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Understanding how neurons of the striatum are formed and integrate into complex synaptic circuits is essential to provide
insight into striatal function in health and disease. In this review, we summarize our current understanding of the develop-
ment of striatal neurons and associated circuits with a focus on their embryonic origin. Specifically, we address the role of
distinct types of embryonic progenitors, found in the proliferative zones of the ganglionic eminences in the ventral telenceph-
alon, in the generation of diverse striatal interneurons and projection neurons. Indeed, recent evidence would suggest that
embryonic progenitor origin dictates key characteristics of postnatal cells, including their neurochemical content, their loca-
tion within striatum, and their long-range synaptic inputs. We also integrate recent observations regarding embryonic pro-
genitors in cortical and other regions and discuss how this might inform future research on the ganglionic eminences. Last,
we examine how embryonic progenitor dysfunction can alter striatal formation, as exemplified in Huntington’s disease and
autism spectrum disorder, and how increased understanding of embryonic progenitors can have significant implications for
future research directions and the development of improved therapeutic options.
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This review highlights recently defined novel roles for embryonic progenitor cells in shaping the functional properties of both
projection neurons and interneurons of the striatum. It outlines the developmental mechanisms that guide neuronal develop-
ment from progenitors in the embryonic ganglionic eminences to progeny in the striatum. Where questions remain open, we
integrate observations from cortex and other regions to present possible avenues for future research. Last, we provide a pro-
genitor-centric perspective onto both Huntington’s disease and autism spectrum disorder. We suggest that future investiga-
tions and manipulations of embryonic progenitor cells in both research and clinical settings will likely require careful
consideration of their great intrinsic diversity and neurogenic potential. /
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Introduction progenitors, have made understanding the functional roles and
contributions of progenitors to brain development a key focus
for neuroscientists. Indeed, it is becoming increasingly clear that
the remarkable diversity of embryonic progenitors is directly
linked to the neuronal diversity, synaptic connectivity, and cir-
cuit function in a variety of regions in the adult brain (Yu et al.,
2009; 2012; Tyler et al,, 2015; Kelly et al., 2018; Ellender et al,,
2019; Guillamon-Vivancos et al, 2019; Matsushima and
Graybiel, 2020; van Heusden et al., 2021). This review will focus
on the roles for diverse embryonic progenitors in shaping the de-
velopment and properties of one brain region, the striatum.

ignificance Statement

Understanding how neuronal cell identity and precise synaptic
circuits in the brain emerge during development remains a fun-
damental goal in neuroscience. The discovery of radial glial cells
(RGCs) as the main progenitor cell in the developing nervous
system, and observations that RGCs can give rise not only to
neurons, but also to a diverse population of additional
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selection, decision-making, and reinforcement learning (Redgrave
et al., 1999; Reynolds et al., 2001; Samejima et al., 2005; Bogacz and
Gurney, 2007; Yartsev et al., 2018). The striatum is a relatively large
brain nucleus, consisting of over a million neurons in the mouse.
The neurons can be divided into the GABAergic spiny projection
neurons (SPNs), which make up ~95% of all striatal neurons, and a
diverse population of interneurons, which make up the remaining
~5% (Kreitzer and Malenka, 2008; Tepper et al., 2010, 2018). The
SPNs are classically divided into the direct pathway dopamine D,
receptor-expressing SPN (dSPN) and the indirect pathway dopa-
mine D, receptor-expressing SPN (iSPN) types, respectively form-
ing the striatonigral and striatopallidal pathways and sending major
projections to the substantia nigra pars reticulata (SNr)/internal
globus pallidus (GPi) or the external GP (GPe; Gerfen et al., 1990;
Day et al,, 2008; Gertler et al., 2008). The resident striatal inter-
neuron population can be subdivided into cholinergic interneurons
(CINs) and a diverse group of GABAergic interneurons.

At first glance, the striatum has a less obvious structure than
other brain regions. For example, the cortex exhibits a distinct lami-
nar organization with various layers forming sequentially during pro-
gressive embryonic periods, and each layer consisting of distinct cell
types (Douglas and Martin, 2004). In contrast, the striatum seems to
consist of vast numbers of intermingled dSPNs, iSPNs, and inter-
neurons. However, several organizing principles of the striatum exist
and are applicable to large populations of diverse striatal cells. These
include distinct functional domains related to specific anatomic sub-
regions of striatum (Graybiel and Ragsdale, 1978; Alexander et al,
1986; Graybiel, 1990; Haber, 2008; Pan et al., 2010; Oh et al., 2014;
Hintiryan et al., 2016; Hunnicutt et al., 2016; McGregor et al., 2019;
Lee et al., 2020). Indeed, one classical distinction divides the striatum
into the dorsolateral striatum (DLS) and dorsomedial striatum
(DMS), with each anatomic subregion receiving innervation from
different cortical and thalamic areas (McGeorge and Faull, 1989;
Voorn et al,, 2004; Smith et al,, 2014). Other distinctions are based
on differential expression of a set of neurochemical markers, for
example, the u-opioid receptor, which segregates large populations
of dSPNs, iSPNs, and associated interneurons into p-opioid-rich
striosome/patch compartments and w-opioid-poor matrix compart-
ments (Pert et al,, 1976; Graybiel and Ragsdale, 1978; Herkenham
and Pert, 1981; Graybiel, 1990; Crittenden and Graybiel, 2011),
which are thought to differentially control reward-guided behavior
(Gerfen, 1984, 1989; Fujiyama et al., 2011). This review will discuss
the role of diverse embryonic progenitors in shaping these and other
striatal subregions.

Aberrant development and integration of diverse striatal neu-
rons into circuits can lead to a wide range of disorders with
motor and cognitive symptoms (Arber et al., 2015; Peixoto et al.,
2019). We further this discussion by addressing how embryonic
progenitors generate diverse populations of striatal neurons as
well as exploring a growing body of literature suggesting that
pathologies such as Huntington’s disease (HD) and autism spec-
trum disorder (ASD) arise from aberrant embryonic progenitor
behavior. Furthermore, we discuss throughout the recent advan-
ces in technology that allow more sophisticated labeling and
manipulation of embryonic progenitors, thus opening possibil-
ities for both novel investigations and potential development of
treatment options. Finally, where questions remain regarding the
development of the striatum, we provide hypotheses and insights
from studies in the cortex and other brain regions.

Embryonic progenitors of the ventral telencephalon
All neural progenitors descend from the neuroepithelial cells
that form the neural tube in the developing embryo. After
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closure of the neural tube, distinct rostral, medial, and caudal
regions develop to ultimately give rise to the frontal, middle, and
hindbrain regions of the brain (Stiles and Jernigan, 2010). This
review mainly focuses on the developing rostral region, the telen-
cephalon, in relation to the striatum; for a focus on basal ganglia
development, see the study by Rubenstein and Campbell (2020).

A combination of morphogenetic movements and prolifera-
tion between embryonic day 9 (E9) and E11 in mice establishes
further discrete proliferative regions in the rostral telencephalon,
a dorsal region that gives rise to the cortex, a ventrolateral region
that forms the lateral ganglionic eminence (LGE) and mainly
gives rise to the SPNs of the striatum (Deacon et al, 1994;
Olsson et al., 1998; Wichterle et al., 2001; Nery et al., 2002); and
a ventromedial region forming the medial ganglionic eminence
(MGE) that gives rise to the interneurons of the striatum, globus
pallidus, and cortex, among others (Marin et al., 2000; Anderson
et al., 2001; Rallu et al, 2002; Butt et al., 2005; Flandin et al,
2010; Dodson et al,, 2015). In addition, adjacent ventral struc-
tures such as the caudal ganglionic eminence (CGE; Nery et al.,
2002; Ma et al., 2012; Mufioz-Manchado et al., 2016), preoptic
area (POA)/anterior entopeduncular area (Marin et al, 2000;
Gelman et al,, 2011), and septal neuroepithelium (SNE; Magno et
al., 2017) also give rise to interneurons (Marin et al.,, 2000; Fig. 1A).
Initial gradients of diffusible factors (Rallu et al., 2002) and distinct
transcription factor cascades (Schuurmans and Guillemot, 2002;
Silberberg et al, 2016) contribute to this dorsoventral regional
patterning.

The first neuronal progenitor cells (NPCs) in each of these
regions consist mainly of RGCs, which divide at the ventricular
wall to generate further progenitors that inhabit both the ventric-
ular zone (VZ) and subventricular zone (SVZ) and young neu-
rons that migrate to the primordial striatum and other structures
(Marin et al,, 2000). The daughter progenitor cells consist of
additional RGCs plus a diverse population of intermediate pro-
genitors (IPs; Fig. 1B). These IPs can amplify the number of con-
currently actively dividing cells in the developing brain (Noctor
et al, 2004) and, as discussed later, convey unique properties to
their daughter neurons. As progenitors divide, postmitotic neu-
rons of the ventral telencephalon follow a well defined develop-
mental sequence starting with their migration from their
birthplace to their designated brain regions (Villar-Cervifo et al.,
2015), progressively differentiating toward their final identity.
During later postnatal stages, these immature neurons initially
connect widely followed by periods of synaptic refinement and
controlled apoptosis in maturing circuits (Fig. 1C). At approxi-
mately E18 in mice, the neurogenic divisions within the embryonic
brain switch and become gliogenic, generating both astrocytes and
oligodendrocytes (Anthony and Heintz, 2008; Minocha et al., 2017;
Turrero Garcia and Harwell, 2017). Although this review will
mainly focus on progenitor-derived neurons, the extent to which
the diversity of embryonic progenitors is related to astrocyte and
oligodendrocyte diversity is likely an interesting line of future
research.

