in a similar number of hit and miss because the data 
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could be on a flat surface (resulting in a miss) or a narrow opening on the tissue which is 

not detected by the camera but it’s feasible for the robot to reach (resulting in a hit). Data 

points with high PIJ but low POT, shown in Fig. 5.a.III, contain more successful targeting 

cases (i.e. HM = 1). With most PIJ estimated in the jaw only, a tool-tip has a higher chance 

to fit the target inside the jaw and avoid tool collision. Lastly, data points with extremely low 

PIJ and low POT in Fig. 5.a.IV mostly indicate the robot will fail to reach the target (i.e. HM 

= 0), since there is no point cloud presented in the scene.

B. Selection of Confidence Model and Autonomy Allocation Function α

Using the data collected from the data collection process, we analyzed the robot 

performance based on PIJ and POT to identify a confidence model. The curve fitting toolbox 

in MATLAB [32] was utilized and multiple curves were fitted to the collected data with x = 

PIJ, y = POT, and ca = HM (i.e. the confidence in the autonomous control in placing a suture 

in the right location). We examined first order to third order combinations of x and y and 

eventually variables x–y, x, and x2 were chosen for candidate inputs to the model fits of data 

because of their strong positive relationship to ca (i.e. correlation coefficient R > 0.6). Fig. 

5.b shows results of our best fitted model which describes the data behavior according to the 

following

ca = a + b
e−c(x − y − d)) + gx + ℎx2

with a = 0.031, b = 0.518, c = 10.68, d = 1.033, g = 0.032, and h = −0.0007. According to 

Fig. 5.b, the fitted function suggests that the chance of the robot hitting a target suture point 

increases when the difference between PIJ and POT increases and vice versa. Similarly, 

more/less PIJ results in higher/lower chance of reaching a perfect suture location. The fitted 

curve in Fig. 5.b is defined as a confidence model for the robot (i.e. autonomous mode) 

performance.

An autonomy allocation function α can be determined once the confidence model is defined. 

The autonomy allocation function serves as a switch to indicate if a task is autonomous (α 
= 0), or manual/assisted (α = 1) based on the confidence model and a decision threshold τ. 

In an actual suturing task, an estimated HM chance of a planned suture point can be derived 

by mapping its PIJ and POT onto the confidence model. If the estimated HM lies beyond the 

threshold, the autonomy allocation function considers the robot is confident to accomplish 

the task autonomously (α = 0 when ca ≥ τ). On the other hand, if the estimated HM falls 

under the confidence threshold, the autonomy allocation function believes the robot needs 

supervision when performing tasks (α = 1).

In the study, we choose two thresholds τ1 = 0.854, τ2 = 0.9 for our system to perform 

vaginal cuff closure in our experiments. The first threshold τ1 = 0.854 was chosen after 

performing pure autonomous targeting tests on vaginal cuff phantom with different open 

and close samples under rotated configurations (0°, 15°, and −15°) w.r.t. the z-axis shown 

in Fig. 4.g, evaluating how many target points were successfully reached. In the test, 41 

target points were hit out of total 48. Thus, the success rate 0.854 (85.4%) was chosen as the 
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first decision threshold. The second decision threshold τ2 was selected through confidence 

model in Fig. 5.b. To maximize robot performance in terms of accuracy, we selected τ2 

= 0.9 to be the decision threshold in the figure (i.e. success rate of 90% or higher as a 

decision threshold). We expect that the allocation function with a 90% threshold will be 

more conservative and will assign more tasks to the operator for supervising autonomous 

mode. The decision thresholds τ1 and τ2 were used in the final experiments.

C. Results of Vaginal Cuff Closure

Four robotic suturing experiments were conducted using STAR with our proposed method. 

STAR performed two suturing tasks for each decision threshold τ1 and τ2. Each task 

included completing a knot at the beginning followed by 11 running stitches and 

autonomous tensioning. We first compare the suturing results done by STAR and by manual 

method [24]. The results of the robotic and manual suturing are summarized in Table I with 

representative results shown in Fig. 6. The cuff closure using robotic technique in Fig. 6.a 

opened up slightly since no knot was placed at the end of the suturing task and the suture 

tension decreased after sample removal. In Table I, the task completion time for STAR is 

on average 10.8 minutes (647 seconds) longer and is on average 69.4 seconds slower in 

completing a stitch than the surgeon. Regarding the suture spacing and bite size, variance 

of both modalities are statistically less for STAR compared to that of the manual results (p 
< 0.05), which indicates STAR can place the running stitches more uniformly (1.6 times 

better) and is more consistent in bite depth (1.8 times better) compared to the surgeon.

From the results in Table II, it can be seen that the less conservative decision threshold τ1 

= 85.4% resulted in higher number of autonomous suture placement compared to τ2 = 90% 

(i.e. 117% more considering total suggestions of 13 vs 6). However, τ2 resulted in 100% 

successful hits compared to the 92.31% hit rate via τ1, both of which were greater than the 

chosen thresholds. For the total of 19 predicted autonomous sutures, the prediction accuracy 

was 94.74% (i.e. 18 correct out of 19 guesses). The missed stitch occurred at the 11th suture 

of the test which is very close to the final steps of the suturing process when the target 

tissue is almost closed and generally with a higher risk of missing an autonomous suture. 

