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Abstract

In modern scientific research, data are often collected from multiple modalities. Since different

modalities could provide complementary information, statistical prediction methods using multi-

modality data could deliver better prediction performance than using single modality data.

However, one special challenge for using multi-modality data is related to block-missing data. In

practice, due to dropouts or the high cost of measures, the observations of a certain modality can

be missing completely for some subjects. In this paper, we propose a new DIrect Sparse regression

procedure using COvariance from Multi-modality data (DISCOM). Our proposed DISCOM

method includes two steps to find the optimal linear prediction of a continuous response variable

using block-missing multi-modality predictors. In the first step, rather than deleting or imputing

missing data, we make use of all available information to estimate the covariance matrix of the

predictors and the cross-covariance vector between the predictors and the response variable. The

proposed new estimate of the covariance matrix is a linear combination of the identity matrix, the

estimates of the intra-modality covariance matrix and the cross-modality covariance matrix.

Flexible estimates for both the sub-Gaussian and heavy-tailed cases are considered. In the second

step, based on the estimated covariance matrix and the estimated cross-covariance vector, an

extended Lasso-type estimator is used to deliver a sparse estimate of the coefficients in the optimal

linear prediction. The number of samples that are effectively used by DISCOM is the minimum

number of samples with available observations from two modalities, which can be much larger

than the number of samples with complete observations from all modalities. The effectiveness of

the proposed method is demonstrated by theoretical studies, simulated examples, and a real
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application from the Alzheimer’s Disease Neuroimaging Initiative. The comparison between

DISCOM and some existing methods also indicates the advantages of our proposed method.
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1 Introduction

With the advance of modern scientific research, complex data are often collected from

multiple modalities (sources or types). In neuroscience, different brain images such as

magnetic resonance imaging (MRI) and positron emission tomography (PET) are used to

study the brain structure and function. In biology, data from different modalities such as

gene expressions and copy numbers are collected to understand the complex mechanism of

cancers. Since different modalities could provide complementary information, statistical

prediction methods using multi-modality data could deliver better prediction performance

than using single modality data. However, one special challenge for using multi-modality

data is related to missing data, which is unavoidable due to some reasons such as the high

cost of measures or the patients’ dropout. Generally, the observations of a certain modality

can be missing completely, i.e., a complete block of the data is missing. One example of

block-missing multi-modality data is shown in Figure 1. In this example, there are n samples

(each row represents one sample), three modalities and one response variable. The blank

regions with question mark indicate missing data. As shown in Figure 1, for many samples,

the observations from some modality are missing completely. The number of samples with

complete observations is much smaller than the sample size n.

To predict the response variable using the high dimensional block-missing multi-modality

data, a common strategy is to use the Lasso (Tibshirani (1996)) or some other penalized

regression methods (e.g., Fan and Li (2001); Zou and Hastie (2005); Zhang (2010)) only for

the data with complete observations. However, this strategy can greatly reduce the sample

size and waste a lot of useful information in the samples with missing data. Another strategy

is to impute the missing data first by some existing imputation methods (Hastie et al. (1999);

Cai et al. (2010)). These methods can be effective when the positions of the missing data are

random, but they can be unstable when a complete block of the data is missing. Recently,

motivated by applications in genomic data integration, Cai et al. (2016) proposed a new

framework of structured matrix completion to impute block-missing data. However, they

only consider the case when the data are collected from two modalities. In the literature,

rather than deleting or imputing missing data, some studies focus on using all available

information. For example, Yuan et al. (2012) proposed the Incomplete Multi-Source Feature

learning (IMSF) method. The IMSF method performs regression on block-missing multi-

modality data without imputing missing data. It formulates the prediction problem as a

multi-task learning problem by first decomposing the prediction problem into a set of

regression tasks, one for each combination of available modalities (e.g., modalities 1, 2 and

3; modalities 1 and 2; modalities 1 and 3; modalities 2 and 3 for the example shown in

Figure 1), and then building regression models for all tasks simultaneously. The important
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assumption in the IMSF method is that all models involving a specific modality share the

common set of predictors for that particular modality. However, when different modalities

are highly correlated, this assumption could be too strong. In that case, for some modalities,

it can be more reasonable to choose different predictor subsets for different involved tasks.

Therefore, it is desirable to develop flexible and efficient prediction methods applicable to

block-missing multi-modality data.

In this paper, we propose a new DIrect Sparse regression procedure using COvariance from

Multi-modality data (DISCOM). For each sample, if some modality has missing entries, all

the observations from that modality are missing simultaneously. Regardless of the

underlying true model, we aim to find the optimal linear prediction for the response variable

using the block-missing multi-modality data without imputing the missing data. Our method

includes two steps. In the first step, we use all available information to estimate the

covariance matrix of the predictors and the cross-covariance vector between the predictors

and the response variable. The proposed new estimate of the covariance matrix is a linear

combination of the identity matrix, the estimates of the intra-modality covariance matrix and

the cross-modality covariance matrix. Flexible estimates for both the sub-Gaussian and

heavy-tailed cases are considered. Many existing high dimensional covariance estimation

methods such as Bickel and Levina (2008); Cai and Liu (2011); Rothman (2012); Lounici et

al. (2014); Cai and Zhang (2016) can be used in this step. In the second step, based on the

estimated covariance matrix and the estimated cross-covariance vector, we use an extended

Lasso-type estimator to estimate the coefficients in the optimal linear prediction.

Note that there are some existing sparse regression methods in the literature using the

estimation of the covariance matrix. For example, Jeng and Daye (2011) proposed the

covariance-thresholded Lasso for complete data to improve variable selection by utilizing

the sparsity of the covariance matrix. Loh and Wainwright (2012) and Datta et al. (2017)

proposed new estimators for the high dimensional regression with corrupted predictors,

where all entries of the design matrix are assumed to be noisy or missing randomly and

independently. The missing data problem they considered can be viewed as a special case of

the block-missing multi-modality data where each modality has only one predictor. To the

best of our knowledge, there are no existing methods using a similar idea to DISCOM

tailored for high-dimensional block-missing multi-modality data. To investigate DISCOM,

we have carefully studied its theoretical and numerical performance. For both the sub-

Gaussian and heavy-tailed cases, we establish the consistency of estimation and model

selection for the optimal linear predictor regardless of the underlying true model. Our

theoretical studies indicate that DISCOM could make use of all available information of the

block-missing multi-modality data effectively. The number of samples that are effectively

used by DISCOM is the minimum number of samples with available observations from two

modalities, which can be much larger than the number of samples with complete

observations from all modalities. The comparison between DISCOM and some existing

methods using simulated data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

data (www.loni.ucla.edu/ADNI) further demonstrate the effectiveness of our proposed

method.
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The rest of this paper is organized as follows. In Section 2, we motivate and introduce our

method. In Section 3, we show some theoretical results about the estimates of the covariance

matrix, the cross-covariance vector and the coefficients in the optimal linear prediction for

both the sub-Gaussian and heavy-tailed cases. The results about the model selection

consistency are also provided. In Sections 4 and 5, we demonstrate the performance of our

method on the simulated data and the ADNI dataset. We conclude this paper in Section 6

and provide all technical proofs in the Appendix.

2 Motivation and Methodology

We first show the motivation and the outline of our proposed method in Section 2.1. In

Section 2.2, we introduce the proposed estimate of the covariance matrix of the predictors,

and the estimate of the cross-covariance vector between the predictors and the response

variable using the block-missing multi-modality data. In Section 2.3, we introduce the

Huber’s M-estimate for the heavy-tailed case. In Section 2.4, we provide the estimation

procedure for the coefficients in the optimal linear prediction.