Embryonic progenitors of the LGE and their
progeny

The formation of the LGE as a clearly visible structure in the sub-
pallium occurs around E11 in mice and is followed by the onset
of neurogenesis by a diverse population of neurogenic progeni-
tors that inhibit the VZ and SVZ (Halliday and Cepko, 1992;
Sheth and Bhide, 1997; Olsson et al., 1998; Stenman et al., 2003;
Gotz and Huttner, 2005; Mason et al., 2005; Sousa and Fishell,
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Figure 1.  Striatal cells arise from diverse progenitor populations in the ganglionic eminences and neighboring structures. 4,
The embryonic domains that give rise to striatal fated cells include the LGE, MGE, CGE, POA, and SNE. Further gradients can be
found within the eminences (e.g., dorsal LGE is a major source of OB interneurons and ventral LGE gives rise to SPNs), and SST
interneurons are preferentially derived from dorsal MGE, while PV interneurons are preferentially derived from ventral MGE. B,
Left, Embryonic progenitors can be segregated into different groups: the apical progenitors of the VZ, induding radial glial cells;
subapical progenitors and short neural precursors; and the basal progenitors of the SVZ, which can be separated into bRGCs
and other IPs (e.g., basal progenitors). Right, The arrows represent the possible outcomes of progenitor division. C, Cells
undergo broadly conserved steps of maturation, including proliferation, differentiation, and migration followed by refinement
of circuitry through synaptogenesis and controlled apoptosis. D, The main excitatory inputs to striatum come from cortex and
thalamus, which innervate both the SPNs (left) and interneurons (right). SPNs include both the dSPNs (in red) and the iSPNs
(in red), which send axonal projections to downstream basal ganglia nuclei including, respectively, the SNr/GPi and GPe. The
local populations of diverse interneurons are integrated within the striatum and can modulate the activity of SPNs. VIP,
Vasoactive intestinal polypeptide.
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20105 Pilz et al,, 2013; Kelly et al., 2018;
van Heusden, 2021, #6256). The VZ of
the LGE is thought to contain several
types of embryonic progenitor cells, of
which the following two divide at the
ventricular surface: classic RGCs with a
bipolar morphology that exhibit a basal
and apical process during division; and
short neural precursors (SNPs), which
exhibit a rounded morphology and tend
to lack processes during division. Other
progenitors (OPs) in the VZ have been
shown to divide at subapical positions
away from the ventricular surface; these
have been named subapical progenitors
(SAPs; Pilz et al., 2013). Finally, the SVZ
contains progenitor types that lack a pro-
cess during division and resemble basal
progenitors (BPs), as well as progenitors
that retain one or more processes and
resemble RGCs. The latter progenitors
divide in the basal aspects of the LGE
and are called basal RGCs (bRGCs; Pilz
et al, 2013; Fig. 1B). Detailed analysis of
lineage progression among these progeni-
tor types suggests that the majority of LGE
RGCs generates daughter progenitor cells,
which continue to divide without directly
generating postmitotic neurons (Pilz et al,,
2013). This is unlike RGCs in the cortex
and MGE (Kriegstein and Alvarez-Buylla,
2009) and suggests that most striatal SPNs
are generated from IPs. Indeed, lineage
analysis suggests that LGE RGCs generate
mainly additional RGCs, SNPs, or SAPs.
In turn, the SNPs mostly generate further
SNPs or SAPs, while SAPs generate further
SAPs, BPs, or postmitotic neurons (Pilz et
al, 2013; Fig. 1B). Many of these embry-
onic progenitors are not unique to the
LGE and have also been characterized in
detail in proliferative zones of the cortex
(Noctor et al., 2001, 2004; Gal et al., 2006;
Kowalczyk et al., 2009; Stancik et al., 2010;
Shitamukai et al., 2011; Wang et al., 2011;
Franco and Miiller, 2013; Taverna et al,
2014), although their properties can differ
between these structures. For example,
cortical SNPs tend to have relatively long
cell cycle kinetics and often generate neu-
rons directly (Gal et al., 2006; Stancik et al,,
2010; Tyler and Haydar, 2013), whereas
those in the LGE tend to have relatively
short cell cycle kinetics and produce fur-
ther progenitors (Pilz et al., 2013).

The morphologic diversity of LGE pro-
genitors coexists alongside broader divisions
of LGE based on differential transcription
factor expression. For example, the tran-
scription factor ETV1/Er81 delineates the
dorsal regions of the LGE, which can be fur-
ther subdivided into a lateral subregion,
with high expression of the transcription
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factors paired-box protein 6 (Pax6) and Genetic-Screened
Homeobox 2 (Gsh2) and bordering the cortex (Yun et al,,
2001; 2003), and a more medial region with low Pax6
expression but high Gsh2 expression (Flames et al., 2007).
Other studies have revealed that the dorsally situated Etv1/
Er81" progenitors tend to generate olfactory bulb (OB)
fated interneurons, whereas the more ventrally located
Isl1™" progenitors supply SPNs of the striatum, thus provid-
ing the first evidence that distinct progenitor domains gen-
erate distinct neuron populations (Yun et al, 2001;
Stenman et al., 2003; Fig. 1A).

Specific transcription factors, such as GS Homeobox 1/2 (Gsx1/
2), achaete-scute homolog 1 (AsclI), and Distal-Less Homeobox 1/2
(DIx1/2), as well as Notch signaling, mediate cell-autonomous and
nonautonomous regulation of neurogenesis in the LGE and control
ordered production of striatal neurons (Yun et al., 2002; Mason et
al,, 2005). These can further delineate different LGE VZ and SVZ
regions (Puelles et al., 2000; Toresson et al.,, 2000; Yun et al.,, 2001;
Stenman et al., 2003; Flames et al., 2007; Petryniak et al., 2007;
Wang et al., 2013). Key in this process are the Gsx (Corbin et al,,
2000; Toresson et al., 2000; Yun et al., 2001; 2003; Wang et al., 2013;
Roychoudhury et al,, 2020; Salomone et al., 2021) and Dlx gene
families expressed during the maturation of both progenitors and
neurons in the LGE (Porteus et al., 1991; 1994; Anderson et al.,
1997; Liu et al,, 1997; Eisenstat et al., 1999) and governing further
downstream transcriptional networks controlling LGE and striatal
development (Long et al.,, 2009; Lindtner et al., 2019). Indeed, it has
been suggested that the early LGE contains GsxI/2" neuroepithelial
cells that produce multiple progenitor types characterized by Ascll
and Dix expression (Yun et al., 2002; Martin-Ibafez et al., 2012).
The Ascll*/DIx1/2" and Ascll */DIx1/2" progenitors are inferred to
emerge in sequence (Martin-Ibanez et al, 2012) and interact
through Notch-mediated lateral inhibition to coordinate both pro-
liferation and neurogenesis (Mason et al., 2005). The progenitors
within the LGE can be further distinguished through differential
transcription factor expression from those found in neighboring
eminences. For example, the MGE expresses the transcription fac-
tors NK2 Homeobox 1 (Nkx2.I) and LIM/homeobox protein 6
(Lhx6), whereas the LGE does not (Chen et al., 2017; Mayer et al.,
2018).

From this transcriptional and morphologically diverse popu-
lation of embryonic progenitors in the LGE, the vast majority of
postmitotic neurons become GABAergic striatal SPNs, with a
smaller population maturing into OB interneurons (Wichterle et
al.,, 1999; Corbin et al.,, 2001; Wichterle et al., 2001; Stenman et
al., 2003). The generation of SPNs starts at approximately E10.5
and continues until birth, E19.5, in mice (Deacon et al., 1994;
Sheth and Bhide, 1997; Matsushima and Graybiel, 2020; Fig. 2B),
although some are also born during early postnatal stages (Das
and Altman, 1970; Bayer, 1984; Wright et al., 2013). The orderly
production of early- and late-born SPNs within the LGE is regu-
lated in part through various downstream transcription factors
(e.g., Ebfl, Isll, Sp9; Zhang et al, 2016; Merchan-Sala et al.,
2017), which can regulate SPN subtype generation and survival,
as well as allowing for their selective labeling during early devel-
opment (Merchan-Sala et al., 2017). Indeed, for the generation of
dSPNs it has been shown that the transcription factor IslI is im-
portant (Ehrman et al., 2013; Lu et al.,, 2014), with conditional
loss leading to early cell death of newly born dSPNs (Ehrman et
al., 2013), likely through loss of Foxol expression (Waclaw et al.,
2017). Additional factors such as ebfI also play a role in SPN sur-
vival (Lobo et al., 2006; 2008), but with loss mainly affecting
dSPNs during later stages of neurogenesis. For the generation
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and survival of iSPNs, it has been shown that the transcription
factors Ikaros and Helios are important and also regulate the
expression of the iSPN marker enkephalin (Martin-Ibafez et al.,
2010, 2012). In addition, the expression of the transcription fac-
tors sp8 and sp9 (Long et al., 2009; Zhang et al., 2016) are further
required for iSPN survival as double knockout (KO) results in a
nearly complete loss of iSPNs (Xu et al., 2018), similar to KO of
their downstream transcription factor six3 (Song et al., 2021).

Embryonic progenitors of the MGE and their
progeny

Striatal interneurons, which exert a strong regulatory control
over SPN activity and consequently striatal output, are derived
primarily from the MGE (Fig. 14), Therefore, we will first out-
line what is currently known about MGE progenitors and subse-
quently introduce the progenitors in other structures that
produce the remaining striatal interneurons.

