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Abstract SARM1 is an inducible NAD+ hydrolase that triggers axon loss and neuronal cell death 
in the injured and diseased nervous system. While SARM1 activation and enzyme function are well 
defined, the cellular events downstream of SARM1 activity but prior to axonal demise are much less 
well understood. Defects in calcium, mitochondria, ATP, and membrane homeostasis occur in injured 
axons, but the relationships among these events have been difficult to disentangle because prior 
studies analyzed large collections of axons in which cellular events occur asynchronously. Here, we 
used live imaging of mouse sensory neurons with single axon resolution to investigate the cellular 
events downstream of SARM1 activity. Our studies support a model in which SARM1 NADase 
activity leads to an ordered sequence of events from loss of cellular ATP, to defects in mitochondrial 
movement and depolarization, followed by calcium influx, externalization of phosphatidylserine, and 
loss of membrane permeability prior to catastrophic axonal self-destruction.

Editor's evaluation
The authors have responded to all essential criticisms, supporting the elucidation of a sequence of 
cellular events that reside downstream of SARM1 activation.

Introduction
SARM1 is the central executioner of pathological axon degeneration, an early feature of many neuro-
degenerative diseases (Figley and DiAntonio, 2020; Krauss et al., 2020). SARM1 is the founding 
member of the TIR-domain family of NAD+ hydrolases (Essuman et al., 2018; Essuman et al., 2017), 
and a metabolic sensor activated by disrupted NAD+ homeostasis (Figley et al., 2021; Gilley et al., 
2015; Sasaki et al., 2016). Activation of the SARM1 NADase depletes cellular NAD+ and initiates 
a metabolic crisis that ultimately leads to axon degeneration and/or neuronal cell death (Essuman 
et al., 2017; Gerdts et al., 2015). SARM1 is a compelling target for therapeutic intervention, as loss 
of SARM1 is profoundly protective in animal models of multiple neurodegenerative diseases including 
nerve injury, peripheral neuropathies, traumatic brain injury, glaucoma, retinitis pigmentosa, and 
Leber congenital amaurosis (Geisler et al., 2016; Gerdts et al., 2013; Henninger et al., 2016; Ko 
et al., 2020; Osterloh et al., 2012; Ozaki et al., 2020; Sasaki et al., 2020b; Turkiew et al., 2017). 
Moreover, as an enzyme, SARM1 is a druggable target, and both small molecule inhibitors and gene 
therapeutics effectively block axon degeneration (Bosanac et al., 2021; Geisler et al., 2019; Hughes 
et al., 2021). Recently, there has been tremendous progress in dissecting the structure of SARM1 
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(Bratkowski et al., 2020; Jiang et al., 2020; Sporny et al., 2020), the mechanism by which SARM1 is 
autoinhibited in healthy neurons (Shen et al., 2021) and activated in diseased neurons (Figley et al., 
2021), and its role as an NAD+ hydrolase (Essuman et al., 2017; Horsefield et al., 2019; Zhao et al., 
2019). However, the events downstream of NAD+ loss but prior to catastrophic axon fragmentation 
are much less well understood.

SARM1 and its NADase activity are essential for injury-induced axon degeneration, and the SARM1 
enzyme is activated within 1–2 hr after injury in cultured DRG neurons (Sasaki et al., 2020a). Axonal 
fragmentation occurs much later in this system, with axons fragmenting approximately 4–6 hr after 
injury. Numerous molecular and cellular events occur in the time between SARM1 activation and axon 
loss, including calcium influx, mitochondrial stalling and depolarization, loss of ATP, and disrupted 
membrane integrity. We reasoned that temporally ordering these events would give insights into 
causal relationships among these degenerative mechanisms. Unfortunately, studies in bulk culture are 
not appropriate for assessing the temporal sequence because axon loss is asynchronous, and so this 
effort requires live imaging. Prior live imaging studies have demonstrated that hours after injury there 
is a large influx of calcium that precedes axonal fragmentation, and blocking this late calcium entry 
with EGTA inhibits axon fragmentation (Adalbert et al., 2012; Loreto et al., 2015; Vargas et al., 
2015; Wang et al., 2000; Yong et al., 2020). However, no comprehensive live imaging analysis of the 
cellular and molecular events underlying axon degeneration has been reported.

Here, we explore the cellular events that occur in injured axons following SARM1 activation. First, 
we investigate whether changes to mitochondria and calcium require SARM1 NADase activity, as 
prior studies used a complete knockout and so left open the possibility of NADase-independent 
functions. Indeed, such an NADase-independent function was recently described in Drosophila for 
organelle stalling after injury (Hsu et al., 2021). Next, we revisit the role of both intracellular and 
extracellular calcium in axon degeneration. We confirm that blocking extracellular calcium influx 
blocks axon fragmentation (Vargas et al., 2015; Villegas et al., 2014; Wang et al., 2000; Witte 
et al., 2019); however, these apparently morphologically intact axons are not metabolically active, 
as mitochondria are immobile and depolarized. We then develop a live imaging approach in cultured 
DRG neurons with single axon resolution and assess dynamic changes to calcium, mitochondria, ATP, 
and the plasma membrane. Our findings describe an ordered series of events in which (1) ATP is lost, 
(2) mitochondria stop moving and subsequently depolarize, (3) extracellular calcium enters the axons, 
(4) phosphatidylserine is exposed on the outer leaflet of the plasma membrane, and (5) the membrane 
loses integrity. This work identifies a stereotyped cascade of dysfunction following SARM1 activa-
tion, and highlights ATP loss as the likely key intermediate between NAD+ cleavage and widespread 
dysfunction in injured axons.

Results
SARM1 NADase activity promotes mitochondrial stalling and calcium 
influx in injured axons
SARM1 is an injury-activated NAD+ hydrolase, and this enzymatic activity is required for injury-induced 
axon degeneration (Essuman et  al., 2017). However, it is unclear whether all SARM1-dependent 
processes require this enzymatic function. Recently, Hsu et al. working in Drosophila demonstrated 
that injury-dependent organelle stalling can be SARM1-dependent but NADase-independent (Hsu 
et al., 2021). Previously, Loreto et al presented the even more surprising finding that injury-dependent 
mitochondrial stalling in superior cervical ganglion axons did not depend on SARM1, although loss 
of mitochondrial potential did depend on SARM1 (Loreto et al., 2015). Here, we test the applica-
bility of these findings to mammalian sensory neurons, assessing mitochondrial movement in cultured 
mouse dorsal root ganglion (DRG) neurons and assaying the requirement for SARM1 NADase activity. 
This is of particular interest because SARM1 is a mitochondrial associated protein and so alternate 
mechanisms of action are plausible. We cultured DRG neurons from SARM1 knockout (KO) embryos 
and used lentivirus to express either GFP, SARM1, or catalytically inactive SARM1(E642A) together 
with MitoDsRed (MitoDR) in order to track mitochondria. After 7 days, axons were severed and mito-
chondrial movement was imaged 0, 2, and 4 hr after injury. In SARM1 KO neurons expressing GFP, 
mitochondrial movement was unchanged 4 hr after injury. In contrast, the number of motile mitochon-
dria declines precipitously between 2 and 4 hr after injury in SARM1 KO axons re-expressing SARM1. 

