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a b s t r a c t 

The outbreak of coronavirus disease 2019 (COVID-19) has seriously affected the whole world, and epi- 

demic research has attracted increasing amounts of scholarly attention. Critical facilities such as ware- 

houses to store emergency supplies and testing or vaccination sites could help to control the spread of 

COVID-19. This paper focuses on how to locate the testing facilities to satisfy the varying demand, i.e., test 

kits, caused by pandemics. We propose a two-phase optimization framework to locate facilities and ad- 

just capacity during large-scale emergencies. During the first phase, the initial prepositioning strategies 

are determined to meet predetermined fill-rate requirements using the sample average approximation 

formulation. We develop an online convex optimization-based Lagrangian relaxation approach to solve 

the problem. Specifically, to overcome the difficulty that all scenarios should be addressed simultaneously 

in each iteration, we adopt an online gradient descent algorithm, in which a near-optimal approximation 

for a given Lagrangian dual multiplier is constructed. During the second phase, the capacity to deal with 

varying demand is adjusted dynamically. To overcome the inaccuracy of long-term prediction, we design 

a dynamic allocation policy and adaptive dynamic allocation policy to adjust the policy to meet the vary- 

ing demand with only one day’s prediction. A comprehensive case study with the threat of COVID-19 is 

conducted. Numerical results have verified that the proposed two-phase framework is effective in meet- 

ing the varying demand caused by pandemics. Specifically, our adaptive policy can achieve a solution 

with only a 3.3% gap from the optimal solution with perfect information. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In 2020, coronavirus disease 2019 (COVID-19) has resulted in 

arge economic losses, and the corresponding damage continues to 

scalate. As of January 26, 2021, more than 100 million cases have 

een confirmed worldwide ( CNN, 2021 ). In addition to COVID-19, 

ther epidemic diseases have also caused astonishing damage to 

conomic and social development, including the 2014–2016 Ebola 

irus disease, which led to more than 10,0 0 0 deaths in West Africa 

 CDC, 2016 ); the novel swine-origin influenza A (H1N1) virus, 

hich was first discovered in 2009 and caused tens of millions 

f confirmed cases and 12,469 deaths in the United States ( CDC, 

019 ); and the mosquito-borne Zika virus (ZIKV), which has af- 

ected 72 countries and territories, causing more than 500 thou- 
∗ Corresponding author. 

E-mail addresses: klliu@bjtu.edu.cn (K. Liu), oralc@nus.edu.sg (C. Liu), 

sexiang@nus.edu.sg (X. Xiang), ztian@coastal.edu (Z. Tian). 

n

i

o

s

d

ttps://doi.org/10.1016/j.ejor.2021.11.028 

377-2217/© 2021 Elsevier B.V. All rights reserved. 
and locally acquired cases by September 1, 2016, in the Ameri- 

as alone ( Duong, Dussart, & Buchy, 2017 ). Such infectious diseases 

ave remained among the top causes of death globally. 

In practice, governments and organizations have taken many 

easures to address the spread of epidemic diseases. Expanding 

ccess to testing is of great importance to the general public. With 

he rapid spread of the epidemic, testing is central to planning re- 

ponse activities in all countries during and after the pandemic. 

ccurate, effective, and efficient testing can lead to early outbreak 

etection, which will allow health authorities to quickly isolate and 

reat infected patients, guide people to consciously perform social 

istancing, and guide policymakers in lockdown policies of certain 

reas/activities if needed. Hence, to keep the pandemic under con- 

rol or prepare for the next wave, a well-planned testing strategy is 

ecessary for both disease prevention and intervention. Establish- 

ng such a testing system involves not only locating testing centers 

r assigning people to the testing facilities but also distributing re- 

ources, e.g., test kits, to test centers while considering potential 

emand uncertainty for testing. 