The following notation will be used in this paper. For a matrix A ∈ Rm×n, we use ‖A‖F,

‖A‖max, and ‖A‖∞, to denote the Frobenius norm ∑i jai j
2 , the max norm maxij |aij|, and the

infinity norm maxi∑ j = 1
n ai j , respectively. For a vector b ∈ Rm×1, we use ∥b∥2, ∥b∥max, and

∥b∥1 to denote the ℓ2 norm ∑ibi
2, the max norm maxi |bi|, and the ℓ1 norm ∑i = 1

n bi ,

respectively. In addition, we use sign(·) to denote the function that maps a positive entry to 1,

a negative entry to −1, and 0 to 0.

2.1 Motivation

Suppose the predictors are collected from K modalities. For k ∈ 1, 2, …, K , there are pk

predictors from the k-th modality. Let n denote the sample size, Y = y1, y2, …, yn
T denote

the n × 1 response vector centered to have mean 0, and X(k) ∈ R
n × pk denote the design

matrix of the pk predictors from the k-th modality. In addition, let

X = X(1), X(2), …, X(K) = x1, x2, …, xn
T denote the n × p design matrix, where

p = p1 + p2 + ⋯ + pK. We assume that xi’s are i.i.d. generated from some multivariate

distribution with mean 0p×1 and covariance matrix Σ. We use

C = Cov xi, yi = c1, c2, …, cp
T ∈ Rp to denote the cross-covariance vector between xi and yi.

To predict the response variable y using all predictors X1, X2, . . ., Xp, we consider the

optimal linear predictor ŷ = ∑ j = 1
p X jβ j

0, where the coefficient vector

β0 = β1
0, β2

0, …, βp
0 T = argmin

β
E y − ∑

j = 1

p
X jβ j

2
= Σ−1C . (1)
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The above coefficient vector β0 can be viewed as the solution to the following optimization

problem

min
β

1
2 βTΣβ − CTβ .

If we know the true covariance matrix Σ and the true cross-covariance vector C, and assume

that β0 is sparse, we can estimate β0 by solving the following optimization problem

min
β

1
2 βTΣβ − CTβ + λ‖β‖1, (2)

where λ is a nonnegative tuning parameter.

Motivated by (2), for the high dimensional block-missing multi-modality data, we propose a

new method with two steps. In the first step, we use all available observations to estimate the

covariance matrix Σ and the cross-covariance vector C. The estimates of Σ and C are denoted

as Σ̂ and Ĉ, respectively. This step is very important to make full use of the block-missing

multi-modality data. In the second step, we estimate β0 by solving the following

optimization problem:

min
β

1
2 βTΣ̂β − Ĉ

T
β + λ‖β‖1 . (3)

2.2 Standard estimates of Σ and C

Considering block-missing multi-modality data, for each sample, if a certain modality has

missing entries, all the observations from that modality are missing. For each predictor j,
define Sj = {i : xij is not missing}. For each pair of predictors j and t, define Sjt = {i : xij and

xit are not missing}. The number of elements in Sj and Sjt are denoted as nj and njt,

respectively.

For the missing data mechanism, we only need to assume that for each predictor, the first

sample moment and the second sample moment using all available observations are

unbiased estimators of the first theoretical moment and the second theoretical moment of the

distribution, respectively. This assumption is satisfied if we assume that each modality is

missing completely at random. However, different predictors in the same modality are

missing simultaneously. Under this assumption, for each j ∈ {1, 2, . . ., p}, the available

observations of the j-th predictor are centered to have mean 0. A natural initial unbiased

estimate of Σ using all available data is the sample covariance matrix

Σ̃ = σ̃ jt j, t = 1, 2, …, p
, where σ̃ jt = 1

n jt
∑

i ∈ S jt

xi jxit .

For the block-missing multi-modality data, the above initial estimate Σ̃ may have negative

eigenvalues due to the unequal sample sizes njt’s. Therefore, it is not a good estimate of the
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covariance matrix Σ and not suitable to be used in (3) directly. It is important to find an

estimator that is both positive semi-definite and more accurate than the initial estimate Σ̃.

According to the partition of the predictors into K modalities, the initial estimate of the

covariance matrix Σ̃ can be partitioned into K2 blocks, denoted by Σ̃ jt’s, where j, t ∈ {1,

2, . . ., p} and Σ̃ jt is a pj × pt matrix. We donte

Σ̃I =

Σ̃11
Σ̃22

⋱
Σ̃KK

, Σ̃C =

0 Σ̃12 … Σ̃1K
Σ̃21 0 … Σ̃2K

⋮ ⋮ ⋱ ⋮
Σ̃K1 Σ̃K2 … 0

,

where Σ̃I is called the intra-modality sample covariance matrix which is a p × p block-

diagonal matrix containing K main diagonal blocks of Σ̃, and Σ̃C = Σ̃ − Σ̃I is called the cross-

modality sample covariance matrix containing all the off-diagonal blocks of Σ̃. We also let

ΣI and ΣC denote the true intra-modality covariance matrix and cross-modality covariance

matrix, respectively. As shown in Figure 1, since the observations of some modalities are

missing completely for many samples, there are more available samples to estimate the

intra-modality covariance matrix ΣI than the cross-modality covariance matrix ΣC.

Intuitively, it is relatively easier to estimate ΣI than ΣC. In view of this characteristic of the

block-missing multi-modality data and the possible negative eigenvalues of Σ̃, we propose to

use the following estimator

Σ̂ = α1Σ̃I + α2Σ̃C + α3Ip,

where α1, α2 and α3 are three nonrandom weights, and Ip is a p × p identity matrix.

Considering all possible linear combinations, we can find the optimal linear combination

Σ̃∗ = α1
∗Σ̃I + α2

∗Σ̃C + α3
∗IP whose expected quadratic loss E ‖Σ̃∗ − Σ‖F

2
 is the minimum. The

optimal weights α1
∗, α2

∗ and α3
∗ are shown in the following Proposition 1. As a remark,

Proposition 1 and all the theoretical analysis in Section 3 are conditional on the given

missing pattern of different modalities.

Proposition 1.—Consider the following optimization problem:

min
α1, α2, α3

E ‖Σ̂ − Σ‖F
2 subject to Σ̂ = α1Σ̃I + α2Σ̃C + α3Ip,

where the weights α1, α2 and α3 are nonrandom. Denote γ∗ = tr(Σ)/ p, δI
2 = E ‖Σ̃I − ΣI‖F

2 ,

δC
2 = E[‖Σ̃C − ΣC‖

F
2 ], and θ2 = ‖γ∗Ip − ΣI‖F

2
. The optimal weights are
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α1
∗ = θ2

θ2 + δI
2 ∈ [0, 1], α2

∗ =
‖ΣC‖

F
2

‖ΣC‖
F
2 + δC

2 ∈ [0, 1], α3
∗ = γ∗ 1 − α1

∗ .

In addition, we have

E ‖Σ̃∗ − Σ‖F
2 =

δI
2θ2

δI
2 + θ2 +

δC
2 ‖ΣC‖

F
2

δC
2 + ‖ΣC‖

F
2 ≤ δI

2 + δC
2 = E ‖Σ̃ − Σ‖F

2 .

Proposition 1 shows that Σ̃∗ is more accurate than Σ̃. The relative improvement in the

expected quadratic loss over the sample covariance matrix is equal to

E ‖Σ̃ − Σ‖F
2 − E ‖Σ̃∗ − Σ‖F

2

E ‖Σ̃ − Σ‖F
2 =

δI
2

δI
2 + δC

2 ⋅ 1 − α1
∗ +

δC
2

δI
2 + δC

2 ⋅ 1 − α2
∗ .