https://doi.org/10.7554/eLife.71148
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Catalytically inactive SARM1(E642A) is expressed at similar levels to wild-type (WT) SARM1 (Figure 1—
figure supplement 1), but did not result in loss of mobile mitochondria after injury (Figure 1A and 
B). Hence, the loss of mitochondrial mobility in injured axons is not only SARM1-dependent, but also 
SARM1 NADase-dependent. Injury-induced loss of mitochondrial potential is also SARM1-dependent 
(Geisler et al., 2019), and so here we investigated whether or not this effect also requires a functional 
SARM1 NADase. The mitochondrial potential is the driving force for ATP production and can be 
measured with the fluorescent dye TMRM (tetramethylrhodamine methyl ester). As with mitochondrial 
dynamics, expression of WT SARM1, but not SARM1(E642A), leads to a dramatic loss of mitochon-
drial membrane potential after injury (Figure 2C and D). The finding that SARM1 NADase activity is 
required for loss of mitochondrial membrane potential suggests that the SARM1-induced decline in 
cytosolic NAD+ levels either directly or indirectly influences bioenergetics inside the mitochondria.

In addition to mitochondrial dysfunction, calcium homeostasis is also disrupted in injured axons, 
with a large influx of calcium hours after injury (Adalbert et al., 2012; George et al., 1995; Ma et al., 
2013; Wang et al., 2000; Yang et al., 2013). Here, we test if this calcium influx requires SARM1 enzy-
matic activity. We used Fluo-4, a calcium-sensitive fluorescent dye, to assess axonal calcium four hours 
after injury, the time point by which mitochondrial mobility and potential are disrupted. Axons show 
no calcium rise in SARM1 KO neurons expressing either GFP or SARM1(E642A), but have a significant 
increase in calcium when expressing WT SARM1 (Figure 1E and F). Hence, the loss of calcium homeo-
stasis in injured axons also requires SARM1 NADase activity. Taken together, these findings support 
the view that SARM1 enzyme activity is essential for not only axon degeneration (Essuman et al., 
2017), but also for the major proximate events that occur in injured mammalian axons.

Manipulating either intracellular or extracellular calcium is ineffective in 
preserving injured axons
Having demonstrated that calcium influx into injured axons requires SARM1 NADase activity, we next 
explored the role of calcium influx in axonal demise. Prior studies argued that calcium release through 
the mitochondrial permeability transition pore (MPTP) (Barrientos et al., 2011; Villegas et al., 2014) 
or extracellular calcium influx (Vargas et  al., 2015; Wang et al., 2000; Witte et  al., 2019; Yong 
et  al., 2020) are key drivers of axon degeneration. To test whether the MPTP has a role in axon 
degeneration, we incubated embryonic DRGs neurons with the MPTP inhibitor (Cyclosporin A, CsA), 
axotomized, and assessed the progression of axon degeneration and the rise in intracellular calcium. 
In contrast to prior findings, we observed no delay in the timing of axon degeneration with CsA treat-
ment (Figure 2A). We also assayed the increase in intracellular calcium after injury and again found 
no significant effect of CsA (Figure 2B). To further explore the role of intracellular calcium, we incu-
bated DRG neurons with 10 µM BAPTA to chelate intracellular calcium for 30 min prior to axotomy. 
This treatment had no influence on the progression of axon degeneration (Figure 2C), and was also 
unable to fully buffer the influx of extracellular calcium that occurs hours after injury (Figure  2—
figure supplement 1). These results indicate that internal calcium is not a major determinant of injury-
induced axon degeneration in this system; however, it may play a role in scenarios where SARM1 is 
less potently activated (Li et al., 2021).

While we found no clear role for intracellular calcium, there are numerous studies highlighting the 
importance of extracellular calcium for injury-induced axon degeneration (Gerdts et al., 2011; Mishra 
et al., 2013; Ribas et al., 2017; Vargas et al., 2015; Wang et al., 2000; Yang et al., 2013). As such, 
we explored the impact of chelating extracellular calcium on the progression of axon degeneration. 
In agreement with prior studies, we find that pre-incubation with 3 mM EGTA potently blocked injury-
induced calcium influx and maintained morphologically intact axons for up to 48 hr after axotomy 
(Figure  2D and E; Figure  2—figure supplement 1). To explore when the influx of extracellular 
calcium is required, we treated with EGTA at the time of axotomy and then performed washout after 
2 hr, or added the EGTA 2 hr after axotomy. The presence of EGTA from 0 to 2 hr after axotomy had 
no impact on the timing of axon fragmentation, while addition of EGTA 2 hr post-axotomy was as 
protective as treatment at the time of axotomy (Figure 2D and E). Hence, late influx of extracellular 
calcium is critical for axon degeneration in DRG axons, a finding consistent with previous reports 
(Vargas et al., 2015; Witte et al., 2019).

While these results are consistent with prior work highlighting the importance of extracellular 
calcium for axon degeneration, we did observe that severed axons developed prominent axonal 

https://doi.org/10.7554/eLife.71148
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Figure 1. SARM1 enzymatic activity regulates mitochondrial movement and calcium homeostasis in injured axons. (A) Representative kymograph of 
injured SARM1 KO axons expressing either GFP, SARM1, or SARM1.E642A (E642A). For imaging mitochondria movement, MitoDsRed lentivirus was 
transduced in all experimental conditions. Live cell imaging was performed at different times (0, 2, or 4 hr) after axon injury. Scale bar = 20 µm (B) 
Quantification of mobile mitochondria for the neurons in (A). Data represent the mean ± SEM; n = 5 ~ 13 axons for each condition; one-way ANOVA 
with post hoc Tukey test, F(11,99) = 12.28, p < 0.0001; NS, not significant; *, p < 0.05; **, p < 0.01 and ***, p < 0.001 (C) Representative images of 
mitochondrial potential imaged with 50 nM TMRM fluorescent dye in SARM1 KO axons expressing either of GFP, SARM1, or SARM1.E642A. Live-
cell imaging was performed at the indicated times (0, 4, or 24 hr) after axon injury. Scale bar = 30 µm (D) Quantification of TMRM intensity from the 
experiment in (C). Injured SARM1 KO axons expressing the enzymatically disabled SARM1 mutant (E642A) maintained TMRM signal without significant 
loss. Data represent the mean ± SEM; n = 5 ~ 6 embryos for each condition; one-way ANOVA with post hoc Tukey test, F(4,23) = 53.11, p < 0.0001; NS, 
not significant; *, p < 0.05; **, p < 0.01 and ***, p < 0.001 (E) Representative images of calcium influx imaged with 1 µM Fluo-4 fluorescent dye in SARM1 