https://doi.org/10.1016/j.ejor.2021.11.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.11.028&domain=pdf
mailto:klliu@bjtu.edu.cn
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K. Liu, C. Liu, X. Xiang et al. European Journal of Operational Research 304 (2023) 150–168 

n

V

a

s

c

s

a

a

m

m

r

s

a

p

a

v

h

t

f

r

Ö

i

j

i

K

s

g  

p

&

(

s

p

a

&

J

b

p

Q

i

p

t

u

f

n

t

u

Z

a

d

t

t

d

w

o

b

i

p

p

f

(

T

t

d

f

l

s

i

r

C

C

p

I

t

A

c

a

fi

e

B

n

c

(

s

d

l

f

p

e

i

t

n

t

l

s

t

w

t

c

g

D

E

H

s

u

p

t

o

M

p

n

s

B

(

c

i

fi

i

p

a

l

s

c

s

m

r

m

In fact, large-scale emergencies have already attracted sig- 

ificant attention from academia in recent decades. Tomasini & 

an Wassenhove (2009) addressed the life cycle of disaster man- 

gement and included four phases, i.e., mitigation , preparedness , re- 

ponse , and rehabilitation . Mitigation represents the proactive social 

omponents of emergencies, which are composed of laws and re- 

trictions that can help to increase resilience and decrease vulner- 

bility under the threat of disasters. Preparedness is a long-lasting 

nd structured decision process that determines the response 

echanisms to counter factors that society has not been able to 

itigate; for example, cities have fire departments to attend to the 

elief needs and execute regulations associated with fire safety. Re- 

ponse is related to the acts of attending to disasters; this happens 

fter the initial outbreak, such as transportation of emergency sup- 

lies, location-relocation of temporary shelters, and evacuation of 

ffected communities. Rehabilitation comes after response and helps 

ictims restore normality. As stated by Tomasini & Van Wassen- 

ove (2009) , the middle steps, preparedness and response , fall into 

he scope of disaster logistics, which also represent our research 

ocus. Before disasters, much research focused on prepositioning 

elief supplies ( Rawls & Turnquist, 2010; Velasquez, Mayorga, & 

zaltın, 2020; Wenjun, Shu, Jia, Song, & Miao, 2018 ), locating crit- 

cal distribution/medical facilities ( Liu, Li, & Zhang, 2019; Mosta- 

abdaveh, Gutjahr, & Salman, 2019 ), building fortifications of crit- 

cal infrastructures ( Liberatore, Scaparra, & Daskin, 2011; Parajuli, 

uzgunkaya, & Vidyarthi, 2021 ), etc. In the response phase, re- 

earch topics such as relocating patients/communities ( Mills, Ar- 

on, & Ziya, 2018; Xu, Qiu, Yang, Lu, & Chen, 2020 ), adjusting ca-

acities ( Alem et al., 2021 ), resource allocation ( Yu, Yang, Miao, 

 Zhang, 2019; Yu, Zhang, Yang, & Miao, 2018 ), and evacuation 

 Regnier, 2008; Wang, 2020 ) are being further investigated. Our re- 

earch belongs to the category of studies on jointly optimizing the 

re- and post-humanitarian operations in a single program, which 

re more complex ( Alem et al., 2021; Charles, Lauras, Wassenhove, 

 Dupont, 2016; Jabbarzadeh, Fahimnia, & Seuring, 2014; Vatsa & 

ayaswal, 2021 ). After the outbreak of COVID-19, more researchers 

egan to focus on optimizing related operations with respect to 

andemics; interested readers can refer to a recent review paper 

ueiroz, Ivanov, Dolgui, & Wamba (2020) for more details. 

In our study, the first problem is where to locate testing facil- 

ties and how to design their capacities during the preparedness 

hase (i.e., how many test kits they should receive daily and how 

o decide staffing levels in each facility). Faced with dynamic and 

ncertain demand volumes, as well as the geographical layout of 

acility candidates and demand sites, researchers have conducted a 

umber of studies on how to locate retail stores, optimize inven- 

ory and production, and manage stock levels as demand for prod- 

cts fluctuates by season ( Basciftci, Ahmed, & Shen, 2021b; Shen, 

han, & Zhang, 2011 ). Among them, many focus on the resilience 

nd reliability of facility locations under uncertain demand and 

isruptions using stochastic or robust optimization approaches. Es- 

ablishing an operational system for epidemic resource distribu- 

ion presents a very similar set of challenges but under unknown 

isease spread and human behavioral uncertainties. In this study, 

e present a comprehensive framework to optimize the locations 

f testing centers, their capacities, and shipment amounts in the 

ackground of pandemics. As the provided framework is presented 

n a generic form, it aims to address various resource allocation 

roblems during different phases of a pandemic by a stochastic 

rogramming (SP) approach for different scenarios in practice. We 

ormulate the first-stage phase into a sample average approximation 

SAA) formulation to meet predetermined fill-rate requirements. 

he greatest challenge of SAA is to address all the scenarios simul- 

aneously. To overcome this difficulty, we adopt an online gradient 

escent algorithm, which constructs a near-optimal approximation 

or a given Lagrangian dual multiplier. Finally, we develop an on- 
151 
ine convex optimization-based Lagrangian relaxation approach to 

olve the first-phase problem. 

