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Accurate characterization of the time courses of blood-oxygen-
level–dependent (BOLD) signal changes is crucial for the analysis
and interpretation of functional MRI data. While several studies
have shown that white matter (WM) exhibits distinct BOLD
responses evoked by tasks, there have been no comprehensive
investigations into the time courses of spontaneous signal fluctua-
tions in WM. We measured the power spectra of the resting-state
time courses in a set of regions within WM identified as showing
synchronous signals using independent components analysis. In
each component, a clear separation between voxels into two cate-
gories was evident, based on their power spectra: one group
exhibited a single peak, and the other had an additional peak at a
higher frequency. Their groupings are location specific, and their
distributions reflect unique neurovascular and anatomical configu-
rations. Importantly, the two categories of voxels differed in their
engagement in functional integration, revealed by differences in
the number of interregional connections based on the two catego-
ries separately. Taken together, these findings suggest WM signals
are heterogeneous in nature and depend on local structural-
vascular-functional associations.
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Functional MRI (fMRI) has become the leading technique
for mapping neural activities by detecting changes in blood-

oxygen-level–dependent (BOLD) signals in the brain. Mathe-
matical analyses have been developed to identify regions of
activation where BOLD signals rise significantly above the base-
line in response to a stimulus (1), and to identify functional cir-
cuits, by detecting synchronous BOLD signals in segregated gray
matter (GM) regions during task-free, resting states (2, 3). White
matter (WM) makes up over half of the brain volume and exhib-
its a comparable oxygen extraction profile to that in GM (4), but
its engagement is rarely reported in either task or resting-state
fMRI studies. In practice, the average BOLD fluctuations within
WM have often been regressed out as a nuisance covariate (5, 6).
In recent years, a growing body of literature has recognized that
changes in BOLD signals in WM may reflect neural activities
(7–9) and, by using appropriate methods, BOLD changes associ-
ated with external stimuli can be reliably detected with conven-
tional fMRI (10–16). However, the sensitivity of detecting WM
activation is often much lower compared to GM, possibly due to
incorrect assumptions made about the time courses of responses
that are incorporated into regression models for detection (17).
According to our recent studies, WM tracts that are involved in
the processing of external stimuli may exhibit distinct time courses
different from GM, with reduced magnitudes and delayed peaks,
reflecting quantitative differences in hemodynamic conditions
between GM and WM (18–20). These findings highlight the
importance of characterizing the temporal profiles of BOLD sig-
nals so that neurovascular coupling in WM may be better under-
stood and incorporated appropriately into analyses.

To date, efforts to characterize the BOLD response of
WM have mostly focused on task-evoked BOLD signals where

the onset of each time course is locked to known events (or
stimuli). Then, the statistical significances of measurements of,
for example, the magnitudes and times to peak of the responses
can be rigorously evaluated based on averaging and comparing
across trials, runs, sessions, and subjects. However, the lack of
reference events affecting intrinsic BOLD signals makes it diffi-
cult to quantify or compare time courses among individuals or
regions. The existing literature usually reports data based on
interregional correlations, which are reproducible over scans or
subjects (21–26), in which, however, characteristics of the time
courses themselves were disregarded. Spectral analysis of sig-
nals represents a complementary approach to identifying fea-
tures of interest, and BOLD effects that appear to be random
and small over time may reflect a distinct pattern of component
frequencies. In fact, power spectral analysis has been frequently
used to characterize spontaneous activities in GM, identifying
significant differences in BOLD changes between different cor-
tical areas, different cognitive states, or different frequency
bands (27–29). Though shown to provide robust statistical
descriptions of signals (30–32), such analyses have been limited
to GM, and there remains a paucity of information regarding
resting-state time courses in WM. Our recent studies suggest
that, compared to GM, WM signals have a comparable fre-
quency range and exhibit similar patterns in their powers as a
function of frequency (33), so power spectra may provide addi-
tional insight into the nature of WM signal fluctuations.