Like the LGE, the MGE arises from the ventral region of the
neural tube at approximately E9.5 and is divided into the VZ and
SVZ progenitor zones. In the VZ, the primary progenitor is the
RGC, which, in addition to self-replication, can give rise to other
progenitors and neurons (Turrero Garcia and Harwell, 2017).
Other progenitors in the MGE include SAPs and SNPs of the
VZ, in addition to other IPs and bRGCs of the SVZ (Turrero
Garcia and Harwell, 2017; Fig. 1B). The generation of such pro-
genitors occurs in a lineage-specific manner; for example, SNPs
arise from the direct division of RGCs, whereas the generation of
bRGs is achieved through SAP intermediates (Pilz et al., 2013;
Petros et al., 2015; Fig. 1B).

As in the LGE, the morphologic diversity of embryonic pro-
genitors in the MGE is accompanied by heterogeneity in the
combinatorial expression of different transcription factors
(Flames et al., 2007; Flandin et al., 2010; Lopes et al., 2012). In
situ hybridization studies for multiple target genes such as DIx2,
Pax6, Nkx2.1, Lhx6, and Lhx7 have revealed subdomains formed
by groups of transcriptionally similar progenitors that are local-
ized to specific regions of the MGE (Flames et al., 2007). Each of
these genes plays a distinct role in the control of cell identity
within the subdomains. For example, Dix genes drive the upreg-
ulation of the GABA-synthesizing enzyme glutamic acid decarbox-
ylase and delineate the GABAergic interneurons (Stuhmer et al,
2002; Le et al., 2017). Local populations of APs and BPs can also be
further divided into subpopulations based on their transcriptional
identity, which controls their metabolism, cell cycle dynamics, or
overall neurogenic role. For example, one population of APs dis-
plays high expression of the genes required for oxidative phospho-
rylation (Afp5e and Cox6c), whereas another population of APs
highly expresses DNA replication genes (McmS5, Mcm6, and Mcm?7)
and translation regulators (Eifdgl, Eif2s1, and Eif3b; Chen et al,
2017). On the other hand, BPs can be divided into two populations
based on the expression levels of glutamic acid decarboxylase 2
(Gad2) and aristaless-related homeobox (Arx), which represses the
inhibition of cell cycle progression (Lim et al., 2019). Coexpression
of Coup-TF1 and Coup-TF2 in distinct progenitor subdomains of
the MGE directly controls cell cycle dynamics and neurogenic dif-
ferentiation (Hu et al., 2017). Upon CoupTF-2 ablation, cell prolifer-
ation is perturbed, and the resulting cell fate is shifted. Thus,
distinct progenitors in the MGE show different transcriptional and
functional properties, which likely contribute to the generation of
striatal interneuron diversity.

MGE progenitors give rise to a widely heterogeneous and dis-
persed population of interneurons that populate brain areas such
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as the cortex, hippocampus, globus pallidus, and nucleus accum-
bens (Marin et al., 2000), and can be differentiated based on their
chemical, electrical, and morphologic properties. The primary
striatal interneuron subtypes are identified by their expression of
parvalbumin (PV), somatostatin (SST), or choline acetyltransfer-
ase (ChAT) and are diverse regarding their connectivity patterns
and intrinsic properties. For example, PV " fast-spiking inter-
neurons form short-range connections with SPNs and exert
strong inhibition that can regulate action potential initiation
in both dSPNs and iSPNs, thus mediating feedforward inhi-
bition over striatal output (Mallet et al., 2005; Gittis et al,,
2011; O’Hare et al., 2017; Owen et al., 2018). These fast-spik-
ing interneurons receive dense innervation from the cortex,
with smaller inputs from both thalamic projections and stria-
tal ChAT" CINs, and output to multiple SPNs with firing
rates of up to 400 Hz through their dense axonal field (Kita,
1993). In contrast, SST™ interneurons coexpress one or both of
the neurochemical markers neuropeptide Y (NPY) and nitric ox-
ide synthase, and are commonly referred to as low-threshold spik-
ing interneurons (Kawaguchi et al., 1995; Mufioz-Manchado et al.,
2016, 2018). These neurons are also primarily innervated by
monosynaptic, excitatory inputs coming from cortex, but they
differ from PV interneurons in that they form longer-range con-
nections with SPNs and show significantly lower levels of connec-
tivity (Assous et al, 2019). Moreover, these neurons are
innervated by CINs and mediate cholinergic-mediated feedfor-
ward inhibition (English et al., 2011). Finally, the CINs display a
range of transcriptional, morphologic, and physiological proper-
ties (Magno et al., 2017; Munoz-Manchado et al., 2018). For exam-
ple, it has been shown that the transcription factors Lhx6 and
ETVI1/Er81 segregate striatal CINs into functional subtypes
(Lozovaya et al., 2018; Ahmed et al., 2019, 2021). In particular, the
Lhx6-expressing CING, also called cholinergic-GABAergic inter-
neurons (Lozovaya et al, 2018), display different physiological
properties with higher firing rates and larger dendritic fields com-
pared with other CINs. Indeed, coexpression of neurotransmitters
such as acetylcholine, glutamate, and GABA in different CINs fur-
ther highlights their functional diversity (Nelson et al., 2014;
Granger et al., 2016). Newly developed approaches [e.g., adeno-
associated virus (AAV)-based tools; Vormstein-Schneider et al.,
2020; Table 1] will help to selectively label and further study these
diverse interneurons.

Other embryonic progenitors and their progeny

While most striatal interneurons are derived from the MGE,
smaller populations originate from other embryonic structures,
including the POA and SNE, which are both situated ventrally to
the MGE, as well as the CGE (Marin et al., 2000; Ma et al., 2012;
Fig. 1A). The CGE is a chemically distinct proliferation domain
originating from the caudal merging of the MGE and LGE, and
is classically defined by the expression of the 5SHT3a serotonin
receptor (Nery et al., 2002; Lee et al,, 2010; Fig. 1C). The peak
proliferation of CGE-derived NPCs occurs 3d after that of
MGE-derived progenitors (Miyoshi et al., 2010). Approximately
20% of the CGE-derived neurons contribute to a population of
striatal PV fast-spiking interneurons (Miyoshi et al., 2010) and
specifically express 5SHT3a (Muioz-Manchado et al., 2016). The
remaining interneurons include a unique population of late-spik-
ing neurogliaform cells and low-threshold spiking cells, both of
which lack the expression of known interneuron markers
(Munoz-Manchado et al., 2018). Other striatal interneuron sub-
types include a substantial population of tyrosine hydroxylase-
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positive (TH") interneurons comprising electrophysiologically
distinct cell subtypes (Mao et al., 2019). Striatal TH" interneur-
ons are not dopaminergic, but rather are a type of GABAergic
interneuron that expresses TH without the other requisite
enzymes or transporters to operate as dopaminergic neurons.
These interneurons play an important role in striatal function
through fast GABAergic synaptic transmission. They respond to
local or cortical stimulation with glutamatergic EPSPs and exert
widespread GABAergic inhibition onto both dSPNs and iSPNs,
and between CINs (Xenias et al, 2015; Dorst et al, 2020).
Modulation of the properties of TH" interneurons by dopamine
and acetylcholine may play important roles in mediating the
striatal effects of these neuromodulators, with potentially impor-
tant implications in disorders affecting the striatum (Ibdfez-
Sandoval et al,, 2015). The positional fate, morphology, and neu-
rochemical identity of CGE-derived interneurons in cortex were
shown to be dependent on the progenitor domain from which
they arise (Torigoe et al., 2016), but no evidence has directly
reported whether this extends to the CGE-derived interneurons
of the striatum.

Interestingly, progenitors of the POA and SNE express the
transcription factor Nkx2.1 and also generate neurons expressing
ChAT™, PV*, and SST* (Marin et al., 2000; Fig. 1A). As smaller
contributors to the overall interneuron populations in the cortex
and striatum, these regions have been somewhat neglected, so
further investigation is needed. This is highlighted by the fact
that the morphologic properties of SNE and POA progenitors
are not yet clearly defined within the literature. Yet, it is known
that POA progenitors are transcriptionally distinct from those in
the MGE, expressing transcriptional markers such as brain
homeobox protein 1 (DbxI) and sonic hedgehog (Shh; Gelman
et al., 2009).

Finally, a small subpopulation of Empty Spiracles Homeobox
1-lineage (EmxI) cells originating in the cortical proliferative
zones seem to migrate into the developing striatum during early
prenatal development (Willaime-Morawek et al., 2006) and dif-
ferentiate primarily into DARPP-32" SPNs and a small number
of calretinin-positive (CR™) striatal interneurons (Cocas et al.,
2009). In addition, a small population of SPNs has also been
shown to arise from the CGE (Nery et al., 2002).

It is largely unknown how the heterogeneity of embryonic
progenitors based on their location of division (e.g., VZ and
SVZ), morphology, and cell cycle kinetics maps onto the tran-
scriptional heterogeneity seen in the ganglionic eminences. This
is important to understand, not only to further our understand-
ing of progenitor diversity and lineage progression, but also
because it might reveal a cohesive framework for labeling and
tracking these populations of progenitors during embryogenesis,
as well as following their development and neuronal progeny.
Endeavors to map the genetic diversity within the ganglionic
eminences at the single-cell level (Mayer et al., 2018; Mi et al,,
2018) will further these efforts but is complicated because of the
highly dynamic nature of their transcriptional profiles (Li et al.,
2020).