Therefore, if Σ̃I is relatively accurate (δI
2 is small), the optimal weight α1

∗ = θ2

θ2 + δI
2  should be

large and the percentage of the relative improvement tends to be small. We can also make

the same conclusions about Σ̃C. For the block-missing multi-modality data, due to the

unequal sample sizes, the initial estimate Σ̃I can be relatively accurate while the estimate Σ̃C

is relatively inaccurate. It’s reasonable to use different weights for Σ̃I and Σ̃C. As a remark,

Proposition 1 can be viewed as a generalization of Theorem 2.1 shown in Ledoit and Wolf

(2004), where they studied the optimal linear combination of the sample covariance matrix

and the identity matrix to estimate the covariance matrix for the complete data.

Regarding the cross-covariance vector C, we can use the following estimate

C̃ = c̃1, c̃2, ⋯, c̃p
T , where c̃ j = 1

n j
∑

i ∈ S j

yixi j .

Note that we use all available information to estimate Σ and C. The theoretical properties of

Σ̃ and C̃ will be discussed in Section 3.

2.3 Robust estimates of Σ and C

When the predictors and the response variable follow a sub-Gaussian distribution with an

exponential tail, Σ̃∗ and C̃ introduced in Section 2.2 generally perform well. However, when

the distributions of the predictors and the response variable are heavy-tailed, Σ̃∗ and C̃ may

have poor performance, and therefore some robust estimates of Σ and C are required.
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In this section, we introduce robust estimates of Σ and C based on the Huber’s M-estimator

(Huber et al. (1964)). In general, suppose Z1, Z2, . . ., Zn are i.i.d. copies of a random

variable Z with mean μ. The Huber’s M-estimator of μ is defined as the solution to the

following equation

∑
i = 1

n
ψH Zi − μ = 0,

where ψH( ⋅ ) is the Huber function which is given by

ψH(z) = z if z ≤ H,
H ⋅ sign(z) otherwise,

Using the Huber’s M-estimator, for the block-missing multi-modality data, we can construct

a robust initial estimate of Σ denoted by

Σ̆ = σ̆ jt j, t = 1, 2, …, p
, where σ̆ jt = the solution to ∑

i ∈ S jt

ψH jt
xi jxit − μ = 0.

In general, the parameters Hjt used in the Huber function can be chosen to be 1.345 in order

to guarantee 95% efficiency relative to the sample mean if the data generating distribution is

Gaussian (Huber et al. (1964)). However, for the block-missing multi-modality data,

considering different numbers of samples available to estimate different entries of Σ, we

propose to use different values of H flexibly. The choice of Hjt will be discussed in Section

3. Based on the robust initial estimate Σ⌣, we can use a similar idea introduced in Section 2.2

to find the optimal linear combination Σ⌣∗ = α1
∗Σ̆I + α2

∗ΣC + α3
∗Ip whose expected quadratic

loss E ‖Σ̆∗ − Σ‖F
2

 is the minimum. Similarly, we can use the Huber’s M-estimator to deliver

a robust estimate of C which is defined as

C̆ = c̆1, c̆2, ⋯, c̆p
T , where c̆ j = the solution to ∑

i ∈ S j

ψH j
xi jyi − μ = 0.

Here we also propose to use different values of H when estimating different cj’s. The choice

of Hj will be discussed in Section 3. The theoretical properties of Σ̆ and C̆ will be also shown

in that section.

2.4 Estimate of β0 in the optimal linear prediction

After getting an initial estimate of Σ and C, e.g., Σ̃ and C̃ (or Σ⌣ and C̆), our proposed

DISCOM method estimates β0 by solving the following optimization problem:

Yu et al. Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



min
β

1
2 βT α1Σ̃I + α2Σ̃C + 1 − α1

tr(Σ̃)
p Ip β − C̃Tβ + λ‖β‖1, (4)

where α1 ∈ [0, 1], α2 ∈ [0, 1] are two weights and tr(Σ̃)/p is used to estimate γ*. In practice,

both α1 ∈ [0, 1], α2 ∈ [0, 1], and λ can be chosen by cross validation or an additional tuning

dataset. To guarantee that the estimated covariance matrix Σ̂ = α1Σ̃I + α2Σ̃C + 1 − α1
tr(Σ̃)

p IP

is positive semi-definite, we need to choose reasonable α1 and α2 from the set

α1, α2 :α1 ∈ [0, 1], α2 ∈ [0, 1], and λmin(Σ̂) ≥ 0 , where λmin(Σ̂) is the smallest eigenvalue of

Σ̂.

Besides the above tuning parameter selection method that searches for the best values of

three parameters, we can use an efficient tuning method incorporating our theoretical results

in Section 3. Our theoretical studies show that the tuning parameters α1 and α2 should

satisfy the conditions 1 − α1 = O (logp)/min jn j  and 1 − α2 = O (logp)/min j, tn jt ,

respectively. Denote m1 = (logp)/min jn j and m2 = (logp)/min j, tn jt. We can choose α1 = 1 −

k0m1 and α2 = 1 − k0m2, where k0 ∈ [kmin, kmax] is a tuning parameter. To guarantee that

both α1 and α2 are nonnegative, we set kmax = min{1/m1, 1/m2}. In addition, a reasonable

value of k0 should satisfy the following two conditions: (1) α1 = 1 − k0m1 ≤ 1 and α2 = 1 −

k0m2 ≤ 1; (2) the estimate of the covariance matrix Σ̂ is positive semi-definite. The first

condition requires that k0 ≥ 0. If the smallest eigenvalue of the initial estimate Σ̃, denoted by

λmin(Σ̃), is nonnegative, we can show that Σ̂ is positive semi-definite for any nonnegative k0.

If λmin(Σ̃) < 0, since the smallest eigenvalue of Σ̂ satisfies

λmin(Σ̂) ≥ λmin(Σ̃) + k0 ⋅ λmin m2 − m1 Σ̃I + m1
tr(Σ̃)

p Ip − m2λmin(Σ̃) ,

to guarantee that Σ̂ is positive semi-definite, we only need to require that

k0 ≥ − λmin(Σ̃)/ −m2 ⋅ λmin(Σ̃) + λmin m2 − m1 Σ̃I + m1
tr(Σ̃)

p Ip .

Therefore, if λmin(Σ̃) ≥ 0, we choose kmin = 0. Otherwise, we choose

kmin = − λmin(Σ̃)/ −m2 ⋅ λmin(Σ̃) + λmin m2 − m1 Σ̃I + m1
tr(Σ̃)

p Ip .

For the block-missing multi-modality data, since m2 ≥ m1 > 0, we know that the matrix

m2 − m1 Σ̃I + m1
tr(Σ̃)

p Ip is positive definite and therefore kmin is always less than

kmax = min 1/m1, 1/m2 = 1/m2.
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By choosing α1 = 1 − k0m1 and α2 = 1 − k0m2, our proposed fast tuning parameter selection

method searches the best value of k0 ∈ [kmin, kmax] and the parameter λ rather than

searching three parameters α1, α2 and λ. In addition, instead of using the

eigendecomposition for each parameter combination to check whether Σ̂ is positive semi-

definite, this method only requires two eigendecompositions of the matrices Σ̃ and

m2 − m1 Σ̃I + m1
tr(Σ̃)

p Ip before the tuning parameter selection process. For each k0 ∈ [kmin,

kmax], we can incorporate the coordinate descent algorithm (Friedman et al. (2010)) on a

grid of λ values, from the largest one down to the smallest one, using warm starts.

Alternatively, since Σ̂ is positive semi-definite, we can use the LARS algorithm shown in

Jeng and Daye (2011) to compute the solution path.