Here, we report our detailed analysis of the power spectra of
WM time courses in a set of regions identified from a data-
driven derivation of distinct functional activities. We observed
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that, while each region exhibited similar patterns of BOLD fluc-
tuations, closer analyses showed the voxels within each region
were readily clustered into two groups based on their distinct
power spectra: one group had spectra with single peaks (SP vox-
els) and the other showed dual peaks (DP voxels), a spectral shape
rarely observed in GM voxels. We then explored the possible ori-
gins of the second peak in the power spectra by their relationships
with hemodynamic and anatomical features in the same locations.
We observed that DP voxels exhibit more prominent initial dips
than SP voxels in their hemodynamic response functions (HRFs),
suggesting that the presence of the higher frequency peaks reflect
the local hemodynamic conditions. Based on diffusion imaging
data, we observed significantly more crossing fibers in DP voxels
than in SP voxels, providing an anatomical basis for the distinct
patterns. Next, we compared the interregion functional connectivi-
ties calculated separately from the correlations between the time
courses of entire areas, of only the SP portions, and of only the
DP portions and observed that DP subregions yielded the greatest
number of interregion connections, suggesting that SP and DP
voxels are engaged to different degrees in resting-state functional
networks. These findings together suggest there may be distinct
time courses in WM BOLD signals during a resting state that
reflect underlying variations in the anatomical, neurovascular, and
functional couplings in different populations of voxels.

Results
Spatial Distributions of Independent Components and Their Characteristic
Power Spectra. WM was decomposed into 80 independent com-
ponents (ICs) using the group independent component analysis
(ICA) approach (see Materials and Methods for details) based
on images acquired from 199 subjects. Each IC represents a
cluster of voxels that exhibit similar patterns of BOLD signals
over time. The power spectral frequency distributions of the sig-
nals from within the voxels in each IC were calculated by a Fou-
rier transform. Fig. 1 shows selected WM ICs and their power
spectra in separate panels. For each panel, the first figure (Fig.
1, I) shows the IC in three orthogonal planes in Montreal Neu-
rological Institute (MNI) space (spatial distributions of all 80
ICs can be found in SI Appendix, Fig. S1). The second figure
(Fig. 1, II) in each panel shows the power spectra of the voxels
that compose the IC where each line represents the mean power
spectra averaged over 199 subjects for each voxel. Based on the
observed patterns of power over frequencies, these lines were
clustered using a k-means algorithm into two groups; SP voxels
exhibit single peaks at around 0.015 Hz, while DP voxels show
an additional peak at around 0.065 Hz, as shown in the third fig-
ure (Fig. 1, III) in each panel. The spatial distributions of SP
and DP voxels within the IC in transaxial sections are displayed
in the fourth figure (Fig. 1, IV) in different colors.

We observed the presence of DP voxels in 80 out of 80 WM
ICs (reference SI Appendix, Fig. S2 for details). To assess
whether the DP voxels are unique to WM, we applied the same
workflow to GM but observed no obvious DP patterns in the
80 GM ICs (see details in SI Appendix, Figs. S3 and S4). To
examine the reproducibility of this work, the classifications
were replicated on two resting sessions acquired from the same
199 subjects on different days. As shown in SI Appendix, Fig.
S5, the spatial distributions of SP and DP voxels were in close
agreement between the tests in WM ICs. SI Appendix, Fig. S6
shows global maps of SP and DP distributions, reconstructed
by combining voxels in each category for the 80 ICs, and their
reproducibilities were evaluated in terms of the Dice coeffi-
cients between the test and retest results. The Dice coefficients
were 0.95 for SP voxels and 0.78 for DP voxels.

