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Abstract

Breast cancer continues to be the most frequent cancer in females, affecting about one in 8 

women and causing the highest number of cancer-related deaths in females worldwide despite 

remarkable progress in early diagnosis, screening, and patient management. All breast lesions are 

not malignant, and all the benign lesions do not progress to cancer. However, the accuracy of 

diagnosis can be increased by a combination or preoperative tests such as physical examination, 

mammography, fine-needle aspiration cytology, and core needle biopsy. Despite some limitations, 

these procedures are more accurate, reliable, and acceptable, when compared with a single adopted 

diagnostic procedure. Recent studies have shown that breast cancer can be accurately predicted 

and diagnosed using machine learning (ML) technology. The objective of this study was to explore 

the application of ML approaches to classify breast cancer based on feature values generated from 

a digitized image of a fine-needle aspiration (FNA) of a breast mass. To achieve this objective, 

we used ML algorithms, collected a scientific dataset of 569 breast cancer patients from Kaggle 

(https://www.kaggle.com/uciml/breast-cancer-wisconsin-data), analyze and interpreted the data 

based on ten real-valued features of a breast mass FNA including the radius, texture, perimeter, 

area, smoothness, compactness, concavity, concave points, symmetry, and fractal dimension. 

Among the 569 patients tested, 63% were diagnosed with benign breast cancer and 37% were 
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diagnosed with malignant breast cancer. Benign tumors grow slowly and do not spread while 

malignant tumors grow rapidly and spread to other parts of the body.
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1. INTRODUCTION

Breast cancer continues to be the most frequent cancer in females, affecting about one in 

8 women and causing the highest number of cancer-related deaths in females worldwide 

despite remarkable progress in early diagnosis, screening, and patient management1,2,3. 

All breast lesions are not malignant tumors and all the benign lesions do not progress 

to cancer. The screening and diagnosis of breast cancer have improved by a combination 

or preoperative tests such as physical examination, mammography, fine-needle aspiration 

cytology, core needle biopsy, digital breast tomosynthesis, ultrasound, and magnetic 

resonance4,5,6,7. However, these diagnostic procedures have their own limitations. For 

example, the analysis of mammographic images shows low contract between normal tissues 

and lesions, which makes it difficult to distinguish malignant masses from benign ones in the 

images8,9. Early detection and accurate prognostication are fundamental to identify patients 

who could benefit from the treatment and reduce the mortality of cancer diseases10,11,12.

The use of computer-based learning models has become a predominant area of cancer 

research. In recent years, several researchers have focused on building systems, both hybrid 

and fully automatic systems, that could facilitate the diagnosis, prognosis, and prediction 

of breast cancer outcomes taking a leap using Statistics and Artificial Intelligence. The 

development of these systems requires different techniques, where the most common are 

machine learning (ML) algorithms. Several scientific studies have published algorithms and 

nomograms predicting the pathologic stage of patients with clinically localized cancer or 

Gleason score upgrading13,14,15,16,17. Specifically, ML allows the integration or combination 

of different layers of data, such as those from medical images, laboratory results, clinical 

outcomes, biomarkers, and biological features for better prognostication and stratification 

of patients toward personalized medicine18,19. Despite a large scientific interest in this field 

of research, these prediction models are not frequently used due to limitations in usability 

and applied computational approaches. Many recent studies have demonstrated that ML 

approaches have been applied to breast cancer survival prediction, diagnostic ultrasound, 

and breast cancer outcome prediction with tumor tissue images20,21,22,23. Therefore, the 

objective of this study was to explore the application of ML approaches to classify breast 

cancer based on feature values generated from a digitized image of a fine-needle aspiration 

of a breast mass.
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2. APPROACHES

2.1. Source of Dataset and Information

We used a publicly available breast cancer dataset from the University of Wisconsin 

Hospitals, Madison, Wisconsin, USA. This dataset was generated by Dr. William H. 

Wolberg (General Surgery Department., University of Wisconsin, Clinical Sciences 

Center, Madison, WI 53792)24, and consisted of 569 breast cancer patients 

available on UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/

Breast+Cancer+Wisconsin+%28Diagnostic%29.

2.2. Machine Learning Methods

This study was based on Machine learning (ML) algorithms to analyze the dataset of 569 

patients with breast cancer and thereby interpreting results. ML is a branch of artificial 

intelligence (AI) that is used to classify data based on models which have been developed 

and for predictive analytics, in particular breast cancer25,26. It provides tools by which 

large quantities of data can be automatically analyzed. In the case of the present study, 

we utilized ML algorithms and collected a scientific dataset of breast cancer patients from 

Kaggle (https://www.kaggle.com/uciml/breast-cancer-wisconsin-data) and interpreted these 

data based on different features. The features were computed from a digitized image of a 

fine needle aspirate (FNA) of a breast mass. Ten (10) real-valued features including: [1] 

radius (mean of distances from center to points on the perimeter), [2] texture (standard 
deviation of gray-scale values), [3] perimeter, [4] area, [5] smoothness (local variation 
in radius lengths), [6] compactness (perimeter^2 / area - 1.0), [7] concavity (severity of 
concave portions of the contour), [8] concave points (number of concave portions of the 
contour), [9] symmetry, and [10] fractal dimension (“coastline approximation” - 1) were 

computed for each cell nucleus. Specifically, we used the features to differentiate between 

benign and malignant tumors.