The second problem involves how to adjust resources dynam- 

cally to face varying demand caused by pandemics during the 

esponse phase. The demand for large-scale emergencies such as 

OVID-19 fluctuates significantly with time. Taking the situation in 

hina as an example, the State Council Information Office of the Peo- 

le’s Republic of China announced five stages of fighting COVID-19. 

n the second stage, the peak value of newly confirmed cases on 

he Chinese mainland reached 15,152 on February 12, 2020. Since 

pril 29, 2020, the Chinese government began to focus on sporadic 

ases and case clusters in some locations, and inbound cases were 

lso generally under control ( China’s State Council Information Of- 

ce, 2020 ). Faced with complicated and changeable situations, gov- 

rnments update policies to adapt to the epidemic. For example, 

eijing Municipal Health Commission (2020a, 2020b, 2021) an- 

ounced that the number of official COVID-19 testing facilities in- 

reased from 46 (April 15, 2020) to 128 (June 23, 2020) to 252 

January 8, 2021). Therefore, it is beneficial to involve a dynamic 

etting while performing optimization. As stated in Sheu (2010) , a 

ynamic supply chain network design is essential for emergency 

ogistics planning in disasters. 

In the first problem, we generate possible scenarios to describe 

uture demand uncertainty and obtain an initial location and ca- 

acity planning strategy at the very beginning. However, the gen- 

rated scenarios may have zero probability and lead to an unsat- 

sfying solution. Fortunately, the second problem enrolls scenarios 

hat are derived from the online realized demand data, which dy- 

amically adjust the initial decisions and improve the reliability of 

he overall solution approach. 

For the solution approach, the proposed stochastic facility 

ocation and dynamic capacity planning problem lies in the 

cope of sequential decision-making with uncertainty. According 

o Powell (2016, 2019a, 2019b) , the range of related problems, 

hich is so wide that they have been studied by dozens of dis- 

inct academic communities, includes the Markov decision pro- 

ess ( Puterman, 2014 ), approximate/adaptive/neurodynamic pro- 

ramming ( Bertsekas & Tsitsiklis, 1996; Powell, 2011 ), SP ( Shapiro, 

entcheva, & Ruszczy ́nski, 2014 ), robust optimization ( Ben-Tal, 

l Ghaoui, & Nemirovski, 2009 ) and online learning ( Albers, 2003 ). 

owever, each community develops tailored techniques to address 

pecific problems, and the technique is very likely to be inefficient 

nder different settings. Powell (2016) identified four classes of 

olicies that span all the approaches and claimed that any solu- 

ion to a sequential decision problem consisted of one or a hybrid 

f the four classes. Among the aforementioned communities, the 

arkov decision process (MDP) and SP are two major modeling ap- 

roaches that have been used in stochastic dynamic capacity plan- 

ing ( Basciftci, Ahmed, & Gebraeel, 2021a ), and review papers on 

trategic capacity planning, such as Martínez-Costa, Mas-Machuca, 

enedito, & Corominas (2014) ; Sabet, Yazdani, Kian, & Galanakis 

2020) ; Van Mieghem (2003) , are identified for more details. 