Figure 1 continued on next page
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swellings following extracellular calcium chelation (Figure 2D, red arrowheads). Moreover, previous 
work showed that SARM1 is activated within two hours after injury and leads to NAD+ depletion and 
metabolic catastrophe (Sasaki et al., 2020a), raising the question of whether blocking the later influx 
of calcium maintains axons in a healthy state. To investigate this question, we assessed mitochondrial 
membrane potential and mobility in injured axons treated with EGTA. We find that mitochondria 
potential is lost by four hours post-axotomy whether or not EGTA is present (Figure  2F and G). 
Similarly, EGTA treatment fails to maintain mitochondrial mobility after axotomy (Figure 2H and I). 
Indeed, treatment with EGTA halts mitochondrial movement and disrupts mitochondrial depolariza-
tion (Figure 2—figure supplement 1) after 4 hr even in the absence of injury, demonstrating that 
chelating extracellular calcium is not an effective method to maintain healthy axons, and instead 
disrupts normal axonal physiology. These findings are in contrast to loss of SARM1, which maintains 
both mitochondrial potential and mobility after axotomy (Figure 1). Taken together, these findings 
suggest that prior studies showing protection of axons by blocking the large calcium influx that occurs 
prior to degeneration were likely maintaining axonal structure but not axonal physiology, and suggest 
that the key role for calcium influx may be to trigger fragmentation of metabolically non-functional 
axons.

Live single axon imaging defines the temporal relationship between 
calcium influx and axonal fragmentation
To quantitatively assess the relationship between this late influx of calcium and axonal fragmenta-
tion, we developed a live imaging system with single axon resolution (Figure 3—figure supplement 
1). This allows us to assess temporal relationships of the asynchronous axon degeneration process 
that is not possible in mass cultures. We used lentivirus to co-express GCaMP6 and mRuby3 in 
cultured DRG neurons to monitor calcium influx and axon morphology simultaneously. After 7 days 
in culture, when both proteins were strongly expressed, we performed axotomy by focusing laser 
light on a 1 × 1 µm region containing a single axon (Figure 3A). Images of the distal axon were 
repeatedly acquired until the injured axon degenerated. Figure 3B and Video 1 show the progres-
sion of calcium influx and axon degeneration for a single axon, features that are representative of 
all the injured axons analyzed. Immediately after axotomy, a first peak of calcium bidirectionally 
propagates along the axon from the injury site (white triangle). This elevated intracellular calcium 
is rapidly cleared, demonstrating that calcium homeostasis functions normally at this time, and is 
consistent with prior work and the findings in Figure 2E that the initial influx of calcium does not 
contribute to axon fragmentation (Adalbert et al., 2012; Loreto et al., 2015; Vargas et al., 2015). 
After nearly 4 hours, there is a large second influx of calcium that precedes any obvious change in 
axonal morphology. Soon thereafter, the axon thins and small swellings appear, then the axon swell-
ings enlarge, and finally the axon fragments (Figure 3B and C). From analysis of 22 single axons, 
we found that the time to the appearance of the second calcium peak varied dramatically, from 
less than four hours to nearly 10 hr after axotomy (Figure 3D). However, once the second peak of 
calcium appeared, the axon fragmented soon thereafter. The correlation between the initiation of 
the second peak of calcium and axon degeneration was very strong (Figure 3D), with degeneration 
occurring ~100 min after initiation of calcium influx. In contrast, neither the duration nor intensity 
of the second calcium peak was well correlated with the timing of axon degeneration (Figure 3E 
and F). The very tight correlation between the initiation of the second influx of calcium and axonal 
fragmentation is consistent with the hypothesis that this calcium triggers the final disintegration of 
the axon.

KO axons expressing either of GFP, SARM1, or SARM1.E642A. Live-cell imaging was performed at different times (0, or 4 hr) after axon injury. Scale bar 
= 30 µm (F) Quantification of Fluo-4 intensity from the experiment in (E). Injured SARM1 KO axons expressing the enzymatically disabled SARM1 mutant 
(E642A) completely prevent calcium influx. Data represent the mean ± SEM; n = 5 ~ 8 embryos for each condition; one-way ANOVA with post hoc Tukey 
test, F(3,22) = 23.05, p < 0.0001; NS, not significant; *, p < 0.05; **, p < 0.01 and ***, p < 0.001.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Expression level of SARM1.WT and SARM1.E642A.

Figure 1 continued

https://doi.org/10.7554/eLife.71148
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Figure 2. The role of calcium in axon degeneration. (A) Pre-incubation of MPTP inhibitor (1, 10, or 100 µM CsA) did not significantly prevent the 
degeneration of wild-type axons after axon injury. Axon degeneration is defined as a degeneration index >0.4 (dashed line). n = 3 embryos for each 
condition. (B) (Left) Representative images of calcium influx acquired with 1 µM Fluo-4 dye. Scale bar = 30 µm (Right) The degree of calcium influx in CsA 
pre-incubated injured axons is not significantly different from DMSO pre-incubated injured axons. Fold increment of injured axons at 4 hr after axotomy 

Figure 2 continued on next page
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Mitochondrial dysfunction precedes calcium influx in injured axons
With a method established for live imaging of single axons, we next explored the temporal rela-
tionship between calcium influx and mitochondrial stalling and loss of potential. Calcium influx is a 
potent mechanism for stopping mitochondria (Wang and Schwarz, 2009), and so we predicted that 
calcium influx would occur before mitochondrial stalling. We used lentivirus to express MitoDR and 
GCaMP6 in DRG neurons and performed laser axotomy. We imaged mitochondrial movement with 
MitoDR every 5 s for 300 s followed by calcium measurements. Images from MitoDR and GCaMP6 
were acquired until mitochondria stopped, at which point only GCaMP6 imaging continued until its 
level increased more than twofold (Figure 4A). As shown in Figure 4A and in contrast to expecta-
tions, mitochondrial movement stops before the influx of calcium. Analysis of this single axon shows 
that fewer mitochondria are moving 3 hr after axotomy (Figure 4B), and that all mitochondrial are 
stalled by 4.4 hr after injury (Figure 4B, inset). At this point, the GCaMP6 signal is unchanged from 
baseline, but begins to rise soon thereafter. Quantitative analysis of single injured axons demonstrates 
that loss of mitochondrial mobility precedes calcium influx in each case, and this occurs ~25 min after 
mitochondria stop (Figure 4B and C). Hence, loss of mitochondrial mobility in injured axons cannot 
be due to calcium influx.