RESULTS

The data presented in this manuscript are available on UCI Machine Learning Repository: 

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29. In 

this study, 569 patients with breast cancer were diagnosed at the Wisconsin Hospital. Among 

the 569 patients diagnosed with breast cancer, 63% were benign and 37% were malignant 

(Fig. 1).

The geometrical and textural features of the most precise core of biopsy were considered 

and computed in this study (Table 1). As seen in table 1, the geometrical features and 

textural features are accurate analyses obtained from a digitized image of a fine needle 

aspirate (FNA) of a breast mass. These features represent simplest attributes of breast cancer 

images, and they are important for breast cancer analysis. The mean value of each feature 

for benign tumor (non-cancerous) is lower when compared to each feature for malignant 

tumor (cancerous), suggesting that malignant tumor spread to the other parts of the body. 

Taken together, features as seen in Table 1 below allow us to differentiate between benign 

and malignant.
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Seven (7) real-valued features including radius, texture, perimeter, area, compactness, 

concavity, and concave points of the cell image allow us to differentiate between benign and 

malignant. Out of the 7 real-valued features, we selected three (3) features (area, perimeter, 

and radius) and constructed bar graphs to illustrate that breast cancer can be classified based 

on the values generated (Fig. 2, 3, 4).

Fig. 2 shows the number of patients with benign tumor and/or malignant tumor relatively to 

the area of the cell image. The lower the value of the area of the cell image indicates benign 

breast cancer; suggestive the tumor did not spread to other parts of the human body. The 

higher value of the area of the cell image indicates that the breast cancer has spread to other 

parts of the human body.

Fig. 3 shows the number of patients with benign tumors and/or malignant tumors relatively 

to the perimeter of the cell image. The lower value of the perimeter of the cell image 

indicates benign breast cancer. The higher value of the perimeter of the cell image indicates 

malignant breast cancer, suggestive that breast cancer has spread to other parts of the human 

body.

Fig. 4 shows the number of patients with benign tumors and/or malignant tumors relatively 

to the radius of the cell image. The lower the value of the radius of the cell image indicates 

benign breast cancer; suggestive the tumor did not spread to other parts of the human body. 

The higher value of the radius of the cell image indicates that the breast cancer has spread to 

other parts of the human body.

Three real-valued features including smoothness, symmetry, and fractual dimension of the 

cell image do not indicate a particular preference of one diagnosis over the other. Out of the 

3 features, we selected 2 features (symmetry and fractual dimension) and constructed bar 

graphs to illustrate that breast cancer cannot be classified based on the values generated (Fig. 

5 and 6).

Fig. 5 shows the number of patients with benign tumor and/or malignant tumor relatively to 

the symmetry of the cell image.

Fig. 6 shows the number of patients with benign tumor and/or malignant tumor relatively to 

the fractual dimension of the cell image.

Overall, smaller mean values of radius, texture, perimeter, area, compactness, concavity, and 

concave points of the cell image tend to indicate benign tumors as seen in table 1. Larger 

mean values of radius, perimeter, area, compactness, concavity, and concave points of the 

cell image tend to indicate malignant tumors. Mean values of smoothness, symmetry, and 

fractual dimension of the cell image do not indicate a particular preference of one diagnosis 

over the other as seen in Table 1.

Knowing the difference between benign tumors and malignant tumors is very important in 

the field of medical science and cancer research. In addition, knowing this information may 

help doctors figure out the best way to manage and treat cancer, in particular breast cancer. 

Benign tumors grow slowly and do not spread while malignant tumors grow fast and spread 
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to other parts of the body. Benign tumors are non-cancerous while malignant tumors are 

cancerous. These tumors can spread to other parts of the body from the point of origin and 

may destroy adjacent normal cells or tissues. Table 2 below shows the characteristics of 

normal cells, benign and malignant tumors.