From ganglionic eminences to postnatal striatum

The LGE and MGE generate the majority of the neurons found
in the postnatal striatum. From these embryonic domains, post-
mitotic cells must first migrate through the mantle zone, the su-
perficial layer beyond the SVZ that contains neurons at various
stages of migration and differentiation, before proceeding to the
primordial striatum, where they integrate into functional striatal
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Figure 2. Embryonic progenitor origin controls many aspects of mature striatal neuron position and connectivity. 4, i, LGE alPs and biPs generate SPNs fated to the striosomes (alP*s-SPN)
and matrix (bIP"s-SPN) compartments of the adult striatum. SPNs fated for the annular region (bIP*s-SPN) are generated later in development from specific biPs expressing the transcription
factor DIxT. i, IPs expressing Ter1 in the LGE generate SPNs that receive stronger innervation from the mPFC, whereas OPs, which do not express Tex1, generate SPNs that receive stronger
innervation from visual cortex afferents. iii, The time of birth of SPNs in the LGE determines their spatial arrangement within striosomes and, consequently, facilitates the formation of different
long-range synaptic connections with the SN. iv, It is debated whether lineage and/or clonal relationships govern the spatial distribution of MGE-derived neurons. v, The transcriptional identity
of mature MGE-derived interneurons is reflected in early postmitotic cells (PMCs); however, whether the underlying progenitor cells predetermine this is not known. vi, Apical neurogenesis in
the MGE biases toward the generation of SST interneurons, whereas basal neurogenesis preferentially generates PV interneurons. Unlike the SPNs, it is not known whether this bias extends to
the spatial distribution between striosomes and matrix neurochemical compartments in the striatum. B, For both MGE- and LGE-derived neurons, the time of birth appears to be a critical factor

that facilitates the generation of the chemical identity and spatial distribution of a neuron.
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circuits. From the LGE, postmitotic cells migrate predominantly
radially over a short distance, following a number of migratory
cues toward the striatum (Bayer, 1984; Halliday and Cepko,
1992; Song and Harlan, 1994; de Carlos et al., 1996; Hamasaki et
al., 2003; Newman et al., 2015; Kelly et al., 2018; Xu et al., 2018;
Chen et al,, 2020), where they actively intermix (Tinterri et al.,
2018). From the MGE, interneurons migrate longer distances to
both the cortex and the striatum, again relying on differential
expression of guidance molecules and receptors. For example, it
is known that migration to cortical regions is guided by chemoat-
traction of semaphorin ligands (Sema3A and SemaF), and neu-
ropilin receptors (Nrpl, Nrp2; Marin and Rubenstein, 2001;
Andrews et al., 2017) expressed in cortical fated cells, whereas
migration to the striatal region is regulated by neuregulin 1 and
ErbB4 receptor tyrosine kinase 4 signaling (Villar-Cervifo et al.,
2015). Any change in the expression of these transcription fac-
tors in postmitotic cells will redirect cells fated to a specific brain
region (Villar-Cervifo et al., 2015). The rapid downregulation of
Nkx2.1 acts as a postmitotic transcriptional switch (Fig. 3B) in
cortical fated cells, as it transcriptionally inhibits cortical migra-
tion cues such as Nrp2 (Butt et al., 2008; Nobrega-Pereira et al.,
2008). In contrast, striatal fated cells maintain Nkx2.1 expression
into adulthood, preventing cortical migration (Villar-Cervino et
al, 2015).

The smaller populations of cells derived from the CGE,
SNE, and POA must also migrate to the striatum; however,
they follow different migratory routes, regulated by different
genetic cues. Unlike the MGE and LGE, the CGE has two sep-
arate caudorostral migratory routes that cells use to invade the
striatum, hippocampus, and cortex (Nery et al., 2002; Touzot
et al., 2016). These cells regulate migration through specificity
protein 8 (Sp8), Prox1, and CoupTF-I/TF-II signaling, which
when perturbed, disrupts the ability of cells to successfully
integrate into these diverse circuits (Touzot et al., 2016). In
the next section, we explore how certain organizational
aspects of striatum are governed by embryonic progenitor ori-
gin (Fig. 2).

Progenitors shaping striatal neuron positioning. How is the
position of a neuron in the striatum related to the embryonic
progenitor it is derived from? It is known that early-born SPNs
are located in the caudal parts of the striatum, while later-born
SPNs are found in more rostral parts (Newman et al., 2015; Kelly
et al., 2018). The differential localization of these SPNs must, to
some extent, be related to the populations of progenitors that are
actively dividing during early and later stages of neurogenesis. As
the proportion of IPs is greater at later stages of neurogenesis,
this would suggest a larger contribution of certain IPs (e.g., BPs)
to the generation of rostral SPNs (Pilz et al., 2013; Newman et
al.,, 2015; Kelly et al.,, 2018). Both dSPNs and iSPNs are found
intermingled throughout the striatum in a mosaic (Gangarossa
et al., 2013), which, at least for the matrix compartment, seems
to arise from active intermingling of newly born SPNs (Tinterri
et al,, 2018). This intermingling suggests that clonal clusters of
SPNs might be spread out more extensively throughout the stria-
tum than clones found in the cortex (Yu et al., 2009; Brown et
al.,, 2011; Shi et al., 2017), although this has not been systemati-
cally tested. Further positional information of SPNs in the stria-
tum can be related to differential gene expression. For example,
clear gradients of expression of the genes Crym and Cnrl in
SPNs can be observed from ventrolateral to dorsomedial stria-
tum (Stanley et al., 2020). However, whether these gradients
result from different developmental origins of the SPNs is cur-
rently unknown.
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Like SPNs, striatal interneurons do not distribute homogene-
ously within the striatum. Interneuron migration follows a ven-
tral to dorsal gradient and interneurons sequentially populate the
lateral and medial regions of the striatum (Chen et al., 2020). In
particular, early-born interneurons such as the PV interneur-
ons and CINs tend to accumulate in the lateral part of the stria-
tum (Marin et al., 2000; Fig. 2B). Similarly, different types of
CR" interneurons do not distribute homogeneously; for exam-
ple, those coexpressing the Ca>* binding protein secretagogin
and Sp8 are preferentially located in the rostral parts of the stria-
tum, while other subsets of CR™ interneurons are located more
uniformly (Garas et al., 2018). Interestingly, the expression of
secretagogin also defines a subpopulation of PV ™" interneurons
found in more caudal parts of the striatum (Garas et al,, 2016). A
direct link between progenitor identity and the final location of
MGE-derived cells is yet to be elucidated, and the extent of spa-
tial distribution of lineage-related interneurons is a current mat-
ter of debate. It has been proposed that lineage relationships do
not determine interneuron allocation to particular regions
(Mayer et al., 2015) and that clonally related interneurons can be
widely dispersed (Harwell et al.,, 2015). Indeed, studies tracing
clonally related neurons (predominantly after retrovirus labeling
of progenitors embryonically) reveal that they disperse across the
cortex, hippocampus, and striatum, with no apparent clustering
(Reid and Walsh, 2002; Ciceri et al., 2013; Turrero Garcia et al.,
2016; Fig. 2A, Table 1). However, other studies analyzing the
same dataset suggest that lineage (i.e., clonal or progenitor ori-
gin) does form clusters of neurons in the postnatal brain (Sultan
et al., 2016). Further studies of clonally related striatal interneur-
ons from different embryonic regions and different progenitor
cell types are likely necessary to unambiguously answer this
question.

Progenitors shaping striatal neurochemical compartments. As
mentioned in the Introduction, striatal dSPNs and iSPNs are
intermingled within several functionally and anatomically dis-
tinct subregions. SPNs born in the early phases of neurogenesis
become preferentially incorporated into striosomes/patches and
the later-born SPNs settle in the surrounding matrix (Graybiel
and Hickey, 1982; van der Kooy and Fishell, 1987; Song and
Harlan, 1994; Mason et al., 2005; Newman et al., 2015). Whether
there is further fine-scale organization within these compart-
ments and to what extent this relates to the diversity of embry-
onic progenitors in the LGE was until recently largely unknown.
Several recent studies have started to provide some key insights,
however (Kelly et al., 2018; Tinterri et al., 2018; Matsushima and
Graybiel, 2020; Fig. 2).

The first study used elegant fate-mapping experiments to pro-
vide insight into the roles of distinct types of progenitor cells in
the LGE in generating SPNs fated to either the striosome/patch
or matrix compartments (Kelly et al., 2018). In this study, the
authors used lineage-tracing analysis of embryonic progenitors
[using tamoxifen-inducible, NGF-inducible protein (Tis21)- and
Ascll-Cre recombinase mouse driver lines] and demonstrated
that the LGE contains two types of IPs, both derived from a RGC
lineage. During early stages of neurogenesis (E9.5 to E12.5), api-
cal IPs (alPs) express the transcription factor AsclI and have lim-
ited capacity to produce striosomal SPNs. During later phases of
neurogenesis (E13.5 to E18.5), basal IPs (bIPs) expressing both
Ascll and DIx1 produce matrix SPNs. It is possible that Ascll, in
conjunction with Gsx2, in SAPs inhibits neurogenesis and pro-
motes initial proliferation of these large numbers of basal IPs
(Roychoudhury et al., 2020). Both types of embryonic progenitor
(apical and basal IPs) were shown to generate both dSPNs and
iSPNs (Kelly et al., 2018).
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The second study (Tinterri et al., 2018) used a combination of
transgenic animals and time-lapse video imaging to provide
insight into the seemingly uniform distribution of both dSPNs
and iSPNs. Indeed, they were able to show that late-born iSPNs
actively intermix with early-born dSPNs and that this, at least for
the matrix compartments, depends on the expression of the tran-
scription factor ebfI in dSPNs (Tinterri et al., 2018).

Last, using a combination of transgenic DIxI-Cre recombi-
nase mice under the control of a fast-acting version of tamoxifen
(4-OHT), Matsushima and Graybiel (2020) revealed that the
striosomes/patches are formed through a center-surround rule,
in which early-born SPNs are predominantly found in the center
of the striosomes/patch compartments and are surrounded by
increasingly later-born SPNs. They found that this center-sur-
round rule was universal and was used in both anterior and pos-
terior parts of the striatum, despite absolute differences in the
birth date of SPNs in these distinct parts. Moreover, they found
that a key anatomic structure, the so-called striosome-dendron
bouquet, forms during a very specific period of neurogenesis in
the mouse (ie., approximately E12 to E13; Matsushima and
Graybiel, 2020; Fig. 2).