As many existing high dimensional linear regression studies for the random design, we use

the assumption E(X) = 0 to make our presentation more convenient. Our proposed DISCOM

method can be used for the general case where E(X) ≠ 0. In that case, we first center the

available observations of each predictor and use X1, X2, …, X p to denote the sample means of

those p predictors. We also center the observed responses and use Ȳ to denote the sample

mean of the response variable. Let β̂ denote the estimated regression coefficient vector

calculated from the centered data. Our final predictive model is Y + ∑ j = 1
p X j

∗ − X j β̂ j,

where X1
∗, X2

∗, …, X p
∗  is a test data point. In practice, if our data are collected at various time

points by different laboratories using multiple platforms, the i.i.d. assumption may be

violated due to batch-effects. In that case, we suggest to use some existing statistical

methods (e.g., the exploBATCH R package) to diagnose, quantify and correct batch effects

before using our proposed DISCOM method.

3 Theoretical Study

Without loss of generalization, we assume that the true variances of all predictors, σ11,

σ22, . . ., σpp, are equal to 1 in our theoretical studies. For each j ∈ {1, 2, . . ., p}, we assume

that the observations of the predictor j are scaled such that ∑i ∈ S j
xi j

2 = n j. In that case, we

have σ̃ j j = 1. For the Huber’s M-estimator Σ⌣, we redefine σ̆ j j to be 1 for each j. Let β̃ and β̆

denote the solutions to (4) using the sample covariance and the Huber’s M-estimator,

respectively. We assume that β0 is sparse and denote J = j: β j
0 ≠ 0  as the index set of the

important predictors. Denote s = |J| as the number of important predictors. Let

βmax
0 = max j ∈ J β j

0  and βmin
0 = min j ∈ J β j

0 . In Sections 3.1 and 3.2, we will discuss the

theoretical properties in the sub-Gaussian case and the heavy-tailed case, respectively. The

model selection consistency of our proposed method will be shown in Section 3.3.

3.1 Sub-Gaussian case

The following conditions are considered in this section:

(A1) Suppose that there exists a constant L > 0 such that
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E exp tX j ≤ exp L2t2
2 for all j ∈ 1, 2, …, p and t ∈ R,

E(exp(ty)) ≤ exp L2t2
2 for all t ∈ R .

(A2) Suppose that the true covariance matrix Σ satisfies the following restricted eigenvalue

(RE) condition

min
δ ∈ u ∈ Rp:‖uJc‖1 ≤ 7‖uJ‖1

δTΣδ

δTδ
≥ m > 0.

Under condition (A1), the predictors and the response variable follow sub-Gaussian

distributions with exponentially bounded tails. In this case, we propose to use Σ̃ and C̃
shown in Section 2.2 as the initial estimate of the covariance matrix Σ and the cross-

covariance vector C, respectively. The RE condition (A2) is often used to obtain bounds of

statistical error of the Lasso estimate (Datta et al. (2017)). The following Theorem 1 shows

the large deviation bounds of Σ̃ and C̃.

Theorem 1.—Under condition (A1), if minj,t njt ≥ 6 log p, there exists two positive

constants ν1 = 8 6(1 + 4L2) and ν2 = 4 such that

max
j, t

P σ̃ jt − σ jt ≥ ν1
logp
n jt

≤
ν2
p3, P ‖Σ̃ − Σ‖max ≥ ν1

logp
min j, tn jt

≤
ν2
p .

There exists another two positive constants ν3 = 16 1 + 4 L2
min var(y), 1 max var(y), 1  and ν4 =

4 such that

max
j

P c̃ j − c j ≥ ν3
logp
n j

≤
ν4
p2, P ‖C̃ − C‖max ≥ ν3

logp
min jn j

≤
ν4
p .

Remark 1.—In our theoretical studies, we assume that the dimension p goes to infinity as

the sample size minj,t njt increases. If we further assume that (log p)/minj,t njt = o(1), the

condition minj,t njt > 6 log p is satisfied if the sample size minj,t njt is sufficiently large.

Then, Theorem 1 shows that ‖Σ̃ − Σ‖max = Op (logp)/min j, tn jt . The performance of Σ̃

depends on the worst case when there are only minj,t njt samples to estimate some entries in

Σ. In addition, the convergence rate of ‖C̃ − C‖max is Op (logp)/min jn j . The performance

of C̃ also depends on the worst case when there are only minj nj samples to estimate the

covariance between some predictor and the response variable. Furthermore, if we only use
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samples with complete observations, using a similar proof, we can show that

‖Σ̃ − Σ‖max = Op (logp)/ncomplete  and ‖C̃ − C‖max = Op (logp)/ncomplete , where ncomplete

is the number of samples with complete observations. For the block-missing multi-modality

data, since ncomplete can be much smaller than minj,t njt and minj nj, Theorem 1 indicates that

the first step of our proposed DISCOM method can make full use of all available

information. Based on the results shown in Theorem 1, we will show the convergence rate of

‖β̃ − β0‖2.

Theorem 2.—Under conditions (A1) and (A2), let 1 − α1 = O (logp)/min jn j  and

1 − α2 = O (logp)/min j, tn jt . If s (logp)/min j, tn jt = o(1) and we choose λ = 2‖C̃ − Σ̂β0‖max,

then we have ‖β̃ − β0‖2 = Op( sλ) = Op ‖β0‖1 s(logp)/min j, tn jt .

Remark 2.—As shown in the above Theorem 2, we have ‖β̃ − β0‖2 = Op( s‖C̃ − Σ̂β0‖max).

If we assume that (a) there is no missing data, (b) the predictors are generated from a

multivariate Gaussian distribution, and (c) the true model is Y = Xβ0 + ϵ, where ϵ ∼ N(0,

σ2In). Then we will use Σ̂ = XTX/n and C̃ = XTY /n to estimate Σ and C, respectively.

Therefore, we have ‖C̃ − Σ̂β0‖max = ‖XTϵ/n‖max = Op( (logp)/n), and

‖β̃ − β0‖2 = Op( (slogp)/n), which is the minimax ℓ2-norm rate as shown in Raskutti et al.

(2011). Since the complete data generated from the Gaussian random design can be viewed

as a special type of block-missing multi-modality data, the error bound in Theorem 2 is

sharp.

On the other hand, if the true relationship between the conditional expectation

E y ∣ X1, X2, …, X p  and the predictors is non-linear, we have C̃ − Σ̂β0 ≠ XTϵ/n and

‖C̃ − Σ̂β0‖max = Op ‖β0‖1 (logp)/n  as shown in the proof. In this case, if we still use the

Lasso method to estimate the regression coefficients β0 in the optimal linear predictor, we

have ‖β̃Lasso − β0‖2 = Op ‖β0‖1 s(logp)/n . For the blocking missing multi-modality data,

since the Lasso method can only use the data with complete observations, we have

‖β̃Lasso − β0‖2 = Op ‖β0‖1 s(logp)/ncomplete . However, as shown in Theorem 2, for our

proposed DISCOM estimate β̃, we have ‖β̃ − β0‖2 = Op ‖β0‖1 s(logp)/min j, tn jt . In practice,

the minimum number of samples with available observations from two modalities (minj,t njt)

can be much larger than the number of samples with complete observations from all

modalities (ncomplete). Theorem 2 indicates that DISCOM could make use of the block-

missing multi-modality data more effectively than the Lasso method using only the complete

data.