However, formulating MDP and SP problems requires additional 

onstraints or variables along with the curse of dimensionality and 

s often computationally intractable ( Basciftci et al., 2021a ). In the 

eld of MDP, dynamic programming (DP) algorithms, such as value 

teration and policy iteration, are well understood for small-scale 

roblems, while approximated dynamic programming (ADP) and 

pproximate linear programming (ALP) restrict the search of the 

inear span of a small number of features so that larger-scale in- 

tances can be solved ( Malek, Abbasi-Yadkori, & Bartlett, 2014 ). Ac- 

ording to Martínez-Costa et al. (2014) , the preferred procedure for 

olving dynamic capacity planning models in recent papers is com- 

ercial software (such as CPLEX), while in older papers, DP algo- 

ithms ( Rajagopalan, Singh, & Morton, 1998; Shulman, 1991 ) were 

ainly proposed; however, commercial software has evolved. For 



K. Liu, C. Liu, X. Xiang et al. European Journal of Operational Research 304 (2023) 150–168 

S

r

c

i

t

s

T

a

m

a

p

t

t

t

b

i

d

d

a

S

r

m

i  

t

2

h

l

f

g

c

s  

p

G

i

N  

O

p

p

a

u

o

(

l

t

s

a

s

d

o

t

w

T

a

e

m

f

i

a

b

e

t

G

s

t

(

g

(

s

g

n

o

c

s

a

d

(

d

m

p

t

e

M

p

M

s

i

s

s

h  

2

c

m

F

b

c

c

a

P, SAA is a major technique for dealing with expected values of 

andom variables. Two major drawbacks of SP include the diffi- 

ulty of identifying representative scenarios and the computational 

ntractability of large-scale problems ( Snyder, 2006 ). Worse still, 

he SAA method is unlikely to solve problems in a single program, 

uch as our case study with hundreds of enumerated scenarios. 

herefore, a method that can capture system properties based on 

vailable data and quickly obtain satisfying solutions with a perfor- 

ance guarantee is urgently needed. 

In this paper, we employ an online convex optimization (OCO) 

pproach to address the dynamic and stochastic demand during 

andemics. The proposed adaptive policy uses one day’s prediction 

o make a decision and is proven to achieve the “target-based op- 

imal solution“, i.e., the solution that minimizes the Euclidean dis- 

ance to any predetermined multiobjective target. When new data 

ecome available, the problem is solved repeatedly and is easy to 

mplement. In summary, we focus on testing facility location and 

ynamic capacity planning problems simultaneously facing varying 

emands caused by pandemics. The contributions are summarized 

s follows. 

• We propose an easy-to-implement two-phase framework to 

solve testing facility location and dynamic capacity planning 

problems facing varying demand caused by pandemics. 
• The first phase aims to locate testing facilities and design their 

capacities using a sample average approximation formulation. 

An online convex optimization-based Lagrangian relaxation ap- 

proach is proposed. Specifically, we adopt an online gradient 

descent algorithm to overcome the difficulty that all scenarios 

should be addressed simultaneously in each iteration. The pro- 

posed approach can construct a near-optimal approximation for 

a given Lagrangian dual multiplier in polynomial time. Numer- 

ical experiments validate the effectiveness of the proposed al- 

gorithm. 
• The second phase is to dynamically adjust resources facing 

varying demand caused by pandemics. We design the dynamic 

allocation policy and adaptive dynamic allocation policy to ad- 

just decisions with respect to varying demands; the latter pol- 

icy is 

proven to be asymptotically consistent, which means that it can 

achieve the “target-based optimal solution“ when the planning 

horizon tends to infinity. 
• A comprehensive case study with the threat of COVID-19 is 

conducted, where time series data, demographic data, economic 

data, and geographic data are collected to reflect real life condi- 

tions. Extensive numerical results show the effectiveness of the 

two-phase approach. 

The remainder of this paper is organized as follows. 

ection 2 presents a thorough literature review of previous 

esearch. Section 3 is composed of a problem statement and 

odel formulation. The two-phase solution approach is explained 

n Section 4 . A case study is given in 5 . Finally, Section 6 concludes

he paper and points out future research directions. 

. Literature review 

Since the outbreak of COVID-19, studies related to pandemics 

ave gained increasing amounts of attention; within this body of 

iterature, our study belongs to the stream of studies on emergency 

acility location and capacity design. To construct a reliable emer- 

ency response system, researchers have made efforts to better lo- 

ate critical facilities, such as emergency medical services (EMS) 

tations ( Beraldi & Bruni, 2009; Liu et al., 2019; Noyan, 2010 ), tem-

orary shelters ( Bayram & Yaman, 2018; Kınay, Kara, Saldanha-da 

ama, & Correia, 2018; Mostajabdaveh et al., 2019 ) or preposition- 

ng facilities ( Elçi & Noyan, 2018; Hong, Lejeune, & Noyan, 2015; 
152 
i, Shu, & Song, 2018; Rawls & Turnquist, 2010; Zhang & Li, 2015 ).

ur research focuses on locating testing facilities, which extend the 

ure strategic location problem to a dynamic setting. Related pa- 

ers are summarized in Table 1 . 

