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Quantum gas magnifier for sub-lattice- 
resolved imaging of 3D quantum systems

Luca Asteria1, Henrik P. Zahn1, Marcel N. Kosch1, Klaus Sengstock1,2,3 ✉ & 
Christof Weitenberg1,2

Imaging is central to gaining microscopic insight into physical systems, and new 
microscopy methods have always led to the discovery of new phenomena and a 
deeper understanding of them. Ultracold atoms in optical lattices provide a quantum 
simulation platform, featuring a variety of advanced detection tools including direct 
optical imaging while pinning the atoms in the lattice1,2. However, this approach 
suffers from the diffraction limit, high optical density and small depth of focus, 
limiting it to two-dimensional (2D) systems. Here we introduce an imaging approach 
where matter wave optics magnifies the density distribution before optical imaging, 
allowing 2D sub-lattice-spacing resolution in three-dimensional (3D) systems. 
By combining the site-resolved imaging with magnetic resonance techniques for local 
addressing of individual lattice sites, we demonstrate full accessibility to 2D local 
information and manipulation in 3D systems. We employ the high-resolution images 
for precision thermodynamics of Bose–Einstein condensates in optical lattices as well 
as studies of thermalization dynamics driven by thermal hopping. The sub-lattice 
resolution is demonstrated via quench dynamics within the lattice sites. The method 
opens the path for spatially resolved studies of new quantum many-body regimes, 
including exotic lattice geometries or sub-wavelength lattices3–6, and paves the way 
for single-atom-resolved imaging of atomic species, where efficient laser cooling or 
deep optical traps are not available, but which substantially enrich the toolbox of 
quantum simulation of many-body systems.

Experimentally driven understanding of quantum mechanical phenomena  
depends crucially on the possibility of observing them at the micro-
scopic level. The quantum nature of matter shows itself on small scales, 
which has triggered tremendous efforts to develop advanced methods 
with increasing resolution to image the quantum system itself. Here, we 
introduce the alternative approach based on the idea to first magnify 
the quantum system itself to more accessible scales, which can then be 
easily imaged. We demonstrate this approach in a quantum simulator 
composed of quantum gases in the form of ultracold atoms in optical 
lattices and realize imaging of 3D systems with 2D sub-lattice resolution.

Direct optically resolved imaging of ultracold atoms in optical lat-
tices, known as quantum gas microscopy1,2, requires very high numerical 
apertures and is so far restricted to 2D systems due to the fundamental 
limitation of the depth of focus and to unit lattice site occupation due to 
light-assisted collisions. The depth of focus can be overcome by using an 
electron microscope7 or an ion microscope8, but at the cost of a reduced 
detection efficiency and a large technological complexity. Recent 
experiments have reached sub-lattice resolution via super-resolution 
microscopy using nonlinear atom–light interactions9,10, but relying on 
scanning techniques. Our quantum gas magnifier does not suffer from 
these limitations and extends 2D sub-lattice-site-resolved imaging to 
new 3D regimes such as bosons or fermions in 3D optical lattices or 
sub-wavelength lattices with drastically enhanced energy scales3–6. 

The technique yields full single-shot images, which gives direct access 
to density correlations and, for example, spontaneous pattern forma-
tion such as density waves. Furthermore, the concept can be applied 
and adapted to very different physical systems such as exotic atomic 
species or mixtures.

Our quantum gas magnifier uses matter wave optics in the time 
domain to magnify the atomic density distribution before the stand-
ard optical absorption imaging11,12. To this end, a harmonic potential of 
trapping frequency ωpulse = 2π/T is applied for a time T/4, mapping the 
spatial distribution to the momentum distribution13–16. This is initial-
ized in our case by switching off the lattice, which additionally helps 
in limiting interaction-driven aberrations due to the fast decrease in 
local density (see Supplementary Information). This matter wave lens 
is followed by free time-of-flight expansion (ToF) of duration tToF. This 
combination reproduces the initial spatial distribution with a magnifi-
cation M ≈ ωpulsetToF (Fig. 1a). Note that more complex pulsed lenses and 
other time-domain optical elements can be used in this scheme as well. 
An advantage of combining a T/4 pulse with time of flight is that the 
aberrations introduced by the finite ToF can be perfectly compensated 
by choosing the evolution time in the harmonic trap slightly above T/4 
(see Supplementary Information).

Figure 1c–e demonstrates the power of this method with the first 
single-shot site-resolved images of a 3D quantum gases in 2D optical 
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lattices including images of lattices with two-atomic basis. In the fol-
lowing, after describing the concept more closely, we additionally 
demonstrate high-resolution thermometry across the thermal-to-Bose–
Einstein condensate (BEC) phase transition for a 3D quantum gas in a 
triangular optical lattice as well as full local addressability and precision 
measurements of thermally activated dynamics in a lattice system. 
Finally, we also demonstrate sub-wavelength resolution to study local 
dynamics. The flexibility and adaptability of our concept now allow for 
very precise locally resolved and locally controlled measurements of 
higher-dimensional quantum gas systems.