Next, we addressed the relationship between loss of mitochondrial potential and calcium influx. 
Calcium overload can induce loss of mitochondrial potential (Abramov et al., 2007)—if this occurs in 
injured axons, then we expect calcium influx to precede mitochondrial depolarization. We expressed 
GCaMP6 in DRG neurons, incubated the neurons with TMRM to assess mitochondrial potential, and 
imaged single axons in both channels every ten minutes until axons degenerated (Figure 4D). This 
imaging frequency was chosen to avoid photobleaching. The images and analysis from a single axon 
(Figure 4D and E) demonstrate that the fluorescent intensity of TMRM is fairly stable at baseline, then 
has an initial drastic drop (dark red dot in Figure 4E) followed by a steady decline (Figure 4E and F, 
red dots). In contrast, calcium has an abrupt rise (dark green dot), quickly reaching a higher steady-
state level (Figure 4E and F, green dots). In the example shown, the abrupt drop in mitochondrial 
potential occurs one frame prior to the large increase in calcium. To assess this across axons, we iden-
tified the time at which the TMRM and GCaMP6 signal showed the largest frame-to-frame variation 
(Figure 4F and G and Figure 4—figure supplement 1). We found that the drastic drop of TMRM 
intensity occurs one frame prior to the large increase in calcium in five out of seven axons (71.43%), 
while these changes occurred during the same frame in two out of seven axons. The images are 
taken ten minutes apart, and so these data indicate that in injured axons mitochondria begin depo-
larizing prior to the calcium influx (Figure 4G). Moreover, these data, in conjunction with the analysis 
of mitochondrial mobility and calcium influx above, demonstrate a sequence of events in which first 
mitochondria stop, then begin losing their potential, and after that calcium enters the axon which 
subsequently degenerates.

is calculated from uninjured axons. Data represent the mean ± SEM; n = 5 embryos for each condition; two-tailed unpaired t test, p = 0.39; NS, not 
significant; *, p < 0.05; **, p < 0.01 and ***, p < 0.001 (C) Internal calcium chelator (pre-incubation with 10 µM BAPTA) did not delay axon degeneration 
after axonal injury. n = 3 embryos for each condition. Data represent the mean ± SEM; Axon degeneration is defined as a degeneration index >0.4 
(dashed line). (D) (Top) Experimental design. Extracellular calcium chelator, 3 mM ETGA, was included in the culture medium at different time points (2 ~ 
48 hr vs 0 ~ 2 hr vs 0 ~ 48 hr). For addition of EGTA from 0 ~ 2 hr, culture medium was replaced at 2 hr. (Bottom, left) Representative bright-field images 
of axons. (E) Quantification of axon degeneration for the experiment in (D). Although there are axonal swellings (red triangle) in the presence of EGTA, 
injured axons remain intact when the EGTA is present 2 hr after axotomy. n = 3 embryos for each condition. Data represent the mean ± SEM; Axon 
degeneration is defined as a degeneration index >0.4 (dashed line). (F) Representative images of mitochondria potential (TMRM fluorescent dye) and 
axon morphology (GFP lentivirus) in uncut axons and cut axons ±EGTA. Scale bar = 100 µm (G) Quantification of the TMRM staining for the experiment 
in (F). EGTA incubation in injured axons does not maintain mitochondrial hyperpolarization. Data represent the mean ± SEM; n = 6 ~ 7 embryos for 
each condition; one-way ANOVA with post hoc Tukey test, F(2,16) = 98.27, p < 0.0001; NS, not significant; *, p < 0.05; **, p < 0.01 and ***, p < 0.001 (H) 
Representative kymograph of uncut and cut axons ±EGTA as indicated. (I) Quantification of total number of mitochondria (left) and mobile mitochondria 
(right) for the experiment in (H). Data represent the mean ± SEM; n = 8 ~ 12 axons for each condition; one-way ANOVA with post hoc Tukey test, for 
mobile mitochondria F(3,24) = 16.34, p < 0.0001; for number of mitochondria, F(3,34) = 0.8787, p = 0.46; NS, not significant; *, p < 0.05; **, p < 0.01 and 
***, p < 0.001.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. EGTA efficiently blocks calcium influx.

Figure 2 continued

https://doi.org/10.7554/eLife.71148
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Figure 3. Live single axon imaging enables temporal dissection of cellular events in injured axons. (A) Schematic diagram of laser axotomy in cultured 
embryonic DRG neurons. GCaMP6 and mRuby3 were expressed to observe calcium fluctuations and axonal morphology. (B) Snapshots of an injured 
wild-type axon. Also see Video 1. Progression of axon degeneration is described at the bottom of the schematic. Note that there is both an early and 
late phase of calcium influx. The first peak of calcium occurs at the injury site (white triangle) before calcium levels return to normal. The second calcium 
peak persists until the axon degenerates. Scale bar = 100 µm (C) Representative analysis of a single injured axon. The calcium response (left y-axis) and 
measure of axon continuity (right y-axis) for a single axon is plotted over time after axonal injury. Note the two distinct calcium peaks.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. DRG neuron culture for single axon imaging.

https://doi.org/10.7554/eLife.71148
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ATP loss precedes mitochondrial 
stalling
Calcium influx cannot explain the loss of mito-
chondrial mobility, so we considered other poten-
tial mechanisms. Once the SARM1 NADase is 
activated, ATP is lost soon thereafter (Gerdts 
et al., 2015) because NAD+ is required for ATP 
synthesis via both glycolysis and oxidative phos-
phorylation. The loss of ATP in injured distal axons 
is fully SARM1 dependent (Figure  5—figure 
supplement 2). Mitochondria are transported 
by ATP-dependent molecular motors, and so we 
hypothesized that loss of ATP may cause loss of 
mitochondrial mobility. To assess this hypoth-

esis, we explored the relationship between ATP loss and mitochondrial stalling. We used lentivirus 
to express PercevalHR, a sensor of relative ATP levels (Tantama et al., 2013), and MitoDR in DRG 
neurons and performed laser axotomy. For the validation of PercevalHR in axons, we applied CCCP 
(Carbonyl Cyanide m-chlorophenyl hydrazone) to DRG neurons expressing PercevalHR. Using HPLC 
to measure axonal metabolites, we previously demonstrated that a 2 hr treatment with 50 μM CCCP 
lowers ATP by ~60 % in DRG axons (Summers et al., 2014). The same CCCP treatment leads to 
an ~70 % drop in the fluorescence level of PercevalHR (Figure 5—figure supplement 1), demon-
strating that PercevalHR gives a reasonable estimate of changing ATP levels in axons. Upon injury, we 
found that ATP loss and loss of mitochondrial mobility temporally overlap, and so it was not possible 
to define a window after which one process was complete and the other had yet to start, as we did 
with calcium and mitochondrial dynamics above. Instead, we quantitatively assessed the relationship 
between the degree of ATP loss as defined by loss of the PercevalHR signal and the fraction of mito-
chondria that stop moving in injured axons. Based on ATP measurements from bulk injured axons, 
we knew that most ATP loss occurred between 3 and 4 hr after injury (Figure 5—figure supplement 
2). Therefore, we imaged baseline mitochondrial mobility and relative ATP levels before injury, and 
then re-imaged the PercevalHR every 5 min for 3.5 hr after single axon injury. We then calculated 
the percent change in PercevalHR intensity from baseline. Immediately after the final imaging of 
PercevalHR at 3.5 hr, we imaged mitochondrial mobility by acquiring images every 5 s for 300 s and 
calculated the percent drop in the fraction of motile mitochondria compared to baseline (Figure 5A 
and B). In every axon, the percent drop in the ATP sensor was larger than the percent drop in the frac-
tion of mobile mitochondria (Figure 5B left), and there was a strong correlation between the extent 
of ATP loss and mitochondrial stalling (Figure 5B right; R2 = 0.61, n = 9). We continued to measure 
mitochondrial mobility from 3.5  hr after injury until mitochondrial movement ended. We found a 
strong inverse correlation between the extent of ATP loss at 3.5 hr and the remaining time until the 
complete loss of mitochondrial mobility (Figure 5C; R2 = 0.76, n = 9). In other words, the extent of ATP 
loss by 3.5 hr after injury is a strong predictor of when mitochondrial will ultimately stop moving in an 
injured axon. All these results are consistent with the model that ATP loss causes loss of mitochondrial 
mobility. We did not repeat these results in SARM1 KO axons because we have already demonstrated 
that both ATP loss and loss of mitochondrial mobility are fully SARM1 dependent (Figure 5—figure 
supplement 2 and Figure 1).