Striatal interneurons also allocate differently between the
striosome/patch and matrix compartments, which affects how
these local microcircuits of SPNs are modulated (Banghart et al.,
2015; Friedman et al., 2015). Often found at higher density in the
matrix, CINs, PV, NPY, and CR-expressing interneurons are fre-
quently located along striosomal borders in anatomically and
functionally defined areas called “peristriosomal boundaries”
(Prager and Plotkin, 2019). CINs and SST" interneurons
located at the interface between striosomes and matrix have
dendrites and axons that traverse across compartmental
borders (Kubota and Kawaguchi, 1993; Bernacer et al,
2012; Brimblecombe and Cragg, 2015; Matamales et al,,
2016). Such interneurons might provide a functional bridge
and modulate activity in both compartments (e.g., as dem-
onstrated for the CINs; Crittenden et al., 2017). Yet, the
precise roles of many other striatal interneurons in func-
tionally linking striosome/patch and matrix microcircuits
and intercompartmental communication remain poorly
explored and form an interesting area for future study
(Amemori et al., 2011).

Progenitors shaping striatal long-range excitatory synaptic
circuits. How does embryonic progenitor origin shape the speci-
ficity of synaptic connections in the striatum? As mentioned in
the Introduction, the striatum can be split into distinct functional
domains depending on anatomic subregion (e.g., DLS and
DMS). These distinct anatomic domains contain a mixture of
dSPNs and iSPNs that is thought to process and integrate excita-
tory inputs from distinct brain regions and also interact with
each other via lateral inhibitory connections (Taverna et al.,
2008; Planert et al., 2010; Chuhma et al., 2011; Burke et al., 2017;
Krajeski et al., 2019). These anatomic domains are thought to be
part of larger parallel functional pathways through the basal gan-
glia (Graybiel and Ragsdale, 1978; Alexander et al, 1986;
Graybiel, 1990; Haber, 2008; Pan et al, 2010; Oh et al., 2014;
Hintiryan et al,, 2016; Hunnicutt et al., 2016; McGregor et al.,
2019; Lee et al., 2020). At a more local level, the clear segregation
of these functional pathways is less clear. Indeed, individual
SPNs exhibit considerable heterogeneity in their afferent connec-
tivity patterns (Pan et al., 2010), and populations of SPNs with
diverse excitatory inputs are intermingled in striatum (Oh et al.,
2014; Hintiryan et al., 2016; Hunnicutt et al., 2016). Moreover, it
has been shown that long-range glutamatergic synapses from
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different cortical regions can converge onto single SPNs (Reig
and Silberberg, 2014) or diverge and form biased synaptic con-
nections on either dSPNs or iSPNs (Wall et al., 2013; Johansson
and Silberberg, 2020). Considering that young SPNs exhibit
complex migratory pathways and intermix in striatum during
development (Tinterri et al., 2018), a question remains regarding
how these precise striatal excitatory synaptic circuits develop and
whether there is a role for distinct progenitor lineages.

A recent study has provided the first evidence that synapse
specificity, of at least corticostriatal afferents, can arise from the
embryonic origin of SPNs (van Heusden et al, 2021). In this
study, the authors used in utero electroporation of a combination of
constructs to label two active pools of embryonic progenitor in the
VZ of the LGE at E15.5, based on the differential expression of the
tubulin a1 (Teel) promoter (Table 1). Interestingly, different tubulin
isotypes can shape the properties of proliferating cells and might
therefore provide a good target for future delineation of further pro-
genitor types (Ramos et al., 2020). The study by van Heusden et al.
(2021) combined a Tar1-Cre recombinase construct with a reporter
construct incorporating a flexible excision (FLEx) C3 A-FLEx cas-
sette, so that Cre recombination permanently switches expression
from the fluorescent protein TdTomato to GFP (Franco et al,, 2012).
Using this methodology, the authors showed that progenitors labeled
with GFP (i.e., expressing Ta1) in the VZ had characteristics of both
the SNP and SAP populations of LGE progenitors, including a
rounded morphology during division, location of division, and fast
cell cycle kinetics (Pilz et al., 2013; Kelly et al., 2018; van Heusden et
al,, 2021). Measures of cell cycle kinetics in this and previous studies
(Stancik et al., 2010) were evaluated through labeling with the mi-
totic marker phosphohistone-3, but new technology [e.g., FUCCI
(fluorescence ubiquitination cell cycle indicator); Sakaue-Sawano et
al., 2008] will allow for more detailed insights (Table 1). Conversely,
the progenitors that expressed TdTomato (i.e., not expressing Tal
and likely consisting of a more heterogeneous population of progeni-
tors) resembled the population of RGCs in that they had slower cell
cycle kinetics and frequently exhibited a radial morphology during
division (Pilz et al., 2013; Kelly et al., 2018; van Heusden et al., 2021).
As many SAPs derive from SNPs and hence are closely lineally
related (Pilz et al.,, 2013), and as both divide in the apical aspects of
the LGE proliferative zone, the GFP* Tal-expressing progenitors
were collectively referred to as “apical intermediate progenitors,” and
the TdTomato " non-Tal-expressing progenitors simply as “other
progenitors” (Fig. 2A). This also conforms to nomenclature of simi-
lar cortical (Tyler and Haydar, 2013; Ellender et al., 2019) and em-
bryonic LGE progenitors (Kelly et al., 2018).

Using this approach, the authors followed the progeny of la-
beled cells and found that both progenitor pools predominantly
generated striatal GABAergic SPNs; they referred to these cells as
aIP- and OP-derived SPNs. Notably, both progenitor pools gen-
erated both dSPNs and iSPNs, which were intermingled, mostly
in the DMS, and had similar properties (van Heusden et al.,
2021). The authors explored whether aIP- and OP-derived SPNs
differentially sample excitatory input coming from distinct corti-
cal regions using local injections of AAV1-ChR2 in two different
regions that send strong projections to DMS [Pan et al,, 2010;
Oh et al,, 2014; Guo et al.,, 2015; Hunnicutt et al,, 2016; i.e., the
medial prefrontal cortex (mPFC); Laubach et al., 2018] and vis-
ual cortex (VC; Khibnik et al., 2014); this allowed optogenetic
activation of afferents and whole-cell patch-clamp recordings of
alP- and OP-derived striatal SPNs. Strikingly, they found that
embryonic progenitor origin conveyed significant biases in the
strength of the long-range synaptic inputs coming from cortex,
in that mPFC strongly innervated the alP-derived SPNs, whereas
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the VC strongly innervated the OP-derived SPNs (Fig. 2A). The
study by van Heusden et al. (2021), together with recent observa-
tions in cortex (Ellender et al., 2019), suggest that the lineage of a
neuron may be a key contributor to synapse specificity. In utero
electroporation and other techniques such as Flash-Tag (Telley
et al., 2016; Govindan et al., 2018) are powerful approaches to
label progenitors and follow their progeny (Table 1) to further
our understanding of how progenitor identity relates to final
function.

Unlike for SPNs, no study has yet investigated the correlation
between the identities of progenitor cells (transcriptional, mor-
phologic, or otherwise) and the subsequent excitatory synaptic
connectivity pattern of mature striatal interneurons in detail.
However, it is possible to infer a link between the two, based on
current knowledge of striatal development. Indeed, distinct
classes of striatal interneurons receive different glutamatergic
inputs along the mediolateral axis. For example, CINs in the
DMS receive more inputs from the pedunculopontine nucleus
than the CINs in DLS (Assous et al, 2019), and, similarly, PV
interneurons in the DMS, and not those in the DLS, receive glu-
tamatergic inputs from the cingulate cortex (Monteiro et al.,
2018). In the MGE, newly postmitotic, late-born CINs can be
defined by the expression of the Gbx2 transcription factor (Chen
et al., 2010), which might be related to their preferred peduncu-
lopontine innervation in the DMS CINs. However, the extent to
which the identity of the newly formed postmitotic cell is con-
trolled by the transcriptional profile of the underlying progenitor
is only beginning to be understood (for review, see Mi et al.,
2018; Fig. 2).

Searching for answers in the cortex

Many questions remain regarding the role of embryonic progeni-
tors in shaping postnatal striatal neuronal identity and circuits.
For example, how do specific progenitor-derived cells map onto
modern transcriptomic classifications of striatal neurons? What
is the contribution of progenitor types other than the ones stud-
ied so far? We will now discuss some of these outstanding ques-
tions in light of the relevant literature, mainly from studies in the
cortex, and discuss how these may guide future research in the
striatum.

What is the contribution of other embryonic progenitors to
the striatum?. As discussed above, the LGE contains a heteroge-
neous mix of progenitor types including those that divide in the
apical aspects of the LGE (e.g., RGC and alP) and those that
divide in the basal aspects of the LGE (e.g., bRGCs and BPs;
Olsson et al., 1998; Stenman et al., 2003; Pilz et al., 2013; Kelly et
al,, 2018; van Heusden et al., 2021). Although a recent study has
started to provide insight into the contribution of the apically
dividing progenitors to the striatal cellular and circuit organiza-
tion (van Heusden et al., 2021), much less is known about the
contribution of other more basally dividing progenitors. It has
been proposed that the number and relative proportion of basal
progenitors are responsible for the extensive growth of the neo-
cortex in humans (LaMonica et al., 2013; Florio and Huttner,
2014; Lewitus et al., 2014) and have underpinned an evolutionary
step driving our unique cognitive abilities. However, bIPs may
not solely exist to increase brain size, but instead offer alternative
contributions to the development of cortical as well as striatal
circuits.