The Relationship between HRFs and Power Spectra in WM ICs.
HRFs were estimated using the resting state hemodynamic
response function (RS-HRF) toolbox (see Materials and

Methods for details) for SP and DP voxels separately in each
IC. For each panel in SI Appendix, Fig. S7, the Left figure shows
the distribution of SP and DP voxels in the IC. The Middle fig-
ure displays the HRFs of SP and DP voxels in different colors,
where each line represents the HRF averaged over 199 subjects
at the same voxel. We observed that the DP voxels exhibit more
prominent initial dips whose magnitudes are significantly lower
(two-sample t test, P < 0.05, Bonferroni corrected) compared
with SP voxels in 80 out of 80 ICs. To further confirm that this
difference was not observed by chance, we randomly divided
each IC (on a subject level) into two groups and observed that
the HRFs fully overlapped between the two random groups, as
shown in the Right figure of each panel.

The magnitudes of initial dips, particularly in DP voxels,
appear to vary with location. For example, the magnitudes of
dips for IC 16 are much lower than those for IC 45 as shown in
SI Appendix, Fig. S7. Likewise, the power spectra exhibit variable
second peaks across ICs as shown in Fig. 2B. To examine the
relationship between HRFs and power spectra for DP voxels, we
correlated the magnitudes of the initial dips in HRFs and four
measurements that varied between power spectra across 80 ICs,
including the magnitudes of the first and second peaks, along
with their ratios, and the frequencies associated with the second
peaks. We observed that the magnitudes of the initial dips of the
HRFs significantly correlated (P < 0.05, Bonferroni corrected)
with all four measurements as shown in Fig. 2 C–F. The highest
correlation was found between the magnitudes of dips and the
ratio of the two peaks in the power spectra, as shown in Fig. 2C.
Such relationships were also evaluated for males and females
separately. As shown in SI Appendix, Fig. S8, the data for the
two genders exhibits consistent relationships between spectra
and HRFs. Meanwhile, lower initial dips in HRFs and higher
magnitudes of second peaks in spectra were observed in females
compared to males. Moreover, females show a more concen-
trated distribution of the frequencies associated with the second
peaks across subjects than males.

The Relationship between WM Tracts and Power Spectra Patterns
in DP Voxels. The relationship between anatomical configura-
tions and different power spectra in DP voxels was examined
by first comparing the spatial distribution of the DP voxels
and metrics of fiber complexities calculated from diffusion
data acquired from the same 199 subjects (see Materials and
Methods for details) across the entire WM. As shown in SI
Appendix, Fig. S9, these two maps are highly consistent with
each other, showing overlapping areas in the corona radiations,
posterior thalamic radiations, and sagittal stratum, where com-
missure tracts and major longitudinal tracts, such as the inferior
longitudinal fasciculus, inferior fronto-occipital fasciculus, and
fronto-occipital fasciculus, also pass through.

To quantify this relationship further, we compared fiber com-
plexity between SP and DP areas in each IC across 199 subjects.
We observed, as shown in Fig. 3, that 64 out of 80 (80%) of ICs
show significantly higher complexity (paired-sample t test, P <
0.05, Bonferroni corrected) in the DP area than that in the SP
voxels, indicating that the second peaks in the power spectra
correspond to voxels with more crossing fibers. Such compari-
sons were also evaluated for males and females separately. As
shown in SI Appendix, Fig. S10, the data for the two gender
groups exhibits consistent differences in fiber complexities
between SP and DP areas.

Functional Correlations Based on Entire IC, SP Voxels, and DP
Voxels. In a resting state, the BOLD signals from WM regions
show correlations with other white and GM areas in a manner
similar to the correlations used to infer functional connectivity
between cortical volumes (22). We, therefore, constructed the
resting-state matrices showing the correlations between each
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pair of the 80 ICs for each entire component as well as only
the SP and DP portions, respectively. Fig. 4 A–C shows the
DP-based matrices exhibit the highest connectivities. To quantify
the differences, we compared the number of links, that is, the
sum of the binarized matrix when applying different thresholds
to the matrix, for 199 subjects. It can be seen in Fig. 4D that the
matrices based on DP areas show a higher number of links than
those using SP or the entire IC across all thresholds we selected.