The experiments presented here use 87Rb BECs evaporatively cooled 
in a magnetic trap. The potential of the magnetic trap is in-plane radially 
symmetric with a trapping frequency which is ramped within 100 ms 
to ωsystem = 2π × [89−658]  Hz. We ramp up triangular or honeycomb 
optical lattices formed by the interference of lattice beams of wave-
length λ = 1,064 nm leading to a lattice constant of alat = 2λ/3 = 709 nm, 
which sets the energy scale Erec = h2/(2mλ2) for the lattice depth, where 
h is Planck’s constant and m the atomic mass. The harmonic trans-
verse confinement has a trapping frequency ωz of typically 2π × 29 Hz, 

resulting in a Josephson junction array of BECs in the tubes of the 2D 
lattice. The trap frequency is then ramped to ωpulse for the magnifica-
tion protocol after freezing the density distribution in a deep optical 
lattice (see Supplementary Information). The magnetic trap is suitable 
for the T/4 evolution because of its smoothness, radial symmetry and 
strong confinement: for typical parameters of tToF ≈ 20 ms and ωpulse/
(2π) up to ~700 Hz we measure large magnifications of up to M = 93(1), 
allowing resolution of the lattice spacing with conventional absorp-
tion imaging with magnification 2 on a charge-coupled device (CCD) 
camera (Fig. 1). The uncertainty in parentheses corresponds to the 68% 
statistical confidence interval.

The resolution of the quantum gas magnifier can be made very high 
because the harmonic trap has a large spatial extension corresponding 
to a large numerical aperture of the matter wave optics. In practice the 
resolution is mainly limited by the convolution with our optical imaging 
resolution (see Supplementary Information). The effect of interactions 
during the magnification protocol can be effectively suppressed by 
working with incoherent systems or by removing the coherence via 
freezing in a deep lattice (see Supplementary Information).

As a first benchmark experiment, we study the thermal-to-BEC 
phase transition in a lattice of tubes, allowing us to confirm the faith-
ful imaging of lattice site occupations. Furthermore, we show how the 
high-resolution access to real-space profiles via the magnifier provides 
an excellent approach to optical lattice thermometry, which requires 
much greater numerical effort from the more common momentum 
space images17–19.

To study the phase transition, we prepare the system at varying tem-
perature and atom number by adjusting the end point of the evapora-
tion ramp and a varying hold time before ramping up the lattice to the 
final depth with tunnelling energy J = h × 12 Hz. For the analysis, we start 
with the extraction of the on-site populations (Fig. 2a, b). The data can 
be described by a bimodal model consisting of a condensed part and 
a thermal part including the repulsion of the thermal atoms from the 
condensate in mean-field approximation (see Methods). The model 
is fitted to the 2D distribution and the excellent fit quality can be seen 
when plotting the data as a function of the radial position (Fig. 2c, d) 
confirming the exact measurement of the lattice site occupations.

The fit allows us to extract the temperature T from the thermal com-
ponent and the condensate fraction f0 from the atom numbers in the 
two components with very high precision. Owing to the dependence 
of the critical temperature Tc on the total atom number, the condensate 
fraction as a function of temperature does not result in a single curve 
(Fig.  2e). To describe this dependence we set up an analytic 
non-interacting model predicting the critical temperature T c

0 to renor-
malize the experimental temperatures using T c

0 as a scaling tempera-
ture, resulting in a collapse of the data on a single curve (Fig. 2f). We 
observe a shift of the critical temperature towards lower values com-
pared to the non-interacting model. To quantify this shift we approxi-
mate the non-interacting model by a power law in the density of states, 
resulting in a description f0 = 1 −( T/Tc)α with α = 2.69(1) characterizing 
the underlying density of states interpolating between a lattice regime 
and a continuum regime (see Methods).

Fitting this function to the data satisfying f0 > 0.1 results in 
T T= 0.901(4)c c

