Skip to main content
. 2021 Oct 29;118(44):e2107881118. doi: 10.1073/pnas.2107881118

Table 1.

Results of the GLMMs estimating the effect of fevers on sickness behavior, aggression received, and injury

Model Estimate ± error fever (n/y) Probability of direction % fever (n/y) Estimate ± error sex (female/male) Probability of direction % sex (female/male) Model probability predictions* R2 marginal R2 conditional
Febrile Afebrile
Resting,
SI Appendix, Table S1
0.08 ± 0.03 99.88 0.17 ± 0.04 100 0.35 0.32 0.41 0.59
Feeding,
SI Appendix, Table S2
−0.17 ± 0.03 100 −0.06 ± 0.04 95.28 0.25 0.29 0.36 0.51
Traveling,
SI Appendix, Table S3
0.07 ± 0.03 97.92 0.08 ± 0.04 98.52 0.26 0.24 0.34 0.43
Socializing,
SI Appendix, Table S4
−0.04 ± 0.06 70.80 −0.88 ± 0.08 100 0.10 0.09 0.19 0.40
Grooming given,
SI Appendix, Table S5
−0.02 ± 0.09 57.57 −1.47 ± 0.12 100 0.06 0.06 0.16 0.36
Grooming received,
SI Appendix, Table S6
−0.02 ± 0.09 59.15 −0.37 ± 0.09 100 0.03 0.03 0.05 0.15
Aggression received,
SI Appendix, Table S7
0.33 ± 0.12 99.68 −0.64 ± 0.40 94.86 0.02 0.01 0.01 0.16
Injured,
SI Appendix, Table S8
1.99 ± 0.23 100 0.31 ± 0.33 83.28 0.03 0.005 0.003 0.03
*

Calculated for the reference sex category (females) using the following equations: 1) activity Poisson GLMMs: febrile probability = exponentiate (intercept estimate + fever estimate), afebrile probability = exponentiate (intercept estimate); and 2) aggression and injury Bernoulli GLMMs: febrile probability = inverse logit (intercept estimate + fever estimate), afebrile probability = inverse logit (intercept estimate).