In Theorem 2, the assumption s (logp)/min j, tn jt = o(1) is used to guarantee that Σ̂ satisfies

the RE condition with a high probability if the true covariance matrix Σ satisfies the RE

condition (A2). Note that many existing sparse linear regression studies focus on the fixed
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design where the design matrix X is considered to be fixed and complete. In that case,

Σ̂ = XTX/n is assumed to satisfy the RE condition directly. For the general random design,

Van De Geer et al. (2009) showed that Σ̂ = XTX/n satisfies the RE condition as long as the

true covariance matrix Σ satisfies the RE condition and s2 logp/n = o(1). For the special

Gaussian random design, by a global analysis of the full random matrix Σ̂ = XTX/n rather

than a local analysis looking at individual entries of Σ̂, Raskutti et al. (2010) shows that the

matrix Σ̂ satisfies the RE condition with a high probability if the true covariance matrix of

the multivariate Gaussian distribution satisfies the RE condition and n > Constant·s log p. In

our paper, since we consider the general random design including both sub-Gaussian

distributions and heavy-tailed distributions, and study the proposed estimated covariance

matrix Σ̂ where Σ̂ ≠ XTX/n in most cases, we use the condition s (logp)/min j, tn jt = o(1) to

guarantee that the RE condition is satisfied with a high probability. This condition is very

similar to the condition s2logp/n = o(1) used in Van De Geer et al. (2009) for the complete

data.

For the general random design and the block-missing multi-modality data, it is difficult to

develop a weak condition (e.g., s log p/minj,t njt = o(1)) using a similar global analysis of the

full random matrix Σ̂ as shown in Raskutti et al. (2010). Instead of using the condition

s (logp)/min j, tn jt = o(1), we can use the following weak condition

min
j, t

n jt > 128ν1′ /m 2 s2logp ,

where ν1′ > ν1 is a positive constant. This condition is also used in some existing studies

about random designs (Bühlmann and Van De Geer (2011); Zhou et al. (2009)).

3.2 Heavy-tailed case

In this section, we consider the heavy-tailed case. Instead of assuming that the distributions

of the predictors and the response variable have exponential tails, we consider the following

moment condition.

(A3) Suppose that max max1 ≤ j ≤ pE X j
4 ≤ Q1

2/48 and E y4 ≤ Q2
2, where Q1 and Q2 are two

positive constants.

Condition (A3) assumes that the fourth moments of all predictors Xj’s and the response

variable y are bounded. Under condition (A3), the tails of the distributions of Xj’s and y may

not be exponentially bounded. In the literature on Lasso, most studies consider the fixed

design (Zhao and Yu (2006); Zou (2006); Meinshausen and Bühlmann (2006)) and the noise

is usually assumed to be Gaussian (Meinshausen and Bühlmann (2006); Zhang et al.

(2008)), or admits exponentially bounded tail (Bunea et al. (2008); Meinshausen and Yu

(2009)). In this study, we consider a random design case and relax the distribution of Xj’s

and y to have finite fourth moments.
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Next, we discuss the theoretical properties of the Huber’s M-estimators Σ⌣ and C̆. Based on

the convergence rates of ‖Σ̆ − Σ‖max and ‖C̆ − C‖max, we will show the convergence rate of

‖β̆ − β0‖2.

Theorem 3.—Under condition (A3), let H jt =
Q1
12 n jt /logp for each j, t ∈ {1, 2, . . ., p}, if

minj,t njt ≥ 24 log p, we have

max
j, t

P σ̆ jt − σ jt ≥ Q1
logp
n jt

≤ 2
p3,

P ‖ Σ⌣ − Σ‖max ≥ Q1
logp

min j, tn jt
≤ 2

p .

In addition, let H j = Q1 + Q2 n j/logp for each j ∈ 1, 2, …, p , we have

max
j

P c̆ j − c j ≥ 8 Q1 + Q2
logp
n j

≤ 2
p2,

P ‖C̆ − C‖max ≥ 8 Q1 + Q2
logp

min jn j
≤ 2

p .

Remark 3.—If we assume that (log p)/minj,t njt = o(1), the condition minj,t njt > 24 log p is

satisfied if the sample size minj,t njt is sufficiently large. Therefore, we have

‖ Σ⌣ − Σ‖max = Op (logp)/min j, tn jt  and ‖C̆ − C‖max = Op (logp)/min jn j . This indicates that

the Huber’s M-estimators for the heavy-tailed case acquire the same convergence rate as the

sample covariance estimates for the sub-Gaussian case. However, as shown in the next

theorem, if the distributions of the predictors Xj’s and the response variable y are not

assumed to have exponentially bounded tails, the large deviation bounds of Σ̃ and C̃ can be

wider than the bounds of the Huber’s M-estimators Σ⌣ and C̆, respectively.

Theorem 4.—Suppose max1 ≤ j ≤ pE X j
4ℓ ≤ T and E y4ℓ ≤ T, where T > 0, ℓ > 1 are two

constants. Then we have

max
j, t

P σ̃ jt − σ jt ≥
d1
2T

p
n jt

≤
d2
p2h , P ‖Σ̃ − Σ‖max ≥

d1
2T

p
min j, tn jt

≤
d2

p2h − 2,

where d1 > 0, d2 > 0, h ∈ (1, ℓ) are some constants. Furthermore,
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max
j

P c̃ j − c j ≥
d3
2T

p
n j

≤
d4

p2h − 1, P ‖C̃ − C‖max ≥
d3
2T

p
min jn j

≤
d4

p2h − 2,

where d3 > 0 and d4 > 0 are two constants.

Remark 4.—Under the moment condition, Theorem 4 shows that

‖Σ̃ − Σ‖max = Op p/min j, tn jt  and ‖C̃ − C‖max = Op p/min jn j . According to the

Proposition 6.2 in Catoni (2012), the bounds shown in Theorem 4 are actually tight. If the

dimension p is very large, the large deviation bounds of ‖Σ̃ − Σ‖max and ‖C̃ − C‖max can be

much larger than the bounds of ‖ Σ⌣ − Σ‖max and ‖C̆ − C‖max, respectively. This necessitates

the usage of a robust estimator.

In the next theorem, based on the large deviation bounds of ‖ Σ⌣ − Σ‖max and ‖C̆ − C‖max, we

show the convergence rate of ‖β̆ − β0‖2.

Theorem 5.—Under conditions (A2) and (A3), let 1 − α1 = O (logp)/min jn j ,

1 − α2 = O (logp)/min j, tn jt , H jt =
Q1
12 n jt /logp and H j = Q1 + Q2 n j/logp. If

s (logp)/min j, tn jt = o(1) and let λ = 2‖C̆ − Σ̂β0‖max, then we have

‖β̆ − β0‖2 = Op( sλ) = Op ‖β0‖1 s(logp)/min j, tn jt .

Remark 5.—Instead of using the condition s (logp)/min j, tn jt  = o(1), we can assume that

min
j, t

n jt > 128Q1′ /m 2 s2logp ,

where Q1′ > Q1 is a positive constant. Theorem 5 indicates that for the heavy-tailed case,

under (A3), the convergence rate of ‖β̆ − β0‖2 is also Op ‖β0‖1 (slogp)/min j, tn jt , which is

the same as the rate shown in Theorem 2 under the sub-Gaussian assumption. However, as

shown in our simulation study, if the response variable and the predictors follow sub-

Gaussian distributions, DISCOM using standard estimates Σ̃ and C̃ generally has better finite

sample performance than the method using robust estimates Σ̆ and C̆.

Remark 6.—If we assume that p is fixed, for the sub-Gaussian case considered in Section

3.1, we can show that ‖Σ̃ − Σ‖max = Op min j, tn jt
−1/2

 and ‖C̃ − C‖max = Op min jn j
−1/2

according to Lemma 1 in Ravikumar et al. (2011) and a very similar proof of Theorem 1.