0, where the small statistical error reflects the excellent 
collapse on a single curve, thus showing the quality of the thermom-
etry. Additionally, we estimate a systematic error of 1% stemming from 
an uncertainty of the atom number calibration of 3%. A shift of this 
order of magnitude is expected from interactions and finite size20, but 
a closed theoretical model for our regime where both trap and lattice 
are relevant does not exist. With the enhanced interactions in the opti-
cal lattice, the shift is larger than those experimentally observed for 
BECs in 3D harmonic traps for comparable atom numbers21,22. Interest-
ingly, we observe a pronounced smoothing of the phase transition 
despite the rather large atom number, which might be due to the 2D–3D 
crossover geometry of an array of tubes. Our precision thermometry 
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Fig. 1 | Working principle of the quantum gas magnifier using matter wave 
optics. a, The density distribution of ultracold atoms in an optical lattice is 
magnified by matter wave optics composed of a pulsed dynamics in a harmonic 
trap and a free expansion. Subsequently, it can be imaged with optical 
absorption imaging of moderate resolution and without restrictions from 
optical density or depth of focus. b, Sketch of the 2D hexagonal optical lattice. 
c, Images of ultracold bosonic atoms in a 2D triangular lattice for constant 
system size given by the confinement ωsystem/2π = 225 Hz, but varying 
magnification of M = 43(1), 65(1), 80(1) (from left) tuned via tighter magnetic 
confinements ωpulse during the matter wave optics. d, Image of a larger system 
with confinement ωsystem/2π = 89 Hz imaged with magnification M = 43(1).  
e, Images of a honeycomb lattice and a boron nitride lattice with a sublattice 
offset of 4.6 kHz with a magnification of M = 89(1). The scale bars have a length 
of 1 µm. The atom number is in between 48,000 and 59,000 for the six images.
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measurements thus provide a benchmark for future theoretical stud-
ies of phase transitions in such geometries.

In a second set of experiments, we employ magnetic resonance (MR) 
techniques to realize local addressing of individual lattice sites23 and 
thereby demonstrate the full functionality of quantum gas microscopes 
without the need for large optical access thus making it compatible with 
other experimental constraints. While site-resolved addressing was 
previously also realized optically24,25 and with an electron beam26, MR 
techniques are optimally suited for 3D systems by avoiding the depth 
of focus limitation of optical addressing beams and have, for example, 
been proposed for wavefunction engineering27.

In the experimental protocol, we freeze the atomic distribution in a 
deep lattice and shift the magnetic trap (ωaddressing/2π = 543 Hz) by up 
to 20 µm, creating magnetic gradients between 23 and 50 kHz µm−1 

at the atom’s position. The magnetic gradient spatially splits the 
radio frequency (RF) transition between the initial stretched F = 2, 
mF = 2 state and the target F = 2, mF = 1 state and we drive spin flips at 
positions controlled via RF sweeps (Fig. 3a). To empty the addressed 
lattice sites, we make use of the strongly spin-dependent loss rates 
driven by hyperfine-changing collisions28, which are suppressed for 
the stretched initial spin state but empty the addressed lattice sites 
during the sweep time of 100–400 ms. When choosing F-changing 
transitions instead, the removal of one state could be achieved via an 
optical push out. The magnifier approach can also be easily extended 
to spin dependent imaging (see  Supplementary Information).  
By choosing the appropriate RF sweeps addressing equipotential 
surfaces of the magnetic trap, we create very well resolved patterns 
such as rings of varying radius or—when placing the atoms at the slope 
of the magnetic trap—single lines or half systems (Supplementary 
Information) (Fig. 3b).

Subsequently, we probe the thermalization dynamics after removal 
of atoms from one half of the system29 (Fig. 3c). We monitor the ther-
malization via the imbalance N N N N= ( − )/( + )R L R LI  defined as the rela-
tive difference of the atom numbers NR in the right half and NL in the 
left half of the trap. The imbalance I  decays to zero (Fig. 3c, d) and we 
determine the thermalization rate from an exponential fit. We verify 
that the profiles with no imbalance are indeed in thermal equilibrium 
(Fig. 3e) by fitting a bimodal model consisting of an inverted parabola 
and a Gaussian.

The thermalization rate as a function of the initial temperature 
is almost constant up to temperatures of about 350 nK and then 
increases steeply with temperature (Fig. 3f). We model this by an 
Arrhenius law describing thermal hopping combined with an offset 
rate resulting from quantum tunnelling (see Methods). We obtain a 
potential barrier height of VB = kB × 2.4(6) µK, where kB is the Boltzmann 
constant, in excellent agreement with the peak-to-peak lattice depth 
of kB × 2.6 µK deduced from lattice depth calibration and an offset 
rate Γ0 = 0.23(8)  Hz related to the tunnelling energy J = h × 0.1 Hz of 
the lowest band. These experiments demonstrate that the quantum 
gas magnifier allows very precise spatially resolved studies of ther-
malization dynamics in optical lattices in new parameter regimes, 
which could be extended to strongly correlated regimes by adding 
a transverse lattice.

Finally, we demonstrate the capability to resolve density features 
well below the lattice spacing by observing nanoscale dynamics after 
a quench of the lattice geometry. We start in a deep honeycomb lattice 
with large sublattice offset (see Methods) leading to an initial popula-
tion of the A sublattice only and control the geometry by varying the 
imbalance of the lattice beam intensities I1, I2 and I3. By abruptly reducing  
I2 = I3 to 0.5I1, we create a lattice of dimers with enhanced tunnel coupling 
within the dimer as well as a displacement of the lattice sites (Fig. 4a), 
thus exciting both a tunnelling oscillation between the A and B sites 
and an oscillation within the lattice sites.