Discussion
We have measured the power spectra of resting-state BOLD sig-
nals in areas identified as functionally coherent and examined in

detail the signal power within a low-frequency band. We identi-
fied two categories of voxels, namely, SP and DP voxels, that
exhibited distinct spectral distributions. Specifically, SP voxels,
analogous to GM, presented a single-peaked spectrum, whereas
DP voxels exhibit an additional peak at a higher frequency. SP
and DP voxels were clustered in certain locations where distinct
HRFs were also observed. DP voxels showed significantly lower
initial dips compared to SP voxels, and the magnitudes of initial
dips differed among ICs and are significantly correlated with the
magnitudes of the ratio between two peaks in powers. In addi-
tion, the distributions of SP and DP voxels corresponded with
the detailed structure of WM within the IC, as shown by the sig-
nificant differences in fiber complexities in SP and DP voxels.

Fig. 1. Spatial distributions of selected WM ICs and their power spectra patterns. For each panel, I is a visualization of the WM IC in three orthogonal planes,
and II is power spectra of the voxels within the IC. Each line represents the mean power spectra over 199 subjects at the same voxel. (III) Two clusters of voxels
(SP voxels and DP voxels) that exhibit distinct patterns of power spectra within the IC. (IV) Spatial distributions of SP voxels and DP voxels in different colors.
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Moreover, inter-IC correlations evaluated using different com-
ponents of the ICs suggest that the time courses of signals from
DP voxels within an IC are synchronous with a higher number
of other ICs compared to the entire IC or the SP portions, dem-
onstrating their different engagement in brain connectivity.

Different frequency bands in power spectra may correspond
to distinct physiological processes, Biswal et al. for the first time
reported that low-frequency spontaneous BOLD signals reflect
neurophysiological activity, laying the foundation for extensive
resting-state fMRI studies (2). Since then, power spectra have
been frequently used to characterize spontaneous activities in
different functional units or among study groups. However,
dual-peak patterns within the low-frequency range, as we reli-
ably observed in DP voxels, have not been previously reported
in GM. In addition, while recent studies have reported signifi-
cant changes in the amplitude of low-frequency fluctuations in
WM in patients with schizophrenia and autism spectrum disor-
der (34, 35), these findings were restricted to the intensity of
spontaneous neural activity. The patterns of power spectra over
the frequency range of interest correspond to variations in
underlying HRF characteristics and may add insights to the
functional mechanism underlying the association between signal
features, neurovascular coupling, and anatomical substrates.

Despite the fact that time courses were similar within the
same IC according to the criteria of ICA, a clear separation of
two categories of voxels can be observed within each IC based

on the power spectra patterns. These voxels were reliably
detected at locations within each IC, and DP voxels tended to
distribute in deeper areas of WM, where the hemodynamic
environment presumably differs more from those closer to GM.
Specifically, deep WM tends to be more distant from supply
vessels so that it takes a longer time to compensate for any
increase in oxygen consumption (36). As observed in this study,
HRFs of DP voxels exhibited more prominent initial dips com-
pared to SP voxels, which is consistent with our previous find-
ings regarding depth-dependent changes in WM HRFs based
on an event-related task (18). It can be reasonably speculated
that the lower dips of DP voxels may represent early focal
increases in oxygen consumption, which induce longer-lasting
negative BOLD signals than in SP voxels before the arterial
supply increases flow sufficiently to meet the tissue demand.
Alternatively, it may arise if larger boluses of deoxygenated
venous blood drain from nearby active GM. These more drastic
changes in BOLD signals over a certain period of time presum-
ably correspond to the increased magnitudes in high-frequency
spectral components. Quantitatively, for DP voxels, the magni-
tudes of the second peaks in power are negatively correlated
with the magnitudes of the initial dips in HRFs over 80 ICs,
proving their linkage with the neurovascular conditions.