For the heavy-tailed case considered in Section 3.2, if we assume that p is fixed, we can also

show that ‖ Σ⌣ − Σ‖max = Op min j, tn jt
−1/2

 and ‖C̆ − C‖max = Op min jn j
−1/2

 according to

Theorem 5 in Fan et al. (2016) and a very similar proof of Theorem 3. Then, using the same
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proof of Theorem 2, we can also show that ‖β̃ − β0‖2 = Op( sλ) = Op s‖C̃ − Σ̂β0‖max . Since

‖Σ̃ − Σ‖max = Op min j, tn jt
−1/2

, ‖C̃ − C‖max = Op min jn j
−1/2

, and p is fixed, we can

further show that ‖β̃ − β0‖2 = Op βmax
0 min j, tn jt

−1/2
. Similarly, for the heavy-tailed case,

we can also show that ‖β̆ − β0‖2 = Op βmax
0 min j, tn jt

−1/2
. Therefore, the convergence rate

of the estimation error in the classical fixed p setting is faster than the rate in the high

dimensional setting where p grows to infinity.

3.3 Model selection consistency

In this section, we show that our proposed DISCOM method is model selection consistent.

The following condition is considered.

(A4) ‖Σ
JcJ

ΣJJ
−1‖

∞
≤ 1 − η, where η ∈ (0, 1) is a constant, Σ

JcJ
 is the sub-matrix of Σ with

row indices in the set Jc and column indices in the set J, and ΣJJ is the sub-matrix of Σ with

both row and column indices in the set J.

Condition (A4) can be viewed as a population version of the strong irrepresentable condition

proposed in Zhao and Yu (2006). In the following Theorem 6 and Theorem 7, we will show

that our proposed DISCOM method is model selection consistent for the sub-Gaussian case

and the heavy-tailed case, respectively.

Theorem 6.—Under conditions (A1) and (A4), let 1 − α1 = O (logp)/min jn j  and

1 − α2 = O (logp)/min j, tn jt . If ‖ ∑JJ
−1‖∞ ⋅ s2logp

min j, tn jt
0, and

1 + sβmax
0

λ
logp

min j, tn jt
0,

λ ⋅ ‖ ΣJJ
−1‖∞

βmin
0 0,

then there exists a solution β̃ to (4) such that P sign(β̃) = sign β0 1, as minjt njt → ∞ and

p → ∞.

Remark 7.—Note that the condition ‖ ΣJJ
−1‖∞ ⋅ s2logp /min j, tn jt = o(1) is used to

guarantee that (a) ‖ Σ̂JJ
−1

‖
∞

≤ Constant ⋅ ‖ ΣJJ
−1‖∞ and (b) ‖Σ̂

JcJ
∑̂JJ

−1
‖

∞
≤ 1 − η′ if

‖ Σ
JcJ

ΣJJ
−1‖

∞
≤ 1 − η for the general random design with a high probability, where

η′ ∈ (0, 1) and η ∈ (0, 1) are two constants. For the fixed design, we do not need this

condition. For the special Gaussian random design, as shown in Wainwright (2009), using

some concentration inequalities about the normal distribution and the fact that Σ̂ = XTX/n
for the complete data, we can obtain model selection consistency with n > Constant · s log(p
− s). In our theoretical studies, since we consider the general random design including both
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sub-Gaussian distributions and heavy-tailed distributions, and Σ̂ ≠ XTX/n for the block-

missing multi-modality data, we use the condition ‖ ΣJJ
−1‖∞ ⋅ s2logp /min j, tn jt = o(1) to

guarantee that (a) and (b) are satisified. Note that this condition was also used in some

existing model selection consistency studies for random designs (Jeng and Daye (2011);

Datta et al. (2017)).

As shown in the proof of Theorem 6, to guarantee that (a) and (b) are satisfied, instead of

requiring ‖ ΣJJ
−1‖∞ ⋅ s2logp /min j, tn jt = o(1), we can use the following weak condition

‖ ΣJJ
−1‖∞ ⋅ s2logp

min j, tn jt
≤ η

ν1′ (4 + η) ,

where ν1′ > ν1 is a positive constant.

Theorem 7.—Under conditions (A3) and (A4), let H jt =
Q1
12 n jt /logp,

H j = Q1 + Q2 n j/logp, 1 − α1 = O (logp)/min jn j , 1 − α2 = O (logp)/min j, tn jt . If

‖ ΣJJ
−1‖∞ ⋅ s2logp /min j, tn jt 0, and

1 + sβmax
0

λ
logp

min j, tn jt
0,

λ ⋅ ‖ ΣJJ
−1‖∞

βmin
0 0,

then there exists a solution β̆ to (4) such that P sign(β̆) = sign β0 1, as min jtn jt ∞ and

p ∞.

Remark 8.—Instead of requiring ‖ ΣJJ
−1‖∞ ⋅ s2logp /min j, tn jt = o(1), we can use the

following weak condition

‖ ΣJJ
−1‖∞ ⋅ s2logp

min j, tn jt
≤ η

Q1′ (4 + η) ,

where Q1′ > Q1 is a positive constant. The proof of Theorem 7 is very similar to the proof of

Theorem 6. We only show the proof of Theorem 7 briefly in the Appendix.

4 Simulation Study

In this section, we perform numerical studies using simulated examples. We use DISCOM

and DISCOM-Huber to denote our proposed methods using sample covariance estimates

and Huber’s M-estimates, respectively. The proposed methods using the fast tuning

parameter selection method shown in Section 2.4 are called Fast-DISCOM and Fast-

Yu et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCOM-Huber, respectively. For each example, we compare our proposed methods with 1)

Lasso: Lasso method which only uses the samples with complete observations; 2) Imputed-

Lasso: Lasso method which uses all samples with missing data imputed by the Soft-

thresholded SVD method (Mazumder et al. (2010)); 3) Ridge: Ridge regression method

which only uses the samples with complete observations; 4) Imputed-Ridge: Ridge

regression method which uses all samples with missing data imputed by the Soft-

thresholded SVD method; and 5) IMSF (Yuan et al. (2012)): the IMSF method which uses

all available data without imputing the missing data. We study four simulated examples,

where the data are generated from the Gaussian distribution or some heavy-tailed

distributions.

For each example, the data are generated from three modalities and each modality has 100

predictors. The training data set is composed of 100 samples with complete observations,

100 samples with observations from the first and the second modalities, 100 samples with

observations from the first and the third modalities, and 100 samples with observations only

from the first modality. The tuning data set contains 200 samples with complete observations

and the testing data set contains 400 samples with complete observations. All methods use

the tuning data set to choose the best tuning parameters. For the four simulated examples,

samples with complete observations are generated from the linear model as follows.

Example 1:

The predictors xi1, xi2, …, xip
T ∼ N(0, Σ) with σ jt = 0.6| j − t|. The true coefficient vector

β0 = (0.5, 0.5, 0.5, 0, ⋯, 0
97

, 0.5, 0.5, 0.5, 0, ⋯, 0
97

, 0.5, 0.5, 0.5, 0, ⋯, 0
97

) .

The true model is Y = Xβ0 + ϵ, where the errors ϵ1, ϵ2, …, ϵn ∼i . i . d N(0, 1).

Example 2:

The predictors xi1, xi2, …, xip
T ∼ N(0, Σ), where Σ is a block diagonal matrix with p/5

blocks. Each block is a 5 × 5 square matrix with ones on the main diagonal and 0.15

elsewhere. The true coefficient vector

β0 = 0.5, ⋯, 0.5
5

, 0, ⋯, 0
95

, 0.5, ⋯, 0.5
5

, 0, ⋯, 0
95

, 0.5, ⋯, 0.5
5

, 0, ⋯, 0
95

.

The true model is Y = Xβ0 + ϵ, where the errors ϵ1, ϵ2, …, ϵn ∼i . i . d N(0, 1).