A series of papers focused on a static location model, which 

ssumed that the location and the corresponding capacity remain 

nchanged during the entire horizon regardless of the variations 

f demand ( Jabbarzadeh et al., 2014 ). Bayram, Tansel, & Yaman 

2015) developed a mixed-integer nonlinear program to study the 

ocation of shelters and evacuation routes after disasters, where 

he total evacuation time (a nonlinear function of the flow on 

egments) is minimized. Kılcı, Kara, & Bozkaya (2015) proposed 

 mixed-integer linear programming (MILP) model for selecting 

helters with area utilization. The model was validated by real 

ata from Kartal, Istanbul, Turkey, and a case study was conducted 

n the 2011 Van earthquake. Chen & Yu (2016) studied the loca- 

ion of temporary facility locations for the EMS system associated 

ith disaster-reduced demand and transportation infrastructure. 

he proposed integer programming is solved by Lagrangian relax- 

tion and tested by a case study of New Taipei City. Mostajabdaveh 

t al. (2019) focused on predisaster strategic decisions, i.e., deter- 

ining the location and size of emergency facilities in preparation 

or potential disasters. 

Demand fluctuations and variations are important features dur- 

ng pandemics. When demand varies, dynamic facility locations 

nd capacity planning problems can improve system performance 

y increasing the utilization of resources on hand. Generally, the 

ntire planning horizon is divided into several time periods, and 

he decisions are made periodically ( Melo, Nickel, & Saldanha-Da- 

ama, 2009 ). Dynamic location problems have been extensively 

tudied since the pioneering work of Ballou (1968) . We refer in- 

erested readers to review papers such as Arabani & Farahani 

2012) ; Nickel & Saldanha-da Gama (2019) for more details on 

eneral multiperiod location problems and Martínez-Costa et al. 

2014) ; Sabet et al. (2020) ; Van Mieghem (2003) for comprehen- 

ive surveys on strategic capacity planning. Related to our back- 

round, Jabbarzadeh et al. (2014) presented a multiperiod robust 

etwork model for blood supply, and the number and location 

f permanent and temporary facilities, allocation, and inventory 

ollected were optimized. Charles et al. (2016) proposed a two- 

tage scenario-based multiperiod relief network design model to 

ddress finding an optimal warehouse location, prepositioning, and 

istribution relief problems at a strategic level. Vatsa & Jayaswal 

2021) studied the network design of primary health centers in In- 

ia using a robust capacitated multiperiod maximal cover location 

odel with server uncertainty. 

According to Ni et al. (2018) , mitigation and preparedness are 

redisaster relief actions, while response and recovery pertain 

o postdisaster relief actions; therefore, we generally classify op- 

rations before and after emergencies as two separate phases. 

ost of the aforementioned papers solely optimized a single 

hase. For static problems, most papers, with only one exception 

ostajabdaveh et al. (2019) , focused on predisaster strategic deci- 

ions, i.e., determining the location and size of emergency facilities 

n preparation for potential disasters. For dynamic problems, re- 

earchers have mainly focused on the dynamic deployment of re- 

ources or victims after emergencies, such as relocation of EMS ve- 

icles ( Peng, Delage, & Li, 2020 ), relocating communities ( Xu et al.,

020 ) and optimizing evacuation routes ( Regnier, 2008 ). Studies 

onsidering humanitarian operations both pre- and postdisaster si- 

ultaneously are limited, and our paper belongs to this category. 

or example, Mostajabdaveh et al. (2019) developed a scenario- 

ased SP model with demand and disruption uncertainties and 

haracterized the expected outcome (predisaster) and realized out- 

ome (postdisaster) by the so-called ex ante and ex post inequality 

version objectives. Alem et al. (2021) developed a two-stage SP 
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Table 1 

Literature review on facility location and capacity planning strategies in humanitarian logistics. 