The distribution of DP and SP voxels appear to correspond to
structural variations within WM as characterized by diffusion-
based tractography. Previous studies have suggested that structural

Fig. 2. The relationship between HRFs and power spectral in DP voxels across 80 WM ICs. (A) Estimated HRFs of 80 WM ICs. (B) Power spectra of 80 WM
ICs. (C) Correlation between the dips of HRFs and the ratio the two peaks in power spectra across 80 WM ICs. (D) Correlation between the dips of HRFs and
the magnitudes of first peaks in power spectra across 80 WM ICs. (E) Correlation between the dips of HRFs and the magnitudes of second peaks in power
spectra across 80 WM ICs. (F) Correlation between the dips of HRFs and the coordinates of second peaks on frequency band across 80 WM ICs. The solid lines
and shaded areas plot the linear fits of the data with associated CI (95%). The P values were corrected for multiple comparison using Bonferroni method.
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alterations, such as a lesion or demyelination, can induce BOLD
changes in WM (21–24, 37), so changes in patterns of power
spectra, as well as HRF, may indicate WM integrity or WM
complexity. By visual inspection and according to prior knowl-
edge, DP voxels are mainly distributed in areas where multiple
WM tracts cross. Quantitative measures confirmed that WM
complexity was strongly related to the distribution of SP and DP
voxels, and a major proportion of ICs showed significantly
higher complexity in the DP areas than in SP areas. WM areas

with higher complexity are interpreted as being responsible for
signal transmission along multiple neural pathways; thus, one
plausible explanation for the unique HRF profiles observed in
these areas could be that they produce more complex BOLD
effects that possess high-frequency components.

The inter-IC connectivities evaluated separately for SP and
DP subregions may reflect the extent to which these two cate-
gories of voxels are differentially engaged in functional inte-
gration in the brain. Our data suggest that the number of

Fig. 3. Comparison of fiber complexity between SP and DP areas in 80 WM ICs. A total of 64 out of 80 ICs show significantly higher fiber complexity in
DP area than in SP area. Black triangles indicate nonsignificant (paired-sample t test, P > 0.05, Bonferroni corrected) differences or higher complexity in
the SP area. Each box plots the median (center line), the first quartile (lower boundary), and third quartile (upper boundary) of the data. The red and
blue scatters indicate the outliers.
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correlations between DP voxels was significantly greater than
for SP voxels. This is consistent with our premise that DP vox-
els may correspond to fiber-crossing areas, in which the BOLD
signal time courses in principle represent the combination of
contributions from multiple tracts and which therefore could be
synchronous with (and dependent on) a greater number of ICs
compared with SP voxels.

The database we used for image analysis also contained
measures of cognitive performance and behavior. Tentatively,
we evaluated the relationship between specific behavioral
scores and the power spectral peaks for DP voxels in each IC
across 199 subjects. SI Appendix, Fig. S11 shows that episodic
memory scores were significantly (P < 0.05, controlled for sex,
Bonferroni corrected) correlated with the ratio between the
two peaks for IC 39 (overlapped with anterior coronal radiation
left, anterior limb of internal capsule left, and superior corona
radiation left). However, this is a preliminary result, and futures
studies are needed for strengthening the confidence in correla-
tions between behaviors and WM BOLD measurements.

In summary, we characterized the power spectra of the
resting-state time courses in 80 ICs that distribute over the
WM. A clear separation of two categories of voxels is evident in
each IC based on their power spectral patterns. These voxels
are location specific, and their distributions in each IC are
related to underlying anatomical structures. Moreover, they dif-
fered in their involvement in apparent functional connectedness
in the brain as judged from resting-state correlations. Taken
together, these findings add to the existing understanding of WM
BOLD changes during resting state and provide insights into the

fundamentally unique structural-vascular-functional association
in WM.