This can be verified via the plots in Fig. 7 that show how the average predicted confidence 

in autonomous suture placement degrades closer to the end of the suturing task during the 

4 tests. A representative example is shown in Fig. 6.c and Fig. 6.d, which can differentiate 

the easy and difficult parts of the suturing via the generally higher and lower number of 

green suturing points (i.e. the points that robot is confident in performing an autonomous 

suture placement). In these experiments 45.16% of the manual/assisted control suggestions 

happened in the first half of the suturing task (generally easier since the tissue is more open 

and approachable by the robot) and 54.84% in the second half (i.e. ratio of 0.82).

From the total of 33 sutures predicted in the manual/assisted mode, which warned the 

operator about the possibility of missing a stitch in the correct location, 12 stitches really 

required human intervention (i.e. 36.36% of the suggested stitches). This happens because 

we selected relatively high confidence levels for the decision threshold to guarantee a higher 

accuracy. Furthermore, based on the initial data collection and confidence model-fitting, we 

know that a miss is guaranteed only for suture points with very low confidence levels in the 
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autonomous mode. Therefore, these conservative predictions still provide valuable feedback 

for alerting the operator in the assisted mode to supervise the robot for possible misses and 

a need for tool-tip position corrections. In these tests, for each suture that required operator 

assistance, an average Euclidean distance of 3.99 ± 1.02mm w.r.t. its targeting location was 

added via the GUI to ensure the suture was placed in the correct location. For the total 

of 52 stitches placed using the confidence-based method, a total of 25% required human 

intervention (i.e. 12 missed stitches from the predicted assisted sutures and 1 miss from the 

predicted autonomous sutures).

IV. DISCUSSION

The new confidence-based method takes a more conservative approach toward autonomous 

suture placement and hence increases the accuracy of autonomous suture placements 

from 85.4% in a pure autonomous suturing process to 94.74%. For the overall 52 suture 

placement attempts during the 4 tests, this accuracy is 98.1% by taking advantage of a 

25% overall human intervention. However, this rate of intervention is considerably smaller 

compared to the case where a human needs to manually adjust all the sutures via the same 

robotic system without any use of autonomy.

Although the initial results from the proposed confidence-based strategy are promising, this 

method can further benefit from additional confidence measures such as the accuracy of the 

system calibration, non-uniform weighting for the PIJ and POJ points based on distance to 

the tool center, proximity of NIR markers and consecutive suture points, which may further 

improve the accuracy of the predictions. Moreover, a 3D camera with a higher resolution can 

significantly improve the accuracy of point cloud based estimations.

V. CONCLUSION

We presented a novel supervised autonomous suturing method that enables STAR to perform 

confidence-based suturing task collaboratively with operators. Specifically, a confidence 

model as well as an allocation function were identified based on the point cloud information 

of the tool-tip. STAR performs autonomous suturing with our proposed method to predict 

whether it is confident to place a stitch successfully on a suture point or needs a positioning 

adjustment from the operator. The results demonstrate that with using the proposed 

confidence model, STAR can predict the success of pure autonomous fairly accurately as 

well as improve suture placement accuracy over pure autonomous control. Moreover, STAR 

achieves results with better consistency in suture spacing and bite size compared to the 

manual laparoscopic surgery. Future work will include additional confidence models and 

investigating dynamic thresholds to improve prediction accuracy for other suturing tasks, 

using a better 3D camera system to improve point cloud resolution, and improving the speed 

of the suturing procedures.
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Fig. 1: 
a) Experiment setup for confidence-based supervised autonomous vaginal cuff closure, b) 

dual camera system, c) NIR image view with NIR markers on the vaginal cuff phantom, and 

d) point cloud view from RGBD camera with 3D NIR marker overlaid.
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Fig. 2: 
Conceptual block diagram of proposed confidence-based supervised autonomous suturing 

method.
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Fig. 3: 
The autonomous control loop with confidence-based manual adjustments.
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Fig. 4: 
Examples of reaching suture points on a phantom vaginal cuff and steps of the data 

collection: a) Point cloud view with three suture points selected, b) a suture point is on 

an edge, c) a suture point has a high chance to be caught, d) a suture point has no chance 

to be caught, e) a good orientation of a tool-tip to reach suture points, f) a bad orientation 

of the tool-tip to reach suture points, g) rectangular box model of tool-tip, h) the projected 

rectangular box containing two groups of point cloud, and j) projected rectangular boxes to 

collect data on multiple suture points.
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Fig. 5: 
Result of data collection and confidence model identification. Data point examples of a.I) 

high POT but low PIJ, a.II) high POT and high PIJ, a.III) low POT but high PIJ, and a.IV) no 

POT and no PIJ. b) The confidence model identified for the confidence in autonomous (ca) 

based on collected data.
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Fig. 6: 
Results of synthetic vaginal cuff closure. a) STAR, and b) manual [24]. c) Higher number of 

green suture points before suturing. d) Lower number of green suture points after the vaginal 

cuff is closed.
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Fig. 7: 
Average and standard deviation of confidence in autonomous suturing versus task 

progressions.
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TABLE I:

Comparison of robotic and manual results.

Modality Total time (min) Time per stitch (sec) Suture spacing (mm) Bite size (mm)

STAR 17.7 ± 0.7 88.9 ± 23.2 7.41 ± 1.33 5.71 ± 1.34

Manual [24] 6.9 ± 0.2 19.5 ± 3.8 9.19 ± 2.08 4.96 ± 2.39
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TABLE II:

Comparison of first attempt hit and misses based on the decision threshold (τ1 = 85.4% and τ2 = 90.% 

confidence levels) for a total 52 suture placements.

Predicted/Suggested Mode

Auto Assisted

τ1 τ2 all τ1 τ2 all

Hit 12 6 18 10 11 21

Miss 1 0 1 3 9 12

Total 13 6 19 13 20 33
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