Calcium is required for loss of membrane integrity during axon 
fragmentation
Having shown that calcium influx is a late event in the axon degeneration process, we assessed the 
temporal relationship between calcium influx and two other late events, loss of membrane lipid asym-
metry and loss of membrane integrity (Yong et al., 2020). In healthy membranes, phosphatidylserine 
is preferentially found in the inner leaflet of the plasma membrane. In cells undergoing apoptosis 
and in degenerating axons, phosphatidylserine is exposed on the outer leaflet where it serves as 
an ‘eat-me’ signal to phagocytic cells (Sapar et al., 2018; Segawa and Nagata, 2015; Shacham-
Silverberg et al., 2018; Wakatsuki and Araki, 2017). To assess the temporal relationship among 
calcium influx, loss of membrane asymmetry, and axon fragmentation, we expressed GCaMP6 and 

Video 1. Time lapse imaging of injured single axon.

https://elifesciences.org/articles/71148/figures#video1

https://doi.org/10.7554/eLife.71148
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mRuby3 in DRG neurons, laser axotomized, and incubated with Alex Fluor 647-conjugated Annexin-V, 
which binds extracellular phosphatidylserine (Sievers et al., 2003). In the example shown, calcium 
rises first, followed by staining with Annexin-V, and soon thereafter the mRuby3 signal declines indica-
tive of axon fragmentation (Figure 6A). Indeed, in all cells analyzed calcium influx preceded phospha-
tidylserine exposure, and occurred ~0.51 ± 0.04 (hr) prior to Annexin-V staining (Figure 6B). Calcium 
can inhibit the ATP-dependent flippase that maintains phosphatidylserine on the inner leaflet (Bitbol 

Figure 4. Mitochondrial dysfunction precedes calcium influx in injured axons. (A) (Top) Experimental design for observing calcium influx (GCaMP6) and 
mitochondria movement (MitoDR) after axon injury. MitoDR images were acquired every 5 s (for 300 s, 60 frames) followed by GCaMP6 imaging. Once 
the mitochondria in that axon stopped, GCaMP6 images were then acquired once/minute. (Bottom) Representative images of GCaMP6 and kymograph 
at the indicated times. Note that mitochondria stop prior to calcium influx. Scale bar = 30 µm (B) (Top) Single axon analysis after injury. The percentage 
of mobile mitochondria (red, left y-axis) and the fold change in calcium (green, right y-axis) for a single axon were plotted over time after axonal injury. 
(Bottom) Inset from graph highlights that mitochondria stop moving before calcium levels rise. (C) Group data from single axons show that the time 
difference (∆T) between cessation of mitochondrial mobility and calcium influx, defined as a twofold increase from baseline, is ~0.42 ± 0.02 hr, indicating 
that mitochondria stop before calcium influx in injured axons. The gray line (∆T = 0) shows expected results if mitochondria stopped and calcium influx 
occurred simultaneously. n = 9 axons. (D) (Top) Experimental design to observe calcium influx (GCaMP6) and loss of mitochondrial potential (TMRM) 
after axonal injury. GCaMP6 and TMRM were imaged every 10 min until axon fragmentation. (Bottom) Representative images shown at the indicated 
times. The TMRM signal declines by 2.83 hr after axonal injury, while calcium influx does not occur until 3.0 hr after injury. Scale bar = 30 µm (E) (Left) 
Analysis of the single axon in D. The ratio of TMRM signal from baseline (left y-axis) and the fold increment of calcium (right y-axis) were plotted over 
time after axonal injury. (Right) The enlarged insight highlights the point at which there is a dramatic change in the mitochondria potential (brighter red 
dot) and calcium levels brighter green dot. Note that the change in TMRM from baseline precedes the change in calcium. This was observed in 5 out of 
7 axons, while in 2 out of 7 axons the change occurred in the same 10 min imaging bout.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Assessing mitochondrial potential and calcium influx in injured axons.

https://doi.org/10.7554/eLife.71148
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et al., 1987; Soupene, 2008), and so the influx of calcium and/or the decline in ATP likely triggers 
the loss of membrane asymmetry during axon degeneration. We wished to test the role of calcium 
by blocking influx with EGTA; however, this experiment is not possible because Annexin-V binding to 
phosphatidylserine requires extracellular calcium.

Next, we assessed the relationship among SARM1, calcium influx, and the loss of membrane integ-
rity in injured axons. To assess membrane integrity, we applied fluorescently labeled macromolecules 
(3  kDa dextran) to neurons expressing cytosolic GFP. In uninjured neurons, cytosolic GFP fills the 
axon while the dextran is excluded (Figure 6C). After injury, axon swelling is apparent, and mitochon-
drial localize to these swellings (Figure 7—figure supplement 1). The swellings retain GFP and still 
exclude dextran. Later, discrete puncta of dextran appear in axonal fragments, and such fragments 
contain no visible GFP. We interpret this as axon swellings that burst, releasing soluble GFP and 
allowing entry to the high-molecular-weight dextran (Figure 6C). Next, we compared dextran uptake 
in injured axons from wild type and SARM1 KO neurons, as well as wild-type neurons treated with 
EGTA. By 4 hr after axotomy of wild-type neurons, dextran is present throughout the axons, indicative 
of a loss of membrane integrity. In axotomized SARM1 KO neurons, dextran is excluded from axons 

Figure 5. ATP levels drop before mitochondria stop in injured axons. (A) (Left) Experimental design for imaging changes to ATP (PercevalHR) and 
mitochondrial movement (MitoDR) after axonal injury. Prior to axotomy, baseline PercevalHR intensity and mitochondrial movement were measured. 
PercevalHR was imaged every 5 min until 3.5 hr after axonal injury, while mitochondria were imaged every 5 min starting 3.5 hr after axotomy until 
movement ceased. (Right) Representative images for PercevallHR and kymographs of moving mitochondria at the indicated times. Scale bar = 30 µm (B) 
(Left) Percentage decline from baseline at 3.5 hr post-axotomy for PercevalHR intensity and for the fraction of motile mitochondria. Lines connect data 
for individual cells. (Right) Linear regression plot of group data. n = 9 axons. (C) The percentage decline of PercevalHR intensity at 3.5 hr after axonal 
injury is plotted against the subsequent time until mitochondria stop moving for that axon. Linear regression plot of group data. n = 9 axons.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Validation of PercevalHR.