Paper Demand Multi-period Capacity design Two-stage Two-phase Solution approach Underlying setting 

pre post 

Kılcı et al. (2015) D � Solver Shelter location 

Bayram et al. (2015) D � Solver Shelter location & evacuation 

Chen & Yu (2016) D � LR EMS facility location 

Rawls & Turnquist (2010) U(SP) � � � LR Prepositioning of supplies 

Bayram & Yaman (2018) U(SP) � � BD Shelter location & evacuation 

Beraldi & Bruni (2009) U(SP,CC) � � � BB&He EMS facility location 

Noyan (2010) U(SP,CC) � � � He EMS facility location 

Hong et al. (2015) U(SP,CC) � � � PA&Solver Pre-disaster network design 

Elçi & Noyan (2018) U(SP,CC) � � � BD&BC Pre-disaster network design 

Kınay et al. (2018) U(SP,CC) � Solver Shelter location 

Mostajabdaveh et al. (2019) U(SP,CC) � � � Solver&GA Shelter location 

Ni et al. (2018) U(RO) � � BD Prepositioning of supplies 

Zhang & Li (2015) U(RO,CC) � � BC EMS facility location 

Liu et al. (2019) U(RO,CC) � � Solver EMS facility location 

Jabbarzadeh et al. (2014) U(RO) � � � � Solver Blood network design 

Charles et al. (2016) U(SP) � � � � Solver Relief network design 

Peng et al. (2020) U(SP,CC) � � � � BC EMS facility location 

Alem et al. (2021) U(SP) � � � � � Solver&He Prepositioning of supplies 

Vatsa & Jayaswal (2021) U(RO) � � � BD Primary Health Centers location 

This paper U(SP) � � � � � LR-OCO Testing facilities network design 

Demand D: determinate; U: uncertain; SP: stochastic programming; RO: robust optimization; 

CC: chance constraint 

Two-phase pre: pre-disaster; post: post-disaster 

Solution approach LR: Lagrangian Relaxation; BB: branch and bound; BD: Benders Decomposition 

GA: genetic algorithm; BC: branch and cut; PA: preprocessing algorithm; He: heuristic 

OCO: online convex optimization 
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odel to address the location, capacity, prepositioning, procure- 

ent, and assignment decisions during the preparedness and re- 

ponse phases with the social vulnerability index. Like Jabbarzadeh 

t al. (2014) and Charles et al. (2016) , we decide the long-term 

trategical decisions at the beginning of the planning horizon and 

djust the short-term tactical strategies with realized random de- 

and in each time period. 

To better characterize the inherent uncertainty and dynamic na- 

ure of emergencies, sequential decision-making with uncertainty 

s the primary solution approach to solve multiperiod dynamic lo- 

ation and capacity design problems. Powell (2011) first hinted 

t four classes for designing policies in sequential decision prob- 

ems and extended their earlier thinking by recognizing these four 

lasses into two categories in Powell (2016) , i.e., policy search, 

hich includes policy function approximations (PFAs) and cost 

unction approximations (CFAs), and policies based on lookahead 

pproximations, which include policies based on value function ap- 

roximations (VFAs) and lookahead approximations. Powell (2016, 

019a, 2019b) noted that the aforementioned four classes of poli- 

ies provide a simple and unified umbrella for problems that arise 

n stochastic optimization; that is, any solution to a sequential de- 

ision problem, such as MDP, SP, robust optimization (RO), and on- 

ine learning, uses one of the four classes or a hybrid. 

Uncertainties over a multiperiod planning horizon are ad- 

ressed with different methods ( Van Mieghem, 2003 ), such as DP 

nd SP. Shulman (1991) explicitly merged dynamic facility location 

ith capacity expansion and proposed a Lagrangian relaxation- 

ased procedure. Rajagopalan et al. (1998) studied capacity acquisi- 

ion decisions and their timing to meet customer demand by a DP- 

ased method. Lin, Chen, & Chu (2014) , Wang & Nguyen (2017) and 

eissner & Senicheva (2018) employed a stochastic DP to ana- 

yze the capacity planning problem; however, a large number of 

tates and actions significantly increased the computational bur- 

en. Meissner & Senicheva (2018) is the most relevant paper that 

ses MDP techniques; they examined a multilocation inventory 

ystem to optimize inventory transshipment sources, destinations, 

nd the number of units with dynamic and stochastic demand and 
153 
mployed DP introduced by Bellman (1966) to solve small-scaled 

nstances and an ADP approach to find near-optimal policies. Ac- 

ording to their results, DP can solve problems to optimality, but 

t is not able to tackle real-life instances due to the enormous 

ize of the states and decision spaces. Although ADP can obtain 

 near-optimal solution for real-life cases, the computational time 

s still unsatisfactory (for instance, the case with 20 facilities and 

8 days was solved in 2,059.55 seconds by ADP). As our problem is 

ore complex, MDP-based techniques are not suitable in our set- 

ing; compared with Meissner & Senicheva (2018) , our extensions 

an be summarized in the following two aspects. First, in addition 

o transportation flow and inventory, location is also an important 

ecision variable in our study, while they assumed location as an 

nput parameter. Second, our case study is composed of 66 facility 

andidates, 333 demand sites, and 250 days, which is much larger 

han their largest instance (20 facilities and 28 days). 