In the striatum, the striosome and matrix compartments dif-
fer substantially in size, but their approximate 1:4 size ratio is
conserved across many mammalian species (Brimblecombe and
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Cragg, 2017). The findings that distinct IP types with different
neurogenic capacities are fate restricted to generate SPNs des-
tined for either striosome or matrix compartments provide a
plausible explanation for this observation (Kelly et al., 2018).
Indeed, Kelly et al. (2018) demonstrated that larger numbers of
bIPs are generated from RGCs during a long, late phase in
embryogenesis and that individual bIPs undergo more rounds of
transitory amplification compared with early aIPs. This results in
early alPs generating many of the striosome SPNs, and later bIPs
generating many of the matrix SPNs (Fig. 2A,B). Moreover, these
authors demonstrated that the progeny of distinct types of bIPs
at various stages of embryonic development inhabit distinct ma-
trix compartments (Kelly et al., 2018), suggesting that bIP diver-
sity can also inform the formation of distinct regions in striatum.
What further properties, if any, are conveyed by bIPs is currently
largely unknown.

In cortex, in utero electroporation of T-box brain protein 2
(Tbr2) Cre-recombinase constructs and fate mapping of their
progeny made it possible to show that the cortical progeny of
Tbr2 " bIPs had distinctive electrical and morphologic properties
compared with neurons derived from other progenitors (Tyler et
al., 2015). It might be possible to label bIPs in the LGE using sim-
ilar approaches, as Tbr2 is embryonically expressed in the LGE
(Kimura et al,, 1999). Considering that the MGE gives rise to
both striatal and cortical interneurons, it is possible that the
mechanisms demonstrated for cortical neurogenesis can be
extended to the striatum.

Interestingly, bIPs have been shown to selectively contribute
to interneuron diversity (Petros et al., 2015). Indeed, apical pro-
genitors appear to preferentially generate SST™ interneurons,
whereas bIPs contribute to PV interneurons, confirming a dis-
tinct role for bIPs in the MGE (Fig. 2A). Especially during later
stages of embryonic development, bIPs become the primary pro-
liferative cells in both ganglionic eminences (Smart, 1976), and it
will interesting to explore whether they might convey further
characteristics related to cell identity, synaptic connectivity, and/
or intrinsic electrical properties.

Do diverse embryonic progenitor types map onto defined post-
natal neuron populations?. The advent of single-cell RNA
sequencing (sc-RNAseq) technology has provided great insight
into the vast diversity of postnatal neurons in the brain, includ-
ing the striatum (Table 1). Indeed, this has provided evidence for
SPN types beyond the classical distinction of dSPNs and iSPNs
(Saunders et al., 2018; Martin et al., 2019), additional subdivi-
sions within the dSPNs or iSPNs (Gokce et al., 2016; Zeisel et al.,
2018; Stanley et al., 2020), and gradients of transcriptional heter-
ogeneity correlating with SPN position in the striatum (Stanley
et al., 2020). Whether and to what extent this great diversity of
SPN types maps onto distinct embryonic progenitor pools is
largely unknown. It has been shown that different progenitor
pools in LGE, such as aIP and OP (van Heusden et al., 2021),
and bIP (Kelly et al., 2018), can each generate both dSPNs and
iSPNs. It seems that dSPN and iSPN share common progenitors
(i.e., both AP and BP) and that lineage commitment is estab-
lished during the postmitotic transition, as shown in humans as
well (Bocchi et al., 2021). This suggests that factors beyond the
embryonic pool of origin likely contribute to the generation of
SPN transcriptional subtypes (Tepper et al., 1998; Lobo et al.,
2006; Franco et al., 2012; Kelly et al., 2018; Anderson et al., 2020;
Sharma et al., 2020). Many other factors could act on progenitors
and young neurons, including epigenetic modifications (Yoon et
al.,, 2018; Zahr et al,, 2018; Telley et al., 2019), factors related to
migration (Lim et al., 2018), or further differential transcription
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Table 1. Recent technological advances in embryonic progenitor research

Methods Key findings and references

Analysis of gene expression
sc-RNAseq Uncovered new MGE-derived NPC subtypes and transcriptionally defined cortical interneurons (Tasic et
Quantification of RNA transcripts with single-cell resolution al., 2016; Mayer et al., 2018; Mi et al., 2018; Saunders et al., 2018; Tasic et al., 2018)

AP and BP populations divide into two subtypes (Chen et al., 2017)

Further subdivisions within dSPN and iSPN and additional striatal SPN types (Gokce et al., 2016;
Saunders et al., 2018; Zeisel et al., 2018; Martin et al., 2019)

Uncovered gradients of transcriptional heterogeneity correlating with positional information of SPNs
(Stanley et al., 2020)

Whole-exome sequencing identifying ASD risk genes and the critical importance of interneurons within
ASD etiology (Satterstrom et al., 2020)

sc-RNAseq of human striatal progenitors and young neurons (Bocchi et al., 2021)

Patch-Seq Reveals seven main classes of striatal SPNs and interneurons with gradients of gene expression that vary
Investigating transcriptional profiles and physiological properties of single from cortical and hippocampal interneurons (Mufioz-Manchado et al., 2018)

cells Transcriptional classification of alP- and OP-derived cortical neurons (Ellender et al., 2019)

Spatial transcriptomics Spatial transcriptomics enables generation of a whole-brain atlas and uncovers new spatial domains in
Visualizing RNA transcripts in specific areas with spatial resolution (50 pm) the striatum (Lein et al., 2017; Ortiz et al., 2020)

MERFISH MERFISH enables spatial RNA profiling of individual cells in different subcellular compartments and in
Visualizing RNA transcripts with subcellular compartmentalization transcriptionally distinct cell cycle phases. This technique is useful to study cell fate and regulation of

gene expression (Xia et al., 2019)

Lineage tracing and cell fate assays

MADM This genetic mosaic strategy enables sparse altering of single cells while maintaining a “normal” local

MADM provides genetic dissection of intrinsic gene function microenvironment. This study showed that Lg/7 is a critical regulatory element for embryonic cortical
neurogenesis and cell-autonomous control of RG(-mediated glia genesis and postnatal NPCs (Beattie
et al,, 2017)

FlashTag This powerful technique, first described in the neocortex, can be used in many brain regions to date the

Label, track and isolate isochronic cohorts of newborn cells in the (NS birth of and isolate any type of progenitor in contact with the VZ and to follow cell migration of
newly born neurons (Telley et al., 2016; Govindan et al., 2018)

In utero electroporation In utero electroporation of constructs driving recombinase systems (e.g., Cre) under the control of pro-

Label embryonic progenitors and track their progeny through prenatal and moter sequences specific for certain progenitors in combination with reporter constructs allows for

postnatal periods labeling of progenitors and progeny. Used to label apical IPs in striatal and cortical proliferative

regions (Gal et al., 2006; Stancik et al., 2010; Tyler and Haydar, 2013; Ellender et al., 2019; van
Heusden et al., 2021), and basal IP cells and/or bRGCs in cortical proliferative regions (Tyler et al.,
2015; Li et al., 2020)

Transplantation assays In this study, the authors reveal a differentiation protocol to direct hPSCs to mature neurons in 37 d in

Human pluripotent stem cell-derived neurons vitro (Comella-Bolla et al., 2020). Transplantation experiments show that NPCs survive and differenti-
ate (for at least 3 months) in the mouse striatum (Martinez-Cerdefio et al., 2010; Noakes et al.,
2019; Comella-Bolla et al., 2020)

Fucd Genetically encoded fluorescent probes to visualize cell cycle transition from G1 to S phase (individual

Fluorescence ubiquitination cell cycle indicator analyzes the temporal dynam-  G1 phase nuclei in red, S/G2/M phases in green; Sakaue-Sawano et al., 2008)

ics

of cell cycle progression (live cell imaging)

Clonal relationships Study the clonal or progenitor origin that influences the spatial distribution of mature interneurons
Dispersion of clonally related interneurons (Ciceri et al., 2013; Harwell et al., 2015; Mayer et al., 2015; Sultan et al., 2016; Turrero Garcia et al.,
2016)
Connectivity and cell activity
Viral transfections Mapping of synaptic inputs to projection neurons and cholinergic interneurons in the dorsal striatum
RV: retrograde monosynaptic tracing using modified rabies virus tracing (Guo et al., 2015)
AAV: labeling of distinct neuronal subtypes Identification of multiple new enhancers to target functionally distinct neuronal subtypes in mice, prima-

tes, and humans (Vormstein-Schneider et al., 2020)

Studying progenitors in humans
Brain organoids Study of the transcriptional regulation of progenitor fate that is altered in ASD—for example revealing
In vitro models that replicate some developmental processes of the human  that the overexpression of FoxG7 leads to the overproduction of interneurons (Mariani et al., 2015)
brain