The resulting dynamics of the atomic density within the dimer 
(averaged over all dimers with at least 50% of the signal in the most 
populated dimer) is shown in (Fig. 4b, c). We capture the dynamics by 
a non-interacting multi-band simulation including the finite switching 
time of the laser intensities of about 20 μs. The quantum gas magnifier  
on honeycomb optical lattices allows resolving the interplay of 
tunnelling dynamics between lattice sites with nanoscale dynamics 
within the lattice sites9,10 and opens a real-space approach to studying 
multi-orbital systems especially for extended 3D systems.

In conclusion, we have introduced a quantum gas magnifier based on 
matter wave optics and used it to image 3D quantum gases in triangular 
and honeycomb optical lattices with a resolution below the lattice spac-
ing. Spatially resolved measurements give access to central scientific 
problems such as transport phenomena29, spontaneous domain for-
mation30, or chiral edge and interface states in interacting topological 
matter31. We estimate that the method can be pushed to a single-atom 
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Fig. 2 | Thermal-to-BEC phase transition in optical lattices observed via 
high-resolution density profiles. a, b, Spatial density distributions of BECs in 
triangular optical lattices prepared at different temperatures and atom numbers 
of 171(1) nK and 37,000(400) atoms (a), and 310(1) nK and 106,000(600) atoms 
(b). The densities are shown as atom numbers per lattice site from integration 
over the Wigner–Seitz cells. c, d, Atom number per tube as a function of the radial 
position corresponding to a and b, respectively, with a bimodal fit (orange line) 
consisting of the condensed part (yellow line) and the thermal part (purple line). 
e, f, Condensate fraction (circles) obtained from the bimodal fits as a function of 
the temperature (e) and of the temperature in units of the scaling temperature T c

0 
(f). Most error bars are smaller than the symbol size. The light-blue line in f shows 
the power law approximation of the non-interacting theory described in  
the main text. The purple line is a fit to the data with the same power law.  
The bandwidth of the lowest band is kB × 5.4 nK and the gap between the first  
and second band is kB × 290 nK. The colour encodes the total atom number of the 
clouds. All error bars correspond to the 68% confidence interval.
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sensitive regime using free-space fluorescence imaging after the matter 
wave magnification, when the magnified lattice spacing is larger than 
the diffusive expansion from photon scattering32,33 or using metastable 
helium and multi-channel plates34 (see Supplementary Information). 
This will allow for a direct study of correlations in strongly interacting 
systems of atomic species, for which laser cooling and very deep optical 
lattices as in conventional quantum gas microscopes are not available. 
The magnification approach also circumvents pairwise atom loss dur-
ing imaging in quantum gas microscopes, allowing measurements of 
many-body systems with larger occupation number.

Furthermore, the quantum gas magnifier can be employed to access 
coherence properties with high spatial resolution, for example by 
applying masks in Fourier space35 or by magnification of interference 
phenomena like Talbot revivals36 (see Supplementary Information). 
We also expect that the sub-lattice spacing resolution would allow 
band-resolved studies of multi-band systems.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-021-04011-2.
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Methods

Optical lattice setup
Our optical lattice setup consists of three running waves of wave vec-
tor ki with |ki| = 2π/λ intersecting under an angle of 120°. Depending 
on the polarization of the beams we obtain either a triangular lattice 
(linear polarization perpendicular to the lattice plane), a honeycomb 
lattice (linear polarization in plane)37 or a boron nitride lattice (suitable 
elliptical polarization of the lattice beams38 as in this work or using 
spin-dependent light shifts39).

The resulting potential can be written as

V V V

θ α α θ

rr

kk kk rr kk kk rr

( ) = ∑

×[cos ( )cos(( − ) + − ) − 2sin ( )cos(( − ) )]

i j
i j

i j i j i j

lat2D > lat
( )

lat
( )

2 2

where the V i
lat
( )  are proportional to the intensities of the lattice beams. 

θ is the angle of the polarization (long half axis) with respect to the 
lattice plane, αi is the relative phase between the s and p components 
of the polarization for beam i. We neglected the phases of the beams 
with respect to each other because they only result in a global shift of 
the lattice. If we just name a single lattice depth, then all V i

lat
( )  are equal. 

The boron nitride lattice in Fig. 3 uses θ = 9° and α = (0,120°,240°) yield-
ing an energy offset between the A and B sublattice quantified by the 
tight-binding parameter ΔAB (ref. 38). Note that the triangular lattice 
has a much larger barrier between nearest neighbours than the hon-
eycomb or boron nitride lattice for the same laser intensities40.