Currently, SP has become a fundamental methodology to ad- 

ress related problems by enumerating the underlying scenarios. 

awls & Turnquist (2010) described a two-stage scenario-based 

tochastic model with demand uncertainty to determine the lo- 

ation, sizing, and allocation of relief supplies. Bayram & Yaman 

2018) extend their earlier work in Bayram et al. (2015) through 

he consideration of uncertainties in evacuation demand and solve 

he proposed problem by Benders decomposition. Jin, Ryan, Wat- 

on, & Woodruff (2011) and Marín, Martínez-Merino, Rodríguez- 

hía, & Saldanha-da Gama (2018) formulated the capacity expan- 

ion planning problem with demand uncertainty as a two-stage 

P and dynamically determined the capacity expansion or trans- 

hipment decisions. Related problems can also be formulated as 

 multistage mixed-integer SP through a scenario tree. For in- 

tance, Singh, Philpott, & Wood (2009) and Yu, Ahmed, & Shen 

2021) adopted scenario trees to represent uncertainties in the ca- 

acity design and dynamic location problem, and the proposed 

ILP was solved by Dantzig-Wolfe decomposition and stochastic 

ual dynamic integer programming, respectively. Notably, a num- 

er of papers adopt chance constraints to describe uncertainty, and 

he computationally intractable chance constraints can be either 
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eformulated by a series of scenarios using SP ( Beraldi & Bruni, 

009; Elçi & Noyan, 2018; Hong et al., 2015; Kınay et al., 2018; 

ostajabdaveh et al., 2019; Noyan, 2010 ) or approximated by par- 

ial information via RO ( Liu et al., 2019; Zhang & Li, 2015 ). 

In this paper, we formulate a two-stage stochastic program (re- 

ormulated by the SAA approach) considering fill-rate constraints 

o solve our first-phase problem. The main challenge of the SAA 

pproach is that increasing the number of scenarios will lead to 

n exponential increase in computational complexity, and it may 

ot solve a large-scale instance such as the one that we examine. 

o overcome this difficulty, we adopt a novel approach by using an 

nline environment where demand arrives over time so that short- 

erm tactical strategies (such as capacity and assignment) can be 

djusted once the situation changes, i.e., the OCO technique. The 

CO method was first introduced by Zinkevich (2003) and could 

btain a near-optimal approximation for a given Lagrangian dual 

ultiplier in polynomial time. For more details about the OCO 

ramework, readers can refer to Cesa-Bianchi & Lugosi (2006) ; Lyu 

t al. (2019a) ; Lyu, Cheung, Teo, & Wang (2019b) ; Shalev-Shwartz 

t al. (2011) . Because of its theoretical guarantee and computa- 

ional tractability, the OCO framework has been successfully used 

n optimization areas such as online ride-matching ( Lyu et al., 

019b ) and production network optimization ( Lyu et al., 2019a ); 

e introduce this advanced algorithm to humanitarian logistics, 

here a unique and converged step direction is proposed based 

n the special structure of our problem. Specifically, we implement 

he online gradient descent algorithm in the Lagrangian relaxation 

pproach to achieve a sublinear regret bound compared with the 

ffline optimization approach. 

. Problem statement 

We consider a general multiperiod testing facility location and 

apacity design problem. The original network is composed of J fa- 

ility candidates and I demand sites. Total supplies delivered by 

 single facility should not exceed its current capacity, and a cer- 

ain demand site can be served by different facilities, i.e., a multi- 

ourcing assignment setting. The goal of this problem is to identify 

he optimal location and capacity strategies during the entire time 

orizon with the objective of minimizing the total operational cost. 

s demand uncertainty can never be underestimated, we introduce 

arameter d as representative of random demand. A type-II ser- 

ice level constraint is involved to keep customers satisfied, and 

nmet demand is strictly penalized in the objective. Service fair- 

ess another important issue for planners is achieved by defining 

he maximum covering distance. 