Figure supplement 2. Axonal ATP level in WT and SARM1 KO after axotomy.

https://doi.org/10.7554/eLife.71148
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for at least 48 hr. Interestingly, when wild-type neurons are incubated with EGTA, injured axons still 
swell (arrowheads, Figure 6D), but dextran is excluded (Figure 6D and E). Therefore, we conclude 
that calcium is necessary for the loss of membrane integrity and the morphological transition from 
axonal swelling to fragmentation.

Discussion
In injured axons, the molecular function of SARM1 is well understood, but the ensuing molecular and 
cellular changes leading to axonal demise are much more poorly defined. SARM1 NADase activity is 
critical for the ultimate demise of injured axons (Essuman et al., 2017), and here, we show that this 
enzymatic activity is also required for intermediate phenotypes such as disrupted mitochondrial and 
calcium homeostasis. To explore the events that occur after NAD+ cleavage, we used live imaging with 
single axon resolution to investigate dynamic changes to ATP, mitochondria, calcium, and membranes. 
The data describe an ordered series of events beginning with loss of ATP, and followed by mitochon-
drial dysfunction, calcium influx, exposure of phosphatidylserine and loss of membrane permeability 
ultimately resulting in catastrophic axon fragmentation.

Figure 6. Calcium influx disrupts membrane integrity. (A) (Left) Snapshots of representative live axon images for GCaMP6, mRuby3, and Alex647-
conjugated Annexin-V at baseline, and 4.78 and 6.28 hr after axotomy. (Right) Representative single axon analysis. Y-axis (left) is plotted by the fold 
increase of fluorescent intensity (F / F base) of either GCaMP6 (green color dots) or Annexin-V (cyan color dots) from the baseline after axon injury. 
Axon integrity (y-axis, right) is calculated by the relative mRuby3 intensity from the baseline. Note that calcium influx precedes Annexin-V exposure 
in an injured axon. Scale bar = 50 µm (B) After axotomy, the time until calcium influx is plotted vs the time until the rise in Annexin-V. Dashed line (∆T 
= 0) represents the values if phosphatidylserine exposure (Annexin-V staining) and calcium influx occurred simultaneously. Calcium influx precedes 
phosphatidylserine exposure by an average of 0.51 ± 0.04 hr. n = 10 axons. (C) (Top) Representative images of intact, swollen, and fragmented 
axons during the process of axon degeneration. The axonal morphology is labeled with GFP that was transduced through GFP-lentivirus. Texas Red 
conjugated Dextran-3kDa was pre-incubated 30 min prior to image acquisition. Note that Dextran-3kDa is only observed in the fragmented axons, 
not in swollen axons. Scale bar = 10 µm (D) Representative images of GFP-expressing axotomized wild-type and SARM1 KO axons. The membrane 
impermeable Dextran-3k enters injured wild-type axons, but after injury is excluded from both EGTA-treated wild-type axons and SARM1 KO axons 
(GFP labels axons). Scale bar = 100 µm (E) Group data. Quantification of dextran-3k staining intensity in the indicated genotypes and times. Data 
represent the mean ± SEM; n = 6 embryos for each condition; one-way ANOVA with post hoc Tukey test, F(6,35) = 46.16, p < 0.0001; NS, not significant; 
*, p < 0.05; **, p < 0.01 and ***, p < 0.001.

https://doi.org/10.7554/eLife.71148
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In this study, we used live imaging of single axons to monitor structural and physiological changes 
during axon degeneration. While the absolute timing of cellular events varied dramatically from axon 
to axon, the relative timing was quite consistent. Hence, this method allowed us to order cellular 
events, which is not possible when averaging responses from many axons that are responding asyn-
chronously. Our findings in conjunction with prior studies lead to a simple model of axon degener-
ation (Figure 7). Following activation of SARM1, NAD+ is cleaved and its levels drop rapidly. Upon 
robust NAD+ depletion, both glycolysis and oxidative phosphorylation will be impaired, and so ATP 
production will decline. This loss of ATP will impact molecular motors, leading to the observed halting 
of mitochondria. Soon after mitochondria halt, they lose their membrane potential. Since this occurs 
before calcium increases, this cannot be due to calcium overload. Instead, the loss of NAD+ and ATP 
likely disrupts mitochondrial homeostasis. We next observed influx of extracellular calcium. The loss 
of ATP is a likely culprit, as ionic pumps require ATP and their loss will lead to disrupted calcium extru-
sion, membrane depolarization, and calcium influx. Many prior studies have attempted to define the 
source of calcium influx (George et al., 1995; Gerdts et al., 2011; Stys, 2005; Villegas et al., 2014; 
Yang et al., 2013), and have provided evidence for many candidates including voltage-gated ion 

Figure 7. Model of axon degeneration.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Mitochondria accumulate in axonal swellings in injured axons.

https://doi.org/10.7554/eLife.71148
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channels, ion pumps, and ion exchangers in both intracellular organelles and the plasma membrane. 
We speculate that many candidates participate because the loss of ATP disrupts many aspects of 
calcium homeostasis. Here, we have only focused on the large influx of calcium that occurs soon 
before degeneration. Our study does not speak to the potential role of smaller fluctuations in calcium 
that may occur earlier in the process. After this large influx of calcium, the subsequent exposure of 
phosphatidylserine to the outer leaflet of the membrane is likely due to the failure of lipid flippases 
to maintain asymmetry. Since these flippases are ATP-dependent and can be inhibited by calcium 
(Bitbol et al., 1987; Pomorski and Menon, 2006; Soupene, 2008), loss of ATP and calcium influx may 
both contribute to the externalization of phosphatidylserine. The ultimate loss of membrane integrity, 
however, requires influx of extracellular calcium, as EGTA blocks fragmentation of injured axons. Such 
axons have extensive swellings and completely dysfunctional mitochondria. While calcium influx has 
long been assumed to the be the essential final step in axon loss, our findings suggest instead that 
calcium influx is merely leading to the morphological destruction of axons that are already physiolog-
ically dead. Instead, our findings highlight ATP loss as the likely point of no return for an injured axon, 
disrupting mitochondrial, calcium, and membrane homeostasis and thereby triggering axonal demise.

Materials and methods
Animals
All procedures were performed in accordance with guidelines mandated in the National Institutes of 
Health Guide for the Care and Use of Laboratory Animals and approved by the Washington University 
School of Medicine in St. Louis Institutional Animal Care and Use committee. CD1 mice (gestation 
day 11.5) for sensory neuron cultures were purchased from Charles River Laboratories, and SARM1KO 
mice were developed using homologous recombination in embryonic stem cells to delete exons 1 and 
2, were backcrossed into a C57 background, and were a gift from M. Colonna at Washington Univer-
sity in St. Louis (Szretter et al., 2009). All neurons in this study were derived from a mix of male and 
female embryos at embryonic day 13.5 or 14.5.