Read-out of lattice site populations
For several experiments only the total population of the lattice sites is of 
interest. We extract these by first fitting a triangular lattice to the data and 
subsequently summing up the signal in the Wigner–Seitz cells around the 
individual sites as explained in the following. The lattice constant alat in 
pixels is determined by integrating the density of individual images along 
a real space lattice vector yielding a one-dimensional profile with lattice 
constant a1D, which is obtained from a fit with the heuristic function Aexp(−
(x − x0)2/(2σ2))(cos(πx/a1D + ϕ)2 + Δ). Finally, the lattice constant is deduced 
from the average fit parameter from two different such directions as 
a a= 2 / 3lat 1D . Next, the spatial phase of the lattice is determined by mul-
tiplying the image with a mask that removes the signal from pixels at a 
certain radius around the sites of a triangular lattice with the lattice constant 
determined beforehand. The phase of this mask is varied and the configu-
ration minimizing the remaining density is considered the lattice phase. 
The final step is to determine the population of each lattice site by summing 
over the Wigner–Seitz cell around the lattice site. To minimize discretiza-
tion errors the pixels of the camera are subdivided such that the radius of 
the cell is about ten subpixels. For an example image with non-discretized 
Wigner–Seitz masks see Extended Data Fig. 1.

For the lattices with two-atomic basis we slightly adjust the algorithm 
for lattice phase determination by maximizing the density which is not 
masked thus locating the centres of the honeycombs.

Lattice phase drifts
For our hexagonal lattice setup composed of three laser beams in two 
dimensions, phase shifts of the lattice beams only lead to a translation 
of the whole lattice potential, but not to a change of the lattice geom-
etry41. We verify that such phase drifts are not a problem on the time 
scale of the experiments presented here by measuring the position drift 
of the atomic cloud’s centre of mass in a very deep optical lattice. We 
find that the cloud position moves and scatters by less than one lattice 
site peak-to-peak within 6 s hold time. We checked in a previous set of 
measurements where we deliberately move the lattice, that the lattice 
is deep enough to be able to drag the atoms along. Shot-to-shot lattice 
drifts exceed one lattice site (cycle time of 30 s).

Our characterization of the slow phase drifts is compatible with 
recent direct measurements of triangular lattices using quantum gas 

microscopes42,43. The drifts can be further reduced to one lattice site 
per minute in a setup with a single, refolded lattice beam43. In our case, 
the three beams go through separate optical fibres, a setup in which 
phase locks have been implemented to stabilize the phase37. From our 
characterization, we conclude that a phase lock is not necessary for 
the measurements presented here. The random lattice phase between 
individual images can be easily taken into account by identifying the 
phase. For data evaluation in the main text, we determine the lattice 
position for every experimental image via a fit routine as described 
above. Note that the envelope of the atomic density is given by the 
position of the magnetic trap and is therefore not affected by lattice 
phase drifts.

Bimodal fits of density profiles
The lattice-gas profiles can be described by a bimodal model. Since we 
are considering the on-site populations only, the presence of the lattice 
can be included by a renormalization of the interaction constant44 
geff = g × AWS/(2πσ2) and otherwise using a continuum formalism. Here, 
AWS is the area of the Wigner–Seitz cell, σ the on-site radial oscillator 
length and g = 4πħ2asc/m the interaction constant, computed from the 
scattering length asc ≈ 100 Bohr radii and the mass m = 87 u. The on-site 
radial oscillator length is computed as σ ħ mω= /( )onsite  from the  
lattice depth using ħω V E E= 3 2 /onsite lat rec rec. The data in Fig. 2 is taken 
with a lattice depth of Vlat = 1Erec.

The condensed atoms are described by a 3D Thomas–Fermi profile 
integrated along line of sight,
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The fit parameters here are the centre of the cloud x0, y0 resulting in 
ρ(x, y)2 = (x − x0)2 + (y − y0)2, the in-plane Thomas–Fermi radius Rρ from 
which the out-of-plane radius Rz is deduced via a computed aspect 
ratio, and the number of atoms in the BEC NBEC. In fact, only for the 
lowest evaporation frequency, where the BEC is very distinct from 
the thermal part, NBEC and Rρ are fitted independently. For all other 
fits we compute the Thomas–Fermi radius from the number of con-
densed atoms using the expected scaling Rρ = γNBEC

1/5 with γ determined 
as its mean value from the fits at lowest evaporation frequency. We 
obtain γ = 0.354 µm, which agrees excellently with the expected value 
γtheo = 0.352 µm obtained from45
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supporting the validity of the approximations made. Here ωsystem =  
2π × 305 Hz, ω =  (ωsystem

2ωz)1/3, ωz = 2π × 29 Hz and a ħ mω= /( ) .
The thermal density distribution is described in a semi-ideal 

approach, that is, as an ideal gas in a potential V(x) = Vtrap(x) + VBEC(x) 
given by the external trap Vtrap(x) and the repulsion from the condensed 
atoms VBEC(x) = 2 geffnBEC(x). In semi-classical approximation the ideal 
Bose gas density distribution is given by45

n x g β V x μ λ( ) = (exp( − ( ( ) − )))/ (3)Tth 3/2
3

with g x x i( ) = ∑ /n i
i n

>0  and λ ħ mk T= 2π/( )T B . Additionally, we allow 
for a small offset that we subtract when determining atom numbers. 
The fit is performed on the 2D density distribution and both the data 
and the fit function are subsequently plotted as a function of radial 
position. Extended Data Fig. 2 shows the data from Fig. 2c, d of the 
manuscript along with a plot of the logarithm of the density versus the 
square of the radius, which yields a straight line in the thermal wings. 
This plot shows the excellent agreement between data and fit and also 
makes the change of the slope at the onset of the BEC fraction more 
visible.