Perturb-Seq Alteration of cortical lineages in the developing mouse brain and analysis of 35 ASD risk genes in five
Introduction of mutations in specific genes by gene editing (e.g. knock-out  cells classes, including projections neurons, inhibitory neurons, astrocytes, oligodendrocytes and
candidate genes in mice embryos), followed by single-cell transcriptomic microglia. They revealed that cell type composition remains unaffected, but cell state is affected (Jin
analysis et al., 2020). This method can be applied across diseases from diverse tissues, such as human PSCs or

brain organoids

MERFISH, Multiplexed error-robust FISH; MADM, mosaic analysis with double markers; FUCCI, fluorescence ubiquitination cell cycle indicator.
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Figure 3.  The relationship between diversity in embryonic progenitors and diversity in postnatal neurons. A, Different models have been proposed to explain the neuronal diversity observed
in the postnatal brain. In the deterministic model (left), different progenitor pools (different colors; Villar-Cervifio et al., 2015) generate neurons that have specific characteristics (e.g., biased
synaptic inputs, transcriptional identity, and/or spatial positioning). In the stochastic model (middle), these characteristics are mainly attained shortly after birth through a seemingly random
process (Llorca et al., 2019; Klingler and Jabaudon, 2020). These two models could also coexist for distinct progenitor populations, and they are not mutually exclusive: a mixed model (right) is
possible. B, It is possible that some developmental cues are irreversible, permanently shifting the outcome of a stochastic system. In this example, the dark line represents a restriction within
the stochastic system: after a cell downregulates the transcription factor Nkx2.7, it becomes fated for the cortex instead of striatum. The result cannot be reversed, regardless of intrinsic or ex-
trinsic cues. €, Top, To effectively restore neural physiology with cell transplants in the postnatal brain, multiple factors must be considered, including transplanting a sufficient number of cells
with appropriate transcriptional identities and intrinsic properties (Noakes et al., 2019). Bottom, Because neurodevelopmental pathologies can arise from dysfunctional progenitors, modulation
of existing progenitors in situ or transplanting progenitors prenatally might restore a healthy developmental trajectory. This will also necessitate the generation of progenitors with appropriate
cell cycle dynamics (Wang et al., 2020), transcriptional states (Satterstrom et al., 2020), and other intrinsic properties, including resting membrane potential (RMP; Vitali et al., 2018). Both adult

and embryonic transplants would require transplanting cells at the correct time within a developmental or disease process, as well as in the correct location in the brain.

factor expression (Lu et al., 2014; Zhang et al., 2016; Bocchi et al.,
2021), to prime or post-transcriptionally regulate protein expres-
sion (Nowakowski et al., 2013; Zahr et al., 2018; Li et al., 2020).
Despite the above findings, there is some early evidence link-
ing transcriptionally defined cortical neurons to defined popula-
tions of embryonic progenitor (Ellender et al, 2019). In this
study, the authors used a modified Patch-seq approach (Muoz-
Manchado et al., 2018; Mahfooz and Ellender, 2021; Table 1) to
transcriptionally map aIP- and OP-derived cortical neurons to a
published large-scale sc-RNAseq neuronal classification of cortex
(Tasic et al., 2018). They found that the cortical aIPs, as defined
by the selective expression of the Tal promoter during early de-
velopment, were more restricted in the types of cortical neurons
they generated than OPs, which consisted of a more heterogene-
ous population of progenitors (Ellender et al.,, 2019). This re-
stricted output from alPs supports the idea that intermediate
progenitors emerged to increase the representation of particular
postmitotic cell types (Martinez-Cerdefio et al., 2006; Tyler and
Haydar, 2013; Taverna et al., 2014; Guillamon-Vivancos et al.,
2019) and also supports the idea that VZ neuronal progenitors
can exhibit different degrees of lineage restriction (Franco et al,,
2012; Gil-Sanz et al., 2015; Llorca et al., 2019). At the same time,
as alPs are derived from RGCs, these findings are compatible
with a general model in which a single neuronal progenitor cell
type ultimately gives rise to the full complement of excitatory

cortical neuronal cell types (Franco and Miiller, 2013; Taverna et
al.,, 2014). Last, the data indicate that multiple excitatory progeni-
tor pools, and intermediate progenitor pools in particular, have
not simply evolved to expand brain structure volume, but can
also contribute to cell diversity.

How progenitor cell diversity in the MGE shapes interneuron
transcriptional diversity in the mature brain has been a long-
standing question in neural development. Of particular interest
is whether a single MGE-derived progenitor can generate both
striatal and cortical interneurons (Reid et al., 1995; Reid and
Walsh, 2002). As previously described, postmitotic transcrip-
tional switches such as Nkx2.1 can determine cortical versus
striatal fate (Villar-Cervifio et al., 2015); but it is not known
whether this is predetermined at a progenitor level. Currently,
two distinct models have been suggested. In one model, across
its proliferative life span, a single progenitor can generate both
cortical and striatal fated neurons, which, when mature, can
have vastly different functional properties (McConnell and
Kaznowski, 1991; Desai and McConnell, 2000; Llorca et al,,
2019). Alternatively, a single progenitor may be fate locked to
the generation of either striatal or cortical cells. In this latter
paradigm, progenitor cell diversity directly drives neuron het-
erogeneity (Franco et al., 2012; Garcia-Moreno and Molnar,
2015; Fig. 3). Both possible mechanisms raise questions. For
example, if cortical and striatal interneurons are derived from
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different progenitors, are these progenitors spatially segre-
gated within the VZ of the MGE (Flames et al., 2007; Mi et al.,
2018)? Or are they randomly distributed, with a stochastic system
of probabilistic decisions delineating striatal from cortical MGE-
derived interneurons, as has been shown for excitatory neurons in
the cortex (Llorca et al, 2019; Klingler and Jabaudon, 2020).
Alternatively, specific molecules could separate progenitors giving
rise to both striatal and cortical interneurons. For example, the
ETV1/Er81 transcription factor is expressed from E10.5 in the MGE
and segregates subtypes of progenitor cells in the VZ and SVZ. It
has been shown to play a critical role during development, impact-
ing several properties, including neuronal identity (Flames et al.,
2007; Doitsidou et al., 2013) and excitability of cortical (Dehorter et
al., 2015), as well as striatal interneurons (Ahmed et al., 2021).
However, how the ETV1/Er81 transcription factor relates to the dis-
tinct progenitor cells discussed so far is largely unknown. It would
be interesting to further investigate whether this specific molecule
dictates MGE-derived cell fate and participates in the emergence of
functional diversity within the striatum.

The question of transcriptional identity is closely related to
the more general question: to what extent is embryonic progeni-
tor diversity related to neuronal diversity (Fig. 3)? Because corti-
cal development has been studied to a greater extent than that of
other brain regions (including striatum), it may provide some
insight into this question. Recently, it was shown that the pro-
genitors that give rise to cortical pyramidal neurons follow a sto-
chastic system of differentiation, wherein their random exposure
to different developmental cues differentiates subsequent cellular
properties (Llorca et al, 2019; Klingler and Jabaudon, 2020).
Indeed, stochastic modeling could predict the clonal size, spatial
distribution, and volumetric heterogeneity of cortical pyramidal
neurons. This model provides an explanation for how diverse prog-
eny can arise from a relatively homogenous group of progenitors
(Klingler and Jabaudon, 2020). However, a completely homogene-
ous population of progenitors that followed a stochastic mecha-
nism did not fully explain all experimental observations. Indeed,
the authors had to trace the progeny from two distinct progenitors,
which could then accurately predict the laminar position and their
clonal size. This implies that even under a stochastic system, having
multiple types of progenitor cells in the embryonic brain is required
to generate the required cellular diversity of the postnatal brain
(Llorca et al., 2019). Longitudinal sc-RNAseq studies encompassing
extended periods of perinatal development, as recently achieved for
cortical structures (Di Bella et al., 2021; La Manno et al., 2021), will
allow for deeper probing of these questions.

What controls the local connectivity among striatal neurons?.
We previously discussed how embryonic progenitor origin gen-
erates biases in the long-range excitatory connectivity from dif-
ferent cortical regions onto SPNs and could contribute to the
generation of separate functional striatal pathways. Within the
striatum, the SPNs (and associated interneurons) form local in-
hibitory synapses with which they regulate each other’s activity;
these have also been shown to be selective and biased. For exam-
ple, iSPNs form more frequent and stronger synaptic connec-
tions than dSPNs (Taverna et al, 2008; Planert et al., 2010;
Chuhma et al, 2011; Cepeda et al., 2013; Burke et al., 2017;
Krajeski et al., 2019), and fast-spiking interneurons make more
frequent connections onto dSPNs than onto iSPNs (Gittis et al.,
2010; Planert et al, 2010). What rules govern these observed
biases in local inhibitory connectivity? Is there evidence for
involvement of progenitors?

A recent study investigated whether embryonic progenitor
origin affected the strength of local inhibitory connections
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among SPNs and found no evidence (van Heusden et al,, 2021).
In this study, an optogenetic circuit-mapping approach was used
to study the strength of inhibitory synaptic connections from
aIP-derived SPNs to either alP-derived or OP-derived SPNs and
found no difference in their strength. Instead of progenitor ori-
gin, the birth dates of SPNs influenced the strength of connec-
tions, in that SPNs tended to form strong inhibitory synaptic
connections with SPNs born during similar stages of neurogene-
sis, over and above SPNs born at other developmental stages
(van Heusden et al., 2021; Fig. 2B). This is in contrast to recent
findings in cortex where embryonic progenitor origin was shown
to impact the incidence of local synaptic connectivity among the
excitatory neurons in both layer 4 and layer 2/3 of the somato-
sensory cortex (Ellender et al., 2019). Here, the authors demon-
strated that neurons tended to make preferential synaptic
connections with other neurons derived from a different embry-
onic progenitor pool (Ellender et al., 2019).

The results in striatum described above are a first indication
of increased interactions among SPNs with similar birth dates,
but they do not provide insight into the emergence of preferred
connectivity between dSPNs and iSPNG. It is known that the pre-
ferred connectivity patterns between SPNs emerge early in post-
natal development (Krajeski et al., 2019), suggesting that they
could result from synaptic plasticity driven by early neural activ-
ity (Cinotti and Humphries, 2021; Lopez-Huerta et al., 2021) and
neuromodulation (Goffin et al., 2010). Regarding striatal inter-
neurons, a recent study revealed that in the absence of the Er81
transcription factor, striatal CINs shifted toward less PV-CIN
and CIN-CIN synaptic connections (Ahmed et al, 2021).
Considering the MGE contains a population of progenitors
expressing Er81, it is possible that the cholinergic interneurons
derived from these progenitors are fated to a specific connectivity
pattern.