Western blot analysis
Lysate buffers (60 mM Tri-HCl, pH 6.8; 50 % glycerol; 2 % SDS; 0.1 % bromophenol blue) contain 
protease cocktail (cOmplete, mini, EDTA-free protease inhibitor; 1183617001, Millipore Sigma) and 
phosphatase inhibitor cocktail (P0044, Millipore Sigma). The lysates were precleared of debris by 
centrifugation at 10,000 g in a refrigerated microcentrifuge for 10 min. Supernatants were mixed with 
5 % 2-mercaptoethanol (Millipore Sigma) and then boiled for 10 min. Antibodies used: Rabbit anti--
Tubulin III (1:4000, Millipore Sigma); HRP conjugated anti-rabbit antibody (1:10,000, #111-035-045, 
Jackson ImmunoResearch); Rabbit-anti-SARM1 (1:1000, #13022, Cell signaling) and (1:5000); mouse 
anti-GFP (1:1000, #2955 S, Cell signaling); HRP-conjugated anti-mouse antibody (1:5000, 115-035-
003, Jackson ImmunoResearch).

TMRM / Fluo-4
A total of 50 nM TMRM (T668, Thermo Fisher Scientific) and 1 µM Fluo-4 (F14201, Thermo Fisher 
Scientific) were pre-incubated for 30 min prior to image acquisition. When Fluo-4 was incubated more 
than 2 hr, we found that the intensity of Fluo-4 suddenly increased even in the absence of injury, and 
then axons degenerated. So, we only used Fluo-4 to check the current status of calcium and finished 
the imaging session within 1 hr.

Lentivirus construction/production
FUGW-PercevalHR (Addgene #49083) GCaMP6 and mRuby3 (Ko et al., 2020), human SARM1.WT 
and human SARM1.E642A (Essuman et  al., 2017) and MitoDsRed (Summers et  al., 2014) were 
transfected into HEK 293 cells for lentivirus production. Briefly, the cells were seeded at 70~80 % 
confluency per 35 mm well the day before transfection. The constructs (1.2 µg) were cotransfected 
with vesicular stomatitis virus G (600 ng) and pSPAX2 (800 ng) using FuGENE 6 (Promega). The lenti-
viral supernatants were collected 2  days after transfection, and then the cleared supernatant was 
concentrated with Lenti-X Concentrator (Clontech) to a final concentration of 1 ~ 10 x 107 particles / 

https://doi.org/10.7554/eLife.71148
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ml. Lentivirus transduction efficiency was monitored with tagged fluorophore and western blot anal-
ysis and is routinely ~100 % in DRG neurons.

DRG neurons culture/experimental timeline
All plates for DRG cultures are coated with 0.1 mg/ml poly-D-lysine (Millipore Sigma) followed by 
laminin (3 µg/ml; Invitrogen). CD1 mouse and SARM1 KO DRG neurons were dissected from a mix of 
male and female embryos at embryonic day 13.5 or 14.5. They were incubated with 0.05 % trypsin 
containing 0.05 % EDTA at 37 °C for 20 min and then washed three times with DRG growth medium 
(neurobasal media from Gibco) containing 2 % B27 (Invtrogen), 50 ng/ml nerve growth factor (Harlan 
Laboratories), 1 µM 5-fluoro-2’-deoxyuridine (Millipore Sigma), 1 µM uridine (Millipore Sigma), and 
penicillin/ streptomycin (Thermo Fisher Scientific). The cell density of these suspensions was adjusted 
to ~7 x 106 cells/ml.  Twoµl suspensions were placed in 24-well plates (Corning) for western blots 
and axon degeneration assays, Chamber slides (Nunc Lab-Tek, Thermo Fisher Scientific) were used 
for immunocytochemistry and FluoroDish (FD35-100, World Precision Instruments) were used for live 
single axon imaging. Lentivirus was transduced at one or 2 days in vitro (DIV). At DIV 7, assays for axon 
degeneration and/ or live axon imaging were performed.

DRG neuron culture for single axon imaging
For single axon imaging, conventional 2 µl suspensions (~7 x 106 DRG cells / ml) lead to extensive 
overlap of DRG axons making it difficult to distinguish individual axons. Moreover, DRG neurons did 
not survive well in low-density culture (~7 x 104 cell / ml). To circumvent these problems, we plated 
two different densities of DRG neurons in one Fluorodish (Figure 3—figure supplement 1). Briefly, 
2 µl suspensions (~7 x 106 cells/ml) were plated on one side of FluoroDish, and then 2 µl suspensions 
(~7 x 104 cells/ml) were thinly spread with a pipette tip on the other side of FluoroDish. This method 
provides the robust health of a high-density culture with the capacity to identify and image single 
axons.

Live single axon imaging
DRG neurons were cultured in a glass bottom FluoroDish, enabling use of an immersion oil objective 
for calcium (GCaMP6), mitochondrial movement (MitoDR) and potential (TMRM), ATP (PercevalHR), 
and axon morphology (GFP or mRuby3). At DIV 2, lentivirus was transduced to cultured DRG neurons. 
Chemical dyes such as Annexin-V (#A23204, Thermo Fisher Scientific) and 3 kDa Dextran-Texas Red 
(#D3328, Thermo Fisher Scientific) were applied according to product instructions. Chamlide TC (Live 
Cell Instrument, South Korea) was used to maintain 37 °C temperature, 100 ml/min 5 % CO2 /95 % 
airflow rate. A Leica DMI4000B microscope under confocal setting using 20 x oil immersion objective 
(NA 0.6) and Leica DFC7000 T 2.8 MP color microscope camera at RT was used under the control of 
the Leica Application Suite X software platform to acquire and analyze images. Optical sectioning and 
laser settings were kept constant across all image data acquisition sessions.

Laser axotomy
Using a standard confocal microscope equipped with a 405  nm laser, a UV ablation method was 
utilized to selectively induce axonal injury of cultured DRG neurons in real-time (Figure 3A). To effec-
tively induce laser axotomy of culture DRG neurons, a glass bottom ( < 0.17 mm) culture dish such 
as FluoroDish is necessary. 405 nm laser with 100 % intensity was used to induce laser axotomy with 
the FRAP (Fluorescence recovery after photobleaching) wizard in Leica application Suite X software. 
The injury site should be carefully chosen around the middle between the soma and axon terminal. 
If the injury site is close to soma, cell body death was often observed. If the injury site is too close to 
the distal axon then the immediate retraction of the injured axon results in too little residual axon for 
imaging.