Interaction shift and finite size shift
Interactions are known to shift the critical temperature for the BEC 
transition with a sign depending on the trapping geometry. For a 3D 
harmonic trap in mean field approximation the shift is negative and 
given by20,45

T T
g

g
a
a

NΔ / ≈ − 1.33 (4)c c
eff sc 1/6

predicting a shift of about −0.24 for the typical atom number of the con-
densed samples of N = 5 × 104, which is larger than the measured shift 
of −0.099(4). However, for interactions of this strength the mean-field 
approximation overestimates the shift22. Note that we are not aware of 
a prediction for our 2D–3D crossover geometry of an array of tubes. 
Our measurements thus set a benchmark for future theoretical studies 
on the interesting setting of Josephson junction arrays.

We also recall the prediction for the finite size shift of the critical 
temperature for a 3D harmonic trap. For an anisotropic harmonic trap 
with trap frequencies ωx, ωy, ωz and their geometric mean ω ω ω ω= ( )x y z

1/3 
and arithmetic mean ωm = (ωx + ωy + ωz)/3, the shift is given by20,45.

T T
ω
ω

NΔ / ≈ − 0.73 . (5)c c
m −1/3

With our trapping frequencies of 2π × (305, 305, 29) Hz, the anisot-
ropy factor is ω ω/ = 1.53m  and the expected shift is −0.03 for our atom 
number of N ≈ 5 × 104, that is, much smaller than observed. Note that 
both interactions and finite size effects can contribute to the shift.

The observed smoothing over a range of almost 0.2 in rescaled 
temperature is only expected for much smaller atom numbers in the 
case of a 3D harmonic trap46. We therefore conclude that finite size 
effects are strongly enhanced in our 2D–3D crossover geometry of 
an array of tubes. We have verified that the small condensate frac-
tions involved in the smoothened transition do not arise from fit 
artefacts of the bimodal profile to the density profiles. The good 
agreement with the curve for the visibility shown in Extended Data 
Fig. 4 is further evidence that the signal is physical and demands for 
further theoretical studies.

Theoretical description of the density of states
We compare our data of the thermal-to-BEC phase transition to 
non-interacting calculations based on the density of states. To this 
end we compute the Hamiltonian matrix for our trap in position basis 
and diagonalize it. In the numerical spectrum we clearly recognize a 
crossover between two power laws as a slope change in the log–log 
plot of Extended Data Fig. 3a. The asymptotes of this crossover can be 
understood using analytical considerations.

The high energy limit coincides with the well-known spectrum of a 
3D harmonic trap resulting in

N E
E
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(6)
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

states up to energy E. This is due to the fact that the gaps between higher 
bands are negligible compared to the band widths. So we have to count 
separately the first band states and harmonic oscillator-like states.

For energies E < Δg, where Δg is the first bandgap, only states of the 
first kind are relevant. Here, the tunnel coupling J = h × ·12 Hz is negli-
gible compared to the offset introduced by the external trap, which 
is Δ = 1/2mωsyst

2alat
2 = h × 200 Hz for a site in the centre compared to a 

nearest neighbour. Hence the spectrum is given by

E mω r k ħω= 1/2 + ( + 1/2) (7)ijk ijsyst
2 2

z

with rij being the distance of the lattice site indexed ij from the trap 
centre and k is the index for the z direction. A lengthy calculation leads 
to N(E) = (E/E0)2 with E ħA mω h= /π = × 570 WS

3  Hz.
We can therefore find an approximation of the numerical result by 

the Ansatz
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where Δg is obtained from a simulation without external trap. The 
crossover between the two power laws appears here at the band gap Δg, 
because the higher bandgaps are small and the lattice can be neglected 
at higher energies. This analytical model fits very well to the exact 
diagonalization up to the numerically accessible energies (Extended 
Data Fig. 3a) while asymptotically reaching the known analytic limit of 
equation (6) for high energies.