DISCUSSION

Breast cancer is the leading cause of death among middle aged and older women27. The 

present study demonstrates the potential of machine learning (ML) approaches for detecting, 

analyzing, and classifying breast cancer. Using ML, we were able to evaluate different 

features of a digitized image of a fine needle aspirate (FNA) of a breast mass made 

available to researchers by Wolberg et al.24,28. The FNA of a breast mass describes the 

characteristics of the cell nuclei present in the image. FNA is a type of biopsy procedure 

where a very thin needle is inserted into an area of abnormal tissue or cells with a guide 

of computerized tomography (CT) scan or ultrasound monitors29,30,31. The collected sample 

is then transferred to a pathologist to study it under a microscope and examine whether 

cells in the biopsy are normal or abnormal. The results generated based on different feature 

values indicated that among the 569 patients diagnosed with breast cancer, 63% were benign 

and 37% were malignant. We found that the mean value of each feature for benign tumor 

(non-cancerous) is lower when compared to each corresponding feature for malignant tumor 

(cancerous), suggesting that malignant tumor spread to the other parts of the body (Fig. 2, 3, 

and 4). Based on these features, we were able to differentiate between benign and malignant 

tumors (Table 2). Cancer cells have the ability to spread to other parts of the body through 

the blood and lymphatic systems27.

Medical researchers and physicians usually identify geometrical features and textural 

features by viewing biopsy images. Multiple classifiers algorithms are applied on 

medical datasets to perform predictive analysis about patients and their medical 

diagnosis32,33,34,35,36,37. For example, one analysis using a combination of mammograms 

and ML approaches has led to an accurate diagnosis of breast cancer38. Analyses using 

histopathological images and automatic grading systems have been applied to successfully 

determine the Gleason grade of breast cancer, and prostate cancer39,40. In addition, 

several previously published methods have shown the potential of ML methods for 

automatic breast cancer and prostate cancer detection and grading on digital histopathology 

images38,41,42,43,44,45.

CONCLUSION

Breast cancer is one of the leading causes of mortality among women worldwide and it 

is important to develop novel approaches to screen, diagnose, and treat breast cancer. This 

paper presents a novel computer-aided diagnosis system for the prediction, diagnosis, and 

classification of breast cancer using ML. In particular, we discussed the concepts of ML 

and outlined its application in the classification of breast cancer. Using ML approaches, our 

findings revealed that among the 569 patients involved in this study, 63% were diagnosed 

with benign tumors and 37% were diagnosed with malignant tumors. The features including 

radius, texture, perimeter, area, compactness, concavity, and concave points of the cell 
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image allow us to differentiate between benign and malignant breast cancer. Other features 

including smoothness, symmetry, and fractual dimension of the cell image do not indicate a 

particular preference of one diagnosis over the other. Some benign tumors may progress to 

malignant tumors. We believe that ML will soon become much more commonplace in many 

clinical and hospital settings. Our results based on the ML can be translated into tools for 

future clinical treatment decision-making.
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Figure 1: 
Percentage of benign and malignant identified among 569 patients with breast cancer
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Figure 2: 
Number of patients observed with benign and malignant tumors in relationship to the area of 

the cell image
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Figure 3: 
Number of patients observed with benign and malignant tumors in relationship to the 

perimeter of the cell image.
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Figure 4: 
Number of patients observed with benign and malignant tumors in relationship to the radius 

of the cell image.

Yedjou et al. Page 12

Int J Sci Acad Res. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Number of patients observed with benign and malignant tumors in relationship to the 

symmetry of the cell image.
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Figure 6: 
Number of patients observed with benign and malignant tumors in relationship to the 

fractual dimension of the cell image.
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Table 1:

Values of geometrical features and textural features between benign and malignant tumors from a digitized 

image of a fine needle aspirate (FNA) of a breast mass showing mean values plus and minus standard error 

values.

FEATURES BREAST CANCER

BENIGN MALIGNANT

Radius Mean 12.146 ± 0.284 17.463 ± 0.609

Texture Mean 17.914 ± 1.220 21.604 ± 1.210

Perimeter Mean 78.075 ± 2.000 115.365 ± 4.323

Area Mean 462.790 ± 21.135 978.376 ± 72.672

Smoothness 0.092 ± 0.007 0.103 ± 0.006

Compactness 0.080 ± 0.0214 0.145 ± 0.0322

Concavity 0.046 ± 0.0259 0.161 ± 0.0418

Concave Points 0.025 ± 0.009 0.088 ± 0.015

Symmetry 0.174 ± 0.020 0.193 ± 0.020

Fractal Dimension 0.063 ± 0.003 0.063 ± 0.004
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Table 2:

Characteristics of normal cells, benign, and malignant tumors

Characteristics Normal Cells Benign Tumor cells Malignant Tumor Cells

Cell Morphology

Normal cell shape Like normal with slight expansion
Varied in shape and size with large 
nucleus.

Growth Condition Grow normally and well-
regulated

Grow slowly Grow rapidly

Spread Grow in one location Do not invade surrounding cells, do not 
invade other parts of the body

Metastasize to other organs through the 
blood vessels.

Chromosomes Diploid Diploid Aneuploidy

Adherence Tight Tight Loose

Systemic Effects No Rare Yes

Cancer No Non-cancerous Cancerous, spread of tumors to the 
other parts of the body
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