Example 3:

The predictors xi1, xi2, …, xip
T ∼ t5(0, 0.6Σ), where Σ is the same as the covariance matrix

shown in Example 1. For this multivariate t-distribution with the degrees of freedom 5, the

variances of all predictors are equal to 1. The true coefficient vector β0 is the same as the

Yu et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vector shown in Example 1. The true model is Y = Xβ0 + ϵ, where the errors ϵ1, ϵ2, . . ., ϵn

follow the Student’s t-distribution with degrees of freedom 10.

Example 4:

The predictors xi1, …, xip
T

 ∼ the mixture distribution ρ ⋅ N(0, 10I) + (1 − ρ) ⋅ N(0, 0.5I), where

ρ = 0.03 and I is a p × p identity matrix. The true coefficient vector β0 is the same as the

vector shown in Example 1. The true model is Y = Xβ0 + ϵ, where the errors ϵ1, ϵ2, . . ., ϵn

follow the Skew-t distribution (Azzalini (2013)) with degrees of freedom 4.

For each example, we repeated the simulation 30 times. To evaluate different methods, we

use the following five measures: ℓ2 distance ‖β̂ − β0‖2, mean squared error (MSE), false

positive rate (FPR), false negative rate (FNR), and the elapsed time (in seconds) using R.

Tables 1 and 2 show the performance comparison of different methods in the Gaussian case

and the heavy-tailed case, respectively. The results indicate that our proposed methods

deliver the best performance on all these four examples. For the Gaussian case shown in

Table 1, DISCOM delivers better performance than the DISCOM-Huber method. For the

heavy-tailed case shown in Table 2, DISCOM-Huber performs better. These numerical

results are consistent with our theoretical studies shown in Section 3.

In addition, as shown in Tables 1 and 2, for the Lasso and ridge regression, using the

imputed data can improve performance in most cases. However, as shown in Table 1, the

Lasso method using the imputed data may deliver worse estimate of the true coefficient

vector β0, possibly due to the block-missing pattern. Compared with the Lasso and Ridge

regression methods using the imputed data set or only the samples with complete

observations, the IMSF method delivers better estimation and prediction. On the other hand,

IMSF method has high false positive rates for all four simulated examples. The comparison

between IMSF and our proposed DISCOM and DISCOM-Huber shows that our proposed

methods could use all available data more effectively and therefore acquires better

performance.

For each simulation of the four examples, our proposed Fast-DISCOM method using the fast

tuning parameter selection method uses only 4 seconds while our original DISCOM method

uses about 13 seconds. The Fast-DISCOM method is also faster than the IMSF method

which uses about 7 seconds for each simulation. On the other hand, we can observe that the

computing times of our original DISCOM and DISCOM-Huber methods are still acceptable.

For the examples 1 and 2 generated from the Gaussian distribution, although the Fast-

DISCOM method does not perform as well as the DISCOM method, it has better estimation,

prediction, and model selection performance than the Lasso, ridge regression and IMSF

methods. Similarly, for the examples 3 and 4 generated from the heavy-tailed distributions,

although the Fast-DISCOM-Huber method does not perform as well as the DISCOM-Huber

method, it also has better performance than the Lasso, ridge regression and IMSF methods.

These simulation results indicate that our proposed new tuning parameter selection method

accelerates the computational speed without sacrificing the estimation, prediction, and

model selection performance too much.
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5 Real Data Analysis

In this section, we show the analysis of the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) data as an application example. The main goal of ADNI is to test whether serial

magnetic resonance imaging (MRI), positron emission tomography (PET), and some other

biological markers and neuropsychological assessments can be combined to measure the

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). In our

study, we extracted features from three modalities: structural MRI, fluorodeoxyglucose PET,

and CerebroSpinal Fluid (CSF). Imaging preprocessing was performed for MRI and PET

images. For the MRI, after some correction, spatial segmentation, and registration steps, we

obtained the subject lableled image based on the Jacob template (Kabani et al. (1998)) with

93 manually labeled regions of interest (ROI). For each of the 93 ROIs in the labeled MRI,

we computed the volume of gray matter as a feature. For each PET image, we first aligned

the PET image to its respective MRI using affine registration. Then, we calculated the

average intensity of every ROI in the PET image as a feature. Therefore, for each ROI, we

have one MRI feature and one PET feature. For the CSF modality, five biomarkers were

used in this study, namely amyloid β (Aβ42), CSF total tau (t-tau), tau hyperphosphorylated

at threonine 181 (p-tau), and two tau ratios with respective to Aβ42 (i.e., t-tau/Aβ42 and p-

tau/Aβ42).

After data processing, we got 93 features from MRI, 93 features from PET, and 5 features

from CSF. There are 805 subjects in total, including 1) 199 subjects with complete MRI,

PET, and CSF features, 2) 197 subjects with only MRI and PET features, 3) 201 subjects

with only MRI and CSF features, and 4) 208 subjects with only MRI features. The response

variable used in our study is the Mini Mental State Examination (MMSE) score. As a brief

30-point questionnaire test, MMSE can be used to examine a patient’s arithmetic, memory

and orientation (Folstein et al. (1975)). It is very useful to help evaluate the stage of AD

pathology and predict future progression. We will use all available data from MRI, PET, and

CSF to predict the MMSE score.

In our analysis, we divided the data into three parts: training data set, tuning data set, and

testing data set. The training data set consists of all subjects with incomplete observations

and 40 randomly selected subjects with complete MRI, PET, and CSF features. The tuning

data set consists of another 40 randomly selected subjects (different from the training data

set) with complete observations. The testing data set contains the other 119 subjects with

complete observations. The tuning data set was used to choose the best tuning parameters

for all methods and the testing data set was used to evaluate different methods. We used all

methods shown in the simulation study to predict the MMSE score. For each method, the

analysis was repeated 30 times using different partitions of the data.

The results in Table 3 show that our proposed Fast-DISCOM-Huber method acquires the

best prediction performance. All our proposed DISCOM methods deliver better performance

than the Lasso, Ridge, and IMSF methods. The IMSF method has better prediction

performance than the Lasso and ridge regression using only samples with complete

observations. However, IMSF does not perform as well as the ridge regression using the

imputed data. Regarding the model selection, since the number of variables selected by the
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Lasso is at most the sample size (Zou and Hastie (2005)), as shown in Table 3, the Lasso

method using the imputed data selected many more features than the method using only

samples with complete observations. Both IMSF and our proposed methods could deliver a

model with relatively small numbers of features.

Figure 2 shows the selection frequency of all the 191 features. The selection frequency of

each feature is defined as the times of being selected in the 30 times replications. As shown

in Figure 2, for our proposed DISCOM methods, some features were always selected and

many features were never selected in the 30 times replications. This means that our method

could deliver relatively robust performance on model selection. However, for some other

methods such as the Imputed-Lasso method, they selected very different features in different

replications and therefore many features have positive and low selection frequencies. For the

Imputed-Lasso method, one possible reason for the unstable performance on model selection

is due to the randomness involved in the imputation of a lot of block-missing data.

To further understand our results, since each MRI feature and each PET feature are

corresponding to one ROI, we can examine whether the selected features are meaningful by

studying their corresponding brain regions. In our 30 times of experiments using different

random splits, there are 9 MRI features and 2 PET features always selected by our proposed

DISCOM-Huber and Fast-DISCOM-Huber methods. Figure 3 shows the multi-slice view of

the brain regions (regions with color) corresponding to these 11 features. Among these 11

brain regions, some regions such as hippocampal formation right (30-th region), uncus left

(46-th region), middle temporal gyrus left (48-th region), hippocampus formation left (69-th

region) and amygdale right (83-th region), are known to be highly correlated with AD and

MCI by many studies using group comparison methods (Misra et al. (2009); Zhang and

Shen (2012)). It would be interesting to study whether the other six always selected brain

regions are truly related with AD by some scientific experiments.