Mitochondria movement / kymograph analysis
For consecutive real-time imaging capture of mitochondria, images of MitoDR were recorded at 5 s 
intervals for a total of 60 frames by 558 (ex) / 583 (em)-nm laser at the designated time before and 
after laser axotomy. The mitochondria are considered mobile if the net displacement is more than 
5 µm. Otherwise, they are defined as stationary.

https://doi.org/10.7554/eLife.71148
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Axonal ATP measurement
For axonal metabolite measurement, axons and cell bodies were separated with microsurgical blade 
at 0–6 hours before metabolite collection. Culture plates were placed on ice and the culture medium 
was replaced with ice cold saline and then cell bodies were removed using a pipette. Saline was 
removed and replaced with 160 µL ice cold 50 % MeOH in water. After 5 min incubation, the solu-
tions were transferred to microcentrifuge tubes containing 50 µl chloroform, shaken vigorously, and 
centrifuged at 20,000 x g for 15 min at 4 °C. The clear aqueous phase (140 µl) was transferred into 
a microfuge tube and lyophilized under vacuum. Lyophilized samples were reconstituted with 5 mM 
ammonium formate (15 µl), centrifuged (20,000 x g, 10 min, 4 °C), and 10 µl clear supernatants were 
analyzed with LC-MS/MS. Samples were injected into a C18 reverse phase column (Atlantis T3, 2.1 × 
150 mm, 3 µm; Waters) using HPLC (Agilent 1290 LC) at a flow rate of 0.15 ml/min with 5 mM ammo-
nium formate as mobile phase A and 100 % methanol as mobile phase B. Metabolites were eluted 
with gradients of 0–10 min, 0–70% B; 10–15 min, 70 % B; 16–20 min, 0 % B. The metabolites were 
detected with a triple quad mass spectrometer (Agilent 6,470 MassHunter; Agilent) under positive ESI 
multiple reaction monitoring using parameters for ATP (508 > 136, fragmentation (F) = 130 V, collision 
(C) = 30 eV, and cell acceleration (CA) = 4 V). Serial dilutions of standards for ATP in 5 mM ammonium 
formate were used for calibration. Metabolites were quantified by MassHunter quantitative analysis 
tool (Agilent) with standard curves and normalized by the axonal protein.

Data acquisition and analysis
Sample size (n)
In the figure legend, it is noted that sample size (n) means the number of axons or embryos. In single 
axon studies, only one axon of individual DRG neuron was imaged and analyzed (other branches of 
the same DRG neurons were not used). Otherwise, axons of cultured DRG neurons from individual 
embryo were imaged at least three times, and then averaged for the analysis.

Axon degeneration
Axon degeneration is quantified based on axon morphology as the axon degeneration index (DI) 
using an ImageJ-based javascript (Sasaki et al., 2009). Axons should have less than 0.2 DI at baseline, 
otherwise, they were not used for the experiment. We define axon degeneration as an axon DI > 0.4.

Calcium influx
The relative intensity of GCaMP6 from baseline was calculated as a measure of calcium influx. 
Given the interval of 5 ~ 10 min between images, the intensity change of GCaMP6 is variable. We 
routinely observed that the fluorescent intensity of GCaMP6 fluctuated ~10 % between image frames 
(Figure 4—figure supplement 1). While it is unclear whether or not these small fluctuations are func-
tional, we did not see any corresponding changes in mitochondrial function, ATP or axon integrity. 
This study focuses on the major changes in calcium influx that occur prior to degeneration, and so we 
defined a twofold increase or greater of GCaMP6 intensity from the baseline as calcium influx.

Axon continuity
The intensity of mRuby3 was used to monitor the intactness of axons. Because mRuby3 is a cytosolic 
protein, as the integrity and thickness of axonal membrane is narrowed and lost, the intensity of 
mRuby3 decreases. So, we defined more than 50 % intensity reduction of mRuby3 signal as the begin-
ning of axon degeneration. When axonal fragmentation is observed, it is defined as a degenerated 
axon regardless of mRuby3 intensity.

TMRM
After single axon injury, the intensity of TMRM were measured every 10 min (Figure 4). We found that 
there was a less 10 % fluctuation of fluorescent intensity between image frames. We calculated the 
percentage change of fluorescent intensity from the previous image (Diff_TMRM in Figure 4—figure 
supplement 1), and then defined a more than 30 % reduction as a significant loss of mitochondrial 
membrane potential.

https://doi.org/10.7554/eLife.71148
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ATP sensor
PercevalHR was used in this study for measuring ATP fluctuation after axotomy. First, it was validated 
in Figure 5—figure supplement 1. Briefly, baseline PercevalHR signal in single axons was imaged. 
After laser axotomy, the fluorescent images were taken every 5 min for 3.5 hr. Later, each image frame 
was normalized to the baseline level for data analysis.

D-F. Grouped analysis from single axons for the (D) initiation, (E) duration, and (F) intensity of the 
2nd peak of calcium compared to the time at which each axon fragments. The initiation of the second 
calcium peak occurs ~1.4 hr before and is strongly correlated with axon fragmentation, while the 
duration of the second peak is weakly correlated and the intensity of the second peak is not correlated 
with axon fragmentation. n = 22 axons.

The model depicts the ordered series of events that occur in an injured axon following SARM1 
activation. These begin with NAD+ loss, followed by ATP decline, loss of mitochondrial mobility, loss of 
mitochondrial polarization, influx of calcium, externalization of phosphatidylserine to the outer leaflet 
of the plasma membrane, and finally fragmentation of the axon allowing for influx of large molecular 
weight dextrans. Mitochondria localize to axonal swellings (see Figure 7—figure supplement 1).

Western blot analysis demonstrates that the lentiviral mediated expression of SARM1.WT and 
SARM1.E642A is very similar.

A)Treatment with 3  mM EGTA for 4  hr decreased mitochondrial membrane potential. TMRM 
staining in untreated and treated neurons after 4 hr. B). Statistical analysis of TMRM intensity using a 
t-test revealed a decrease in TMRM intensity (p = 0.0242, t = 2.579 df = 12, n = 7 embryos). C) Appli-
cation of 3 mM EGTA and 10 µM BAPTA influence Calcium influx after axotomy. D) Pretreatment with 
3 mM EGTA or 10 µM BAPTA decreases Calcium influx. Statistical analysis using a one-way ANOVA (F 
(2,15) = 19.04, p < 0.0001, n = 6 embryos) and Sidak’s multiple comparison testing finds a decrease 
in calcium influx upon 3 mM EGTA (t = 6.109, p < 0.0001) or 10 µM BAPTA (t = 3.806, p = 0.0034) 
treatment.

For single axon imaging, 2 µl high-density cell suspensions (~7 x 106 cells / ml) were plated on the 
one side of a FluoroDish and 2 µl low-density cell suspensions (~7 x 104 cells / ml) were thinly spread 
on the opposite side. The high-density culture was required for maintenance of neurons in the low-
density culture, and the low-density culture enabled imaging of single axons.

Axonal ATP was measured via LC-MS/MS at 0, 2, 4, and 6 hr post axotomy of cultured DRG neurons. 
Relative axonal ATP levels against 0 hr post axotomy were plotted for each genotype. Statistical anal-
ysis was performed by two-way ANOVA with Tukey multiple comparison (n = 12 derived from three 
independent cultures). F(1,88) = 79, p = 7.2 × 10–14 between wild type (wt) and SARM1 knockout 
(SARM1 KO). *p < 1 × 10–5 denotes a significant difference compared with WT at indicated time after 
axotomy.

Total 45 s video. (0 ~ 20 s) Brief demonstration of experimental design for single axon imaging. 
(21 ~ 45 s) Example of Figure 3. Briefly, image the baseline activity at distal axon, followed by axon 
injury with a 405 nm laser (blue square). Note that there is an increase of GCaMP6 intensity at the 
injury site, which is the first peak of calcium. Massive calcium influx enters the injured distal axon and 
then later axon starts degenerate. Image acquisition of both GCaMP6 and mRuby3 continues until 
the axon degenerates.
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