Table 4. Medium/Small metropolitan counties: Model performance comparison.
Medium/Small Metropolitan County Model | |||||||
---|---|---|---|---|---|---|---|
# | Models | Goodness-of-fit | Predictive accuracy | ||||
R 2 | RMSE | MAE | R 2 | RMSE | MAE | ||
1 | Generalized Linear Model | 0.626 | 0.398 | 0.300 | 0.570 | 0.402 | 0.307 |
2 | Ridge Regression | 0.626 | 0.398 | 0.300 | 0.570 | 0.402 | 0.308 |
3 | Lasso Regression | 0.591 | 0.416 | 0.312 | 0.537 | 0.418 | 0.317 |
4 | Generalized Additive Model | 0.779 | 0.305 | 0.233 | 0.645 | 0.364 | 0.274 |
5 | Multi Adaptive Regression Splines [degree = 1] | 0.750 | 0.325 | 0.249 | 0.655 | 0.359 | 0.272 |
6 | Multi Adaptive Regression Splines [degree = 2] | 0.760 | 0.319 | 0.246 | 0.627 | 0.371 | 0.280 |
7 | Multi Adaptive Regression Splines [degree = 3] | 0.790 | 0.297 | 0.230 | 0.587 | 0.391 | 0.287 |
8 | Multi Adaptive Regression Splines [degree = 3; penalty = 2] | 0.724 | 0.340 | 0.264 | 0.617 | 0.379 | 0.286 |
9 | Random Forest | 0.934 | 0.166 | 0.122 | 0.656 | 0.359 | 0.269 |
10 | Gradient Boosting Method | 0.967 | 0.117 | 0.090 | 0.620 | 0.376 | 0.284 |
11 | Bayesian Additive Regression trees | 0.804 | 0.287 | 0.218 | 0.667 | 0.354 | 0.266 |
12 | Null Model (Mean-only) | NA | 0.650 | 0.456 | NA | 0.619 | 0.440 |