In addition, as shown in Table 3, all our proposed DISCOM methods solve this real data

analysis problem with 191 features within 11 seconds. This indicates that the time cost of

our methods is not very expensive. In summary, our real data analysis indicates that our

proposed method can solve practical problems well.

6 Conclusion

In this paper, we propose a new two-step procedure to find the optimal linear prediction of a

continuous response variable using the block-missing multi-modality predictors. In the first

step, we estimate the covariance matrix of the predictors using a linear combination of the

identity matrix, and the estimates of the intra-modality covariance matrix and the cross-

modality covariance matrix. The proposed estimator of the covariance matrix can be positive

semi-definite and more accurate than the sample covariance matrix. We also use all available

information to estimate the cross covariance vector between the predictors and the response

variable. Robust estimate based on the Huber’s M-estimate is also proposed for the heavy-

tailed case. In the second step, based on the estimated covariance matrix and the cross-

covariance vector, a modified Lasso estimator is used to deliver a sparse estimate of the

coefficients in the optimal linear prediction. The effectiveness of the proposed method is
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demonstrated by both theoretical and numerical studies. The comparison between our

proposed method and several existing ones also indicates that our method has promising

performance on estimation, prediction, and model selection for the block-missing multi-

modality data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
An illustration of block-missing multi-modality data with three modalities.
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Figure 2:
Selection frequency of 191 features for the prediction of MMSE score.
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Figure 3:
The multi-slice view of the brain regions always selected by DISCOM-Huber and Fast-

DISCOM-Huber.
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Table 1:

Performance comparison for the Gaussian case.

Methods

Example 1 Example 2

‖β̂ − β0‖2 MSE FPR FNR TIME ‖β̂ − β0‖2 MSE FPR FNR TIME

Lasso 0.655
(0.026)

1.431
(0.045)

0.069
(0.004)

0.015
(0.009)

0.016
(0.000)

0.920
(0.025)

1.988
(0.059)

0.133
(0.007)

0.002
(0.002)

0.019
(0.004)

Imputed-Lasso 0.674
(0.017)

1.338
(0.018)

0.076
(0.007)

0.004
(0.004)

0.802
(0.006)

0.690
(0.013)

1.546
(0.030)

0.122
(0.007)

0.000
(0.000)

1.099
(0.008)

Ridge 1.270
(0.004)

3.962
(0.062)

1.000
(0.000)

0.000
(0.000)

0.025
(0.000)

1.662
(0.006)

5.262
(0.066)

1.000
(0.000)

0.000
(0.000)

0.025
(0.000)

Imputed-Ridge 1.094
(0.013)

2.304
(0.035)

1.000
(0.000)

0.000
(0.000)

0.780
(0.006)

1.332
(0.009)

3.130
(0.048)

1.000
(0.000)

0.000
(0.000)

1.093
(0.008)

IMSF 0.585
(0.020)

1.358
(0.037)

0.173
(0.009)

0.000
(0.000)

5.554
(0.068)

0.777
(0.016)

1.730
(0.040)

0.291
(0.012)

0.000
(0.000)

5.900
(0.075)

DISCOM 0.416
(0.013)

1.133
(0.016)

0.025
(0.003)

0.000
(0.000)

13.552
(0.078)

0.600
(0.020)

1.378
(0.033)

0.074
(0.007)

0.000
(0.000)

12.391
(0.064)

DISCOM-Huber 0.434
(0.013)

1.145
(0.016)

0.026
(0.003)

0.000
(0.000)

28.618
(0.886)

0.605
(0.021)

1.380
(0.035)

0.076
(0.008)

0.000
(0.000)

25.907
0.122

Fast-DISCOM 0.465
(0.015)

1.160
(0.016)

0.039
(0.005)

0.000
(0.000)

3.600
(0.027)

0.641
(0.017)

1.438
(0.033)

0.109
(0.006)

0.000
(0.000)

3.241
(0.029)

Fast-DISCOM-Huber 0.481
(0.015)

1.173
(0.016)

0.036
(0.004)

0.000
(0.000)

16.802
(0.081)

0.655
(0.020)

1.457
(0.037)

0.100
(0.007)

0.000
(0.000)

16.767
(0.096)

[Note that the values in the parentheses are the standard errors of the measures.]
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Table 2:

Performance comparison for the heavy-tailed case.

Methods

Example 3 Example 4

‖β̂ − β0‖2 MSE FPR FNR TIME ‖β̂ − β0‖2 MSE FPR FNR TIME

Lasso 0.751
(0.036)

1.809
(0.055)

0.070
(0.006)

0.056
(0.017)

0.021
(0.004)

1.305
(0.029)

3.331
(0.087)

0.064
(0.007)

0.419
(0.054)

0.020
(0.005)

Imputed-Lasso 0.751
(0.023)

1.669
(0.039)

0.071
(0.008)

0.026
(0.010)

0.687
(0.010)

0.930
(0.030)

2.699
(0.073)

0.147
(0.014)

0.033
(0.016)

0.530
(0.013)

Ridge 1.294
(0.004)

4.454
(0.114)

1.000
(0.000)

0.000
(0.000)

0.028
(0.003)

1.420
(0.006)

3.548
(0.069)

1.000
(0.000)

0.000
(0.000)

0.039
(0.006)

Imputed-Ridge 1.143
(0.013)

2.731
(0.064)

1.000
(0.000)

0.000
(0.000)

0.657
(0.010)

1.326
(0.011)

3.342
(0.080)

1.000
(0.000)

0.000
(0.000)

0.527
(0.011)

IMSF 0.622
(0.025)

1.637
(0.041)

0.173
(0.013)

0.004
(0.004)

6.569
(0.297)

1.048
(0.028)

2.878
(0.083)

0.189
(0.012)

0.052
(0.017)

6.989
(0.188)

DISCOM 0.579
(0.022)

1.560
(0.038)

0.037
(0.004)

0.004
(0.004)

12.086
(0.134)

0.871
(0.025)

2.590
(0.067)

0.193
(0.017)

0.011
(0.006)

12.362
(0.153)

DISCOM-Huber 0.507
(0.017)

1.452
(0.025)

0.027
(0.003)

0.000
(0.000)

26.073
(0.104)

0.780
(0.021)

2.468
(0.054)

0.137
(0.012)

0.004
(0.004)

26.925
(0.228)

Fast-DISCOM 0.601
(0.022)

1.604
(0.047)

0.040
(0.004)

0.004
(0.004)

3.317
(0.041)

1.151
(0.025)

3.028
(0.079)

0.207
(0.019)

0.085
(0.033)

3.626
(0.050)

Fast-DISCOM-Huber 0.561
(0.021)

1.496
(0.031)

0.035
(0.004)

0.000
(0.000)

17.835
(0.079)

0.786
(0.022)

2.482
(0.055)

0.137
(0.013)

0.000
(0.000)

17.042
(0.134)

[Note that the values in the parentheses are the standard errors of the measures.]
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Table 3:

Performance comparison for the ADNI data.

Methods
MSE Number of Features TIME

Mean SE Mean SE Mean SE

Lasso 5.711 0.341 11.733 1.638 0.009 0.002

Imputed-Lasso 4.711 0.082 86.700 8.559 0.559 0.017

Ridge 5.273 0.204 191.000 0.000 0.010 0.000

Imputed-Ridge 4.478 0.055 191.000 0.000 0.177 0.006

IMSF 4.630 0.079 28.400 3.025 2.960 0.073

DISCOM 4.285 0.068 27.933 2.261 4.675 0.028

DISCOM-Huber 4.161 0.059 23.100 0.846 10.348 0.025

Fast-DISCOM 4.146 0.055 28.100 0.809 1.565 0.007

Fast-DISCOM-Huber 4.123 0.069 25.833 1.311 8.012 0.019
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