Now we turn to the detailed derivation of the theory curve for a 
non-interacting system (light-blue line in Fig. 2f). From N(E) we obtain 
the density of states g(E) = dN/dE, which in turn allows to numerically 
compute the critical temperature T N( )c

0  from

∫N Eg E E k T= d ( )/[exp( /( )) − 1], (9)B c
0

that is, T N( )c
0  is the temperature yielding exactly N excited atoms for 

chemical potential μ = 0. The fraction of condensed atoms for a given 
temperature T T< c

0 can be computed by first evaluating the number 
of excited atoms as

∫N Eg E E k T= d ( )/[exp( /( )) − 1] (10)exc B

and then inferring f0 = (N − Nexc)/N. Following these steps we can com-
pute T c

0 and f0 for every experimental data point from its measured 
particle number and temperature. The resulting theoretical values are 
plotted in Extended Data Fig. 3b. We find that these values can be 
approximated by f T T= 1 − ( / )α

0 c
0  as obtained by assuming the density 

of states g E C E( ) = α
α−1 to be a power law45. Fitting the theoretical results 

for f T T( / )0 c
0  with α as the fit parameter yields α = 2.69(1). The corre-

sponding fit shown in Extended Data Fig. 3b is the same line as the 
light-blue line in Fig. 2f (Extended Data Fig. 3b).

Comparison to ToF data
For comparison, we also take momentum space images from ToF expan-
sion at the same parameters and evaluate their visibility47, which is a 
measure of coherence in the system. We use circular masks around 
the Bragg peaks (Extended Data Fig. 4a). The radius is determined by 
fitting the ToF data by a central bimodal distribution
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and a set of six inverse parabola n(k; kR, n0,P, k0) = n0,Pmax(1 − (k − k0)2/
kR

2, 0) spaced by a reciprocal lattice vector from the centre, resulting 
in the complete fit function reading
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where the variables separated by a semicolon are the fit parameters, 
the parameter kR,Bragg is used for the radius and the parameters k0) and 
kreci for the position of the circular masks. We plot the visibility as a 
function of T T/ c

0 as obtained from the corresponding real space data 
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(Extended Data Fig. 4b). We plot the theory curve for the condensate 
fraction as a guide to the eye. This comparison shows that the real-space 
and momentum-space images give a compatible description of the 
system.

The visibility and the condensate fraction vanish for the same 
temperatures (see Fig. 2f and Extended Data Fig. 4). This is in con-
trast to 3D optical lattices around unit filling, where a finite visibility 
also for the case of vanishing condensate fraction is observed18,19. In 
these experiments the critical temperatures are much smaller, of the 
order of a few tunnelling energies, and thus low-energy states that are 
not the ground state but still have short range phase-coherence are 
substantially populated yielding a finite visibility above the critical 
temperature. For our experimental temperatures of a few hundred 
tunnelling energies no other state than the ground state gets sub-
stantially populated.

Details on magnetic resonance addressing
In order to engineer the density distributions shown in Fig. 3, we used 
a trap frequency of ωaddressing/2π = 543 Hz for the first five images, of 
ωaddressing/2π = 658 Hz for the last image and different trap shifts and 
RF sequences. By shifting the magnetic trap perpendicularly to a 
real-space lattice vector by around 14 µm, corresponding to approxi-
mately twice the system diameter, the curvature of the equipotential  
lines becomes negligible and the density patterns created by 
addressing exhibit straight edges. In Fig. 3 the trap centre resonance 
frequency is ωc/2π = 108 kHz for all images, except the last one of 
panel b where it is ωc/2π = 67 kHz. The trap is shifted by 14.1 µm for the 
first and third image, by 15.7 µm for the second image and not shifted 
for the fourth to sixth image, but always shifted back to the position 
of the atoms before imaging. For the third image a constant RF pulse 
of 360 kHz is turned on for 200 ms. For the first image, an RF ramp 
from 360 to 290 kHz is used, leading to the depletion of all lattice 
sites from the centre of the cloud towards the centre of the shifted 
magnetic trap. Here, for the same RF ramp time (200 ms) we ramp 
over a wider range and therefore have to compensate the reduced 
time by which the resonance condition is met at each position by 
increasing the RF amplitude. In all protocols, Fourier broadening is 
negligible. Lattice phase fluctuations from shot to shot lead to one 
or two partially depleted rows in most images. The second image in 
Fig. 3 is created by applying two RF ramps. In this case the trap was 
shifted further to the side resulting in a higher energy difference 
to the target F = 2, mF = 1 state and thus we used ramps from 420 to 
486 kHz and from 494 to 540 kHz with 200 ms each to target all sites 
except for the centre line. For the fourth to sixth image 100 ms were 
used as the RF duration. In the fourth image the outer wings of the 
distribution are cut via a RF ramp from 150 to 110 kHz. In the following 
images only a single frequency very close to the respective ωc, 
108.5 and 67.2 kHz, is used to address a ring or a single lattice site.  
The third and fifth image also visualize the second difference between 
addressing with and without shifting the magnetic trap: the slope 
grows linearly from the centre, which leads to sharper resonances 
for shifted systems.

Modelling of thermal hopping
The Arrhenius law is often used to describe chemical reac-
tion rates, but also to model thermal hopping of continuously 
laser-cooled atoms in very deep optical lattices48. Here we 
use it to model the thermal hopping of ultracold atoms in our 
two-dimensional lattice. In contrast to quantum mechanical  
tunnelling through the barrier between two lattice sites, thermal  
hopping refers to motion that is activated thermally when the thermal  
energy allows to overcome the barrier. To good approximation, the 
activation energy for a hopping event can be identified with the 
potential barrier in the lattice, which is VB = 9Vlat in our triangular  
lattice convention.