Materials and Methods
Human Connectome Project Data. In total, 199 subjects were randomly
selected from the Human Connectome Project (HCP) Data S1200 release (38).
They were healthy, young adults, 93male and 106 female, whose ages ranged
between 22 and 35 y. The images used in the present study include two ses-
sions of resting-state fMRI acquired on 2 separate days, T1 weighted MRI and
diffusion MRI. The imaging protocols are described in detail in previous work
(38). Briefly, data were acquired using a 3T Siemens Skyra scanner (Siemens
AG). The resting-state data were acquired using multiband gradient-echo
echo-planar imaging (EPI). Each session consists of two runs (left-to-right and
right-to-left phase encoding) of 14 min and 33 s each, repetition time (TR) =
720 ms, echo time (TE) = 33.1 ms, voxel size = 2 mm isotropic, and number of
volumes = 1,200. Physiological data, including cardiac and respiratory signals,
were recorded during fMRI scanning. The diffusion MRI included six runs (9
min and 50 s each) that were acquired using a multiband spin-echo EPI, repre-
senting three different gradient combinations, with each acquired once with
right-to-left and left-to-right phase encoding polarities, TR = 5,520 ms, TE =
89.5 s, and voxel size = 1.25 mm isotropic. Diffusion weighting consisted of
three shells of b = 1,000, 2,000, and 3,000 s/mm2 interspersed with an approxi-
mately equal number of acquisitions on each shell within each run. T1 images
were acquired using a three-dimensional magnetization-prepared rapid
acquisition with gradient echo, TR = 2,400 ms, TE = 2.14 s, and voxels size =
0.7 mm isotropic.

Preprocessing. The images drawn from the HCP repository were preprocessed
through the minimal preprocessing pipelines (MPP) as detailed elsewhere
(39). Briefly, T1 images were nonlinearly registered to MNI space using
FMRIB's nonlinear image registration tool (FNIRT) (40) and underwent a

Fig. 4. Comparison of FC matrix reconstructed by (A) entire areas of ICs, (B) SP portions of ICs, and (C) DP portions of ICs. (D) Number of connections when
applying a different threshold to the FC matrix regarding 199 subjects. The solid lines and shaded areas plot the mean of the data with associated CI (95%).
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Freesurfer pipeline, which produced surface and volume parcellations as well
as morphometric measurements (41). For fMRI, the pipeline included motion
correction, distortion correction using reversed-phase encoding directions,
and nonlinear registration to MNI space. We performed additional processing
of the images that were sourced from the HCP database, including regression
of nuisance variables, including headmovement parameters (using one of the
outputs of motion correction in theMPP pipeline), and cardiac and respiratory
noise modeled by the retrospective image correction (RETROICOR) approach
(42), and followed by a correction for linear trends and temporal filtering
with a band-pass filter (0.01 to 0.08 Hz). As the analyses were restricted to
WM, a group-wise WM mask was reconstructed by averaging the WM parcel-
lations that were derived from Freesurfer across all subjects and thresholded
at 0.9. Then, the fMRI data were spatially smoothed within theWMmask with
a 4-mm full width at half maximum (FWHM) Gaussian kernel. For comparison,
data were also smoothed within a GM mask that was reconstructed in a
similar manner but using a lower threshold (0.6) due to higher individual vari-
abilities in GM. For diffusion images, the MPP pipeline included a b0 intensity
normalization, EPI distortion correction using reversed-phase encoding direc-
tions, and coregistration to T1 native space.

Group ICA and Power Spectra of the ICs. ICA is capable of decomposing data
into ICs that are assumed tomake up the data by an unknown, but linear, mix-
ing process. In this study, the group ICA of fMRI toolbox (GIFT) toolbox was
used to analyze the data (43). To estimate 80 ICs, the temporal dimension of
each subject was reduced from 1,200 to 120 (1.5 times the target number of
ICs) using spatial principal component analysis (PCA). Those PCs were then
concatenated along their temporal dimensions across 199 subjects to evaluate
signal changes over 199*120 dynamics. The group data again underwent a
PCA, further having its dimension reduced from 120 to 80, producing PCs that
accounted for maximal variances on the group level, from which 80 ICs were
subsequently estimated using infomax ICA (44). The spatial map (group-level)
of each IC was reconstructed and converted to z-scores and thresholded at z >
1. Note that the z-score here has no statistical interpretation but is used for
descriptive purposes only (45). The ICs were overlaid back as masks on each
subject’s data to extract time courses of interest, from which power spectra
were estimated using a multitaper Fourier transform (46). The power spectra
for each voxel in each IC was averaged over 199 subjects and assigned to SP (if
a single peak was observed) or DP (if double peaks were observed) using a k-
means clustering algorithm (two clusters, 20 iterations) based on their pat-
terns. Before clustering, the power spectra were normalized to unit variance.
Otherwise, the clusters may mainly reflect the differences in magnitudes of
the powers rather than patterns of power over frequencies.