Embryonic progenitors and striatal pathology. Understanding
the role of embryonic progenitors in relation to striatal develop-
ment has the potential to further our understanding of striatal
dysfunction in both neurodevelopmental and neurodegenerative
disorders. Indeed, recent evidence suggests that defects in the di-
vision and differentiation of these progenitors are associated
with diseases such as Huntington’s disease and autism spectrum
disorder.

The earliest symptoms of HD are often subtle, including
problems with mood or cognition; these are followed by a gen-
eral lack of coordination and an unsteady gait. As the disease
advances, uncoordinated, involuntary body movements worsen.
The cause of HD is typically genetic: a mutation in the huntingtin
gene (HTT) is inherited from an affected parent (Barnat et al.,
2020) or arises from de novo mutations. The resulting mutant
protein (mHtt) leads to the eventual death of striatal cells, partic-
ularly affecting the iSPNs (Zheng and Kozloski, 2017). Recent
findings have suggested that mHtt can affect progenitor cells
during embryonic periods (Wiatr et al, 2018; Barnat et al,
2020). Indeed, using an HD mouse model, it was shown that
mHtt affects levels of neurogenesis and can result in increased
numbers of embryonic progenitors (Lorincz and Zawistowski,
2009), something that also has been observed in postmortem
samples from humans with HD (Curtis et al., 2003). More
recently, it was established that these mutations also severely
affect the developing cortex, causing mislocalization of both
mHtt and junctional complex proteins, defects in embryonic
progenitor cell polarity and differentiation, abnormal ciliogene-
sis, and changes in mitosis and cell cycle progression in both
humans and mice (Barnat et al., 2020). In addition, there are
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suggestions that mature striosomes exhibit increased vulnerabil-
ity in HD (Hedreen and Folstein, 1995; Friedman et al., 2020);
given that striosomal SPN’s are generated mainly from alPs dur-
ing early stages of neurogenesis (Kelly et al., 2018), the selective
impact of mutations in HTT in this population of progenitors
could be interesting to study and to test novel treatments (Lin et
al., 2015). Together, these recent findings suggest that HD has a
substantial neurodevelopmental component and is not solely a
neurodegenerative disorder. See also a recent review on altered
striatal development in HD (Lebouc et al., 2020).

ASD is a group of neurodevelopmental pathologies that cause
significant social and communication challenges and restrictive/
repetitive behaviors. Evidence from human postmortem brain
studies (Cheffer et al., 2020) and human-derived iPSCs identify
early embryonic development as a critical period for this disorder
(Chefter et al., 2020; Griesi-Oliveira et al., 2021; Hohmann et al.,
2020). Stem cells derived from people with autism show higher
rates of proliferation (Cheffer et al., 2020; Adhya et al., 2021),
reduced differentiation potential, and a different genetic profile
than those from control donors (Grunwald et al., 2019; Shen et
al,, 2019; Wang et al., 2020; Adhya et al., 2021). Recent whole-
exome sequencing studies of ASD risk genes have shed light on
the critical importance of interneurons in ASD etiology
(Satterstrom et al, 2020). For example, striatal interneurons
show reduced expression of postmitotic neural differentiation
factors (Close et al., 2012), including SATB Homeobox 1
(SatB1), which regulates the survival of SST™ and PV™ postmi-
totic interneurons (Close et al., 2012), and Ephrin type-B recep-
tor 1 (Ephbl), a regulator of striatal and cortical interneuron
migration (Villar-Cervifio et al., 2015). Although interneuron
numbers might normalize during development, the early altera-
tions can lead to long-lasting changes in neuronal circuit func-
tion that affect behavior (Magno et al., 2021). Further work is
necessary to directly attribute early alterations in neural progeni-
tor cells and neural circuit formation to the disease mechanisms
in ASD.

These studies highlight a clear role for embryonic progenitors
in two different disorders and suggest that further research is
needed into the impact of the altered behavior of progenitors on
the developing brain. One opportunity is the growing use of in
vitro models to further dissect disease mechanism and etiology.
Despite the limitations (e.g., reproducibility, scalability, and
long-term survival; Quesnel-Vallieres et al., 2019; Wang et al.,
2020; Pintacuda et al., 2021), the “disease-in-a-dish” approach
allows for precisely timed analyses and offers an opportunity to fur-
ther probe the cellular and molecular alterations in brain develop-
ment in health and disease (Chan et al., 2020). Stem cell-derived
model systems, such as three-dimensional organoids (Di Lullo and
Kriegstein, 2017; Pollen et al,, 2019), air-liquid interface cerebral
organoids from mouse or human iPSCs (Giandomenico et al.,
2019), and combining different organoids in “assembloids” (Miura
et al,, 2020) have opened new experimental avenues for investigat-
ing aspects of development and pathology of the human brain
(Table 1). Notably, determining how brain cells derived from
diverse human genetic backgrounds respond to specific drugs might
ultimately allow for personalized medicine approaches for disorders
such as HD and ASD (Mariani et al., 2015; Maussion et al., 2019;
Wang et al.,, 2020).

Progenitors supporting neurologic restoration. As outlined
above, remarkable progress has been made in our understanding
of progenitors, stem cells, and their progeny, allowing us to shape
progenitor cell development to generate many functional mature
neural cell types (Arber et al, 2015). A major objective is to
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reproduce the maturation steps of brain cells and provide new
insights into the pathophysiology of various disorders in vitro
(Tyson and Anderson, 2014; Mariani et al., 2015; Noakes et al.,
2019; Comella-Bolla et al., 2020; Wang et al.,, 2020). A further
objective is to harness this knowledge and develop new cell-
based treatment options, including cell transplantation, which
would allow for restoration (or modulation) of neural circuit
defects in brain disorders. Below, we highlight a few recent
articles and would like to refer also this recent review (Bjorklund
and Parmar, 2020).

So far, transplantation studies of embryonic progenitor cells
in animals and humans have generated some positive results
with regard to the ability of delivering cells that become func-
tionally integrated into the postnatal brain. For example, it has
been shown that isolated E12.5 to E13.5 or E14.5 MGE progeni-
tor cells can differentiate into interneurons and integrate into
early postnatal circuits (Alvarez-Dolado et al., 2006; Martinez-
Cerdeno et al., 2010). Moreover, transplantation of embryonic
progenitor cells into the postnatal brain has been successfully
trialed in preclinical models as potential replacement strat-
egies for the treatment of disorders such as Parkinson’s dis-
ease and epilepsy (Martinez-Cerdefo et al., 2010; Hunt and
Baraban, 2015; Upadhya et al., 2019; Doi et al., 2020; Guo et
al., 2021). However, accurate programming of induced cells
into specific progenitors, striatal neurons, or mixtures of neu-
rons (Reddington et al., 2014) is likely critical when consider-
ing cell transplantation as a possible treatment option for HD
or ASD and other disorders.

Directing human stem cells into specific neuronal types is
complex and will require accurate differentiation protocols that
mimic endogenous neuronal development, integrating aspects of
cell maturation (e.g., morphology and electrical properties) and
circuit formation (Fig. 3C). Indeed, this will also likely require
consideration of the distinct transcriptional programs and devel-
opmental sequential events that guide newborn neurons (Telley
et al., 2016; Vitali et al., 2018). Recent work has started to exam-
ine the properties of human pluripotent stem cells (hPSCs)
grafted onto the postnatal mouse (Comella-Bolla et al., 2020)
and rat (Noakes et al.,, 2019) striatum. The cells adopted cellular
profiles similar to those found in the human striatum (Table 1).
In the latter study, CR" interneurons were the predominant
cells; CINs, while present within the graft, were absent in the
in vitro culture; and SST™ and PV ™" cells, originally absent in
the graft, were detected in the culture. Potential reasons for
the differences in cellular composition between the graft and
cell culture could be a subtype-dependent survival bias or
environment-driven redirection of interneuron fate, creating
a shift in the subtype composition to match the region where
the cells were grafted (Quattrocolo et al., 2017). Further eluci-
dation of the survival and subtype composition achieved by
the grafts is necessary to shed light on the relative influence of
intrinsic and extrinsic cues on neuronal fate. The degree of
fate commitment present at the progenitor stage could poten-
tially be tested by transplanting hPSC-derived progenitors
from a specific ganglionic eminence into the neonatal striatum
using neuron type-specific hPSC reporter lines or reprogram-
ming of endogenous cells into neurons (Weinberg et al.,
2017). Recent sequencing of mouse (Mayer et al., 2018; Mi et
al., 2018; Loo et al., 2019) and human striatal progenitors and
young neurons (Bocchi et al., 2021) has provided insight into
their lineages and can facilitate the development and the effi-
cacy of cell replacement, showing great potential to improve
therapeutic avenues.
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Conclusions

The postnatal striatum is a highly complex brain structure with
multiple levels of organization, some aspects of which, as out-
lined in this review, are related to embryonic progenitor cell ori-
gin. Here, we highlighted recent studies delineating the crucial
importance of progenitor origin in shaping the spatial position,
cellular identity, and synaptic connectivity of both striatal spiny
projection neurons and interneurons during development.
Understanding these novel roles of diverse embryonic progeni-
tors in shaping striatal development provides a useful framework
through which to view the vast complexity of neuronal circuits
in the postnatal brain, and it can help shape future research
directions and the development of cell-based therapies.
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