The Arrhenius law describes the hopping rate Γh as the product of 
an attempt rate Γa and the probability P(E > VB) to sample an energy E 
above the barrier VB in the thermal distribution. The hopping rate can 
then be written as

∫Γ Γ P E V Γ E k T E k T≈ ( > ) = ( exp( − / )d )/( ). (13)
Vh a B a

∞

B B
B

To include quantum tunnelling, we add an offset rate, resulting in

Γ Γ V k T Γ≈ exp( − / ) + . (14)h a B B 0

In Fig. 3, we model the temperature-dependent thermalization rate 
by the modified Arrhenius law of equation (14) and extract an activa-
tion barrier of VB = kB × 2.4(6) μK and an attempt rate of Γa = 52(44) Hz as 
well as an offset rate of Γ0 = 0.23(8) Hz, which we attribute to quantum 
tunnelling in higher bands. The barrier height for the calibrated lattice 
depth of Vlat = 3Er is VB/kB = 2.6 μK. We note that in contrast to quantum 
tunnelling, for thermal hopping the atoms can move over long distances 
in single hopping events. This enables the large-scale mass transport 
in Fig. 3 within few hopping events.

Modelling of nanoscale dynamics
We describe here the numerical simulations shown in Fig. 4c. The simu-
lations start with the ground state of the periodic potential with initial 
optical lattice beam intensities I2, I3 = I1. At time t = 0, I2 and I3 are set to 
0.5I1; the intensities change on the intensity lock time scale of about 
20 µs. For every time step (5 µs) we diagonalize the Hamiltonian in 
plane-wave basis of the instantaneous periodic potential and let the 
state evolve according to the instantaneous eigenstates and eigenval-
ues. Because the dimers are decoupled from each other, the bands are 
completely flat and all quasi-momenta are equivalent and we perform 
the calculations at the Γ point in the Brillouin zone. After the quench, 
99.5% of the probability distribution of the time-evolved state is found 
to lie in the lowest six bands, demonstrating that the dynamics features 
interference between the two s bands and four p bands, the latter being 
the smallest in-plane excitations within a lattice site.

The extracted atomic distribution in a cut of 65 nm width is plotted 
in Fig. 4c (left). In Fig. 4c (middle) the distribution is convoluted with a 
Gauss filter of 76 nm width, and summed with an offset, for comparison 
with the experimental data in Fig. 4c (right). The lattice depth used in 
the theory (32Erec; note that the tunnel barriers are much smaller in a 
honeycomb lattice compared to a triangular lattice of the same total 
depth) is calibrated from the comparison with the experiment. The 
external trap is not included in the analysis, because experimentally 
we don’t see any dependence of the dynamics on the position of the 
dimer with respect to the trap centre.

Data availability
All data files are available from the corresponding author on 
request. Source data are provided with this paper.
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Extended Data Fig. 1 | On-site population computation. a, Raw density 
distribution of a typical image. b, On-site populations determined from the 
image in a using the Wigner-Seitz masks plotted as solid lines in a.



Extended Data Fig. 2 | Density as a function of radial position. a, b, Density 
of partially condensed BECs in a lattice as function of radial position as shown 
in Fig. 2c, d. The examples are prepared by end points of the radio frequency 
evaporation of 85 kHz (a) and 105 kHz (b) and a hold time at the final 
evaporation frequency of 1 ms. c, d, Same data as in a and b plotted with natural 
logarithmic y axis and quadratic x axis resulting in the Gaussian wings 
appearing as a straight line.
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Extended Data Fig. 3 | Numerical evaluation of the density of states. a, 
Number of states N(E) up to energy E for a triangular lattice of tubes with tight 
external confinement: the analytical approximation of equation (8) (black 
curve) reproduces the numerical diagonalization of the system (red points). 
The crossover between α = 2 and α = 3 in the relevant energy range can be seen 
in the slope change in the log–log plot. b, Theoretical values of f0 for the 
experimentally accessed parameters computed using the analytical 
approximation (symbols). The orange curve is a fit of the form f T T= 1 − ( / )α

0 c
0  

as explained in the main text.



Extended Data Fig. 4 | Visibility across the BEC phase transition. a, Density 
after time of flight for the parameters of Fig. 2a in the main text showing the 
momentum space density with Bragg peaks reflecting the coherence in the 
system. The visibility is computed as the difference of the density in the blue 
circles and red circles compared to their sum. b, Visibility of the time-of-flight 
images of the lattice gas as a function of the reduced temperature T T/ c

0 where 
T c

0 is the scaling temperature computed from the corresponding real space 
images in Fig. 2. The line is the fit to the experimental condensate fractions f0 
from the main text for reference.
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