Estimation of HRFs. HRFs were estimated from resting-state time courses b(t)
in each subject using a blind deconvolution approach (47, 48). The method
requires no prior hypothesis about the HRF and is based on the notion that rel-
atively large amplitude BOLD signal peaks represent the occurrence of separa-
ble, major, spontaneous events. In our study, first, such events were detected
as peaks beyond a specified threshold (here, greater than 1.5 SDs over the
mean). For each event, a general linear model was fitted using a combination
of sn(t), the onset of the event, and h(t), which represents a linear combination
of two gamma functions and its temporal derivative. Here, n characterizes the
time from the onset to the peaks s(t), where s(t) = 1 only if t corresponds to

the peaks (events) we detected. The double gamma functions together with
temporal derivative are capable of modeling an initial dip and time delay in
the response (49, 50). By searching for an n (n2 0 to 12 s) and minimizing the
covariance of the residuals cov[b(t) – conv(sn(t), h(t))], several parameters that
model h(t) can be estimated so the HRF hn(t) can be obtained. The relationship
between the HRF and power spectra in DP voxels were evaluated in terms of
Pearson’s correlation coefficients comparing the magnitudes of initial dips in
HRFs andmagnitudes of power of the two peaks.

Estimation of Fiber Complexity. The analysis was conducted using DSI Studio
(http://dsi-studio.labsolver.org/). The diffusion data were modeled using gen-
eralized q-sampling imaging, a model-free reconstruction method that quan-
tifies the density of diffusing water at different orientations (51). This derives
the spin distribution function (SDF), an orientation distribution function which
has been shown to have high sensitivity and specificity to WM characteristics
and pathology. In our study, for each voxel, three fibers were resolved. The
SDF includes the orientations estimated for each of the three fibers, as well as
their fractions, reflecting the likelihood that a fiber along that orientation can
be identified. The fiber complexity was determined by the number of frac-
tions that exceeded a threshold (0.1 in this study). Note that the preprocessed
diffusion data sourced from the HCP databasewere aligned to T1 native space
only. For group analysis, the complexity map for each subject was then spa-
tially transformed to MNI space using the “warp information” recorded dur-
ing the FNIRT registration of T1 images. The differences in fiber complexity
between SP and DP voxels were evaluated using a paired-sample t test over
199 subjects. Bonferroni-adjusted P < 0.05was considered significant.

Connectivity Matrix. The connectivity matrices were reconstructed by calculat-
ing Pearson’s correlation coefficients between time courses of pair-wise ICs on
the subject level. Each IC was split into two portions, consisting of SP voxels
and DP voxels, respectively. The matrices regarding the entire area of IC, the
SP portion, and DP portion of IC were reconstructed separately, converted to
z values using Fisher’s r to z transformation, and averaged across 199 subjects
for further assessments. The number of connections equals the sum of the
binarized matrix when applying different thresholds to the connectiv-
ity matrix.

Data Availability. All source data used for creating figures are shared through
a public repository: https://figshare.com/articles/dataset/power_spectra_of_
BOLD_in_WM/14036648/2. MRI images can be downloaded from the HCP
website (https://www.humanconnectome.org/study/hcp-young-adult). The
tool we used for analyzing the data can be downloaded from GIFT: https://
trendscenter.org/software/gift/ or rsHRF: https://www.nitrc.org/projects/rshrf.
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