Throughout this paper, we use bold-face letters to denote vec- 

ors and matrices, such as d ; let set [ R ] = { 1 , 2 , . . . , R } for any posi-

ive integer R ; and use lower-case letters and upper-case letters to 

enote input parameters and decision variables, respectively. Nota- 

ions are summarized as follows. 

Parameters 

[ J] Set of facility candidates, [ J] = { 1 , 2 , · · · , J} , indexed by j. 

[ I] Set of demand sites, [ I] = { 1 , 2 , · · · , I } , indexed by i . 

[ T ] Set of time periods, [ T ] = { 1 , 2 , · · · , T } , indexed by t . 

f j Fixed construction cost of opening a facility at node j. 

a jt Varying construction cost of investigating one unit of 

capacity at facility candidate j in period t . 

η Unit transportation cost. 

c i j Travel distance between demand site i and facility candidate 

j. 

p it Unit penalty cost of unmet demand at demand site i in 

period t . 

d i (t) Demand at demand site i in period t . 

( continued on next page ) 
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M Maximum amount of capacity (a large positive number). 

βi Expected demand fill rate (type-II service level) at demand 

site i . 

T max Maximum covering distance. 

Cov i Set of location candidates that can cover demand site i , 

Cov i = { j ∈ [ J] | c i j ≤ T max } . 
Dem j Set of demand sites that could be served by facility j, 

Dem j = { i ∈ [ I] | c i j ≤ T maximum } . 
Decision variables 

X j Binary variable; equals 1 if a facility is built at node j and 0 

otherwise. 

S j (t) Continuous variable; capacity available of facility j in period 

t . 

Y i j (t) Continuous variable: amount of relief supplies that travels 

from facility j to demand site i in period t . 

W i (t) Continuous variable; unmet demand of node i in period t . 

To ensure that every demand site could obtain prompt relief 

ervice with equal probability, we define the maximum distance 

hat demand sites could be covered ( T max ) and use sets Cov i and 

em j to denote responsive service regions. Without loss of gener- 

lity, the mathematical model is based on the following assump- 

ions: 

a) Facilities are built in the first period with a corresponding ini- 

tial capacity and are not be destroyed later. 

b) Capacity could be adjusted with realizations of time-varying 

demand. 

c) A dummy period 0 is introduced, where the initial values of 

S j (0) = 0 , ∀ j ∈ [ J] . 

As building a facility can be expensive and the effect is long- 

asting, facilities are unlikely to be destroyed once built; therefore, 

ssumption (a) has been widely used in related studies such as 

hat of Charles et al. (2016) ; Jabbarzadeh et al. (2014) ; Vatsa & 

ayaswal (2021) ; Yu & Shen (2020) . Nevertheless, decision-makers 

hould respond in a timely manner to demand fluctuations. To this 

nd, assumption (b) finds a cheaper and easier way, where facil- 

ty capacity could be adjusted by incorporating additional inves- 

igation cost ( Nickel & Saldanha-da Gama, 2019 ). Assumption (c) 

efines the values of auxiliary decision variables to remain consis- 

ent. 

Essentially, the determinate facility location and capacity con- 

guration problem with perfect information can be formulated as 

he following MILP. 

P1] min 

∑ 

j∈ [ J] 
f j X j + 

∑ 

t∈ [ T ] 

∑ 

j∈ [ J] 
a jt 

(
S j (t) − S j (t − 1) 

)
+ η

∑ 

t∈ [ T ] 

∑ 

i ∈ [ I] 

∑ 

j∈ [ J] 
c i j Y i j (t) + 

∑ 

t∈ [ T ] 

∑ 

i ∈ [ I] 
p it W i (t) , (1a) 

.t. 
∑ 

j∈ Cov i 

Y i j (t) ≥ βi d i (t) , ∀ i ∈ [ I] , t ∈ [ T ] , (1b) 

∑ 

j∈ Cov i 

Y i j (t) + W i (t) ≥ d i (t) , ∀ i ∈ [ I] , t ∈ [ T ] , (1c) 

∑ 

i ∈ Dem j 

Y i j (t) ≤ S j (t) , ∀ j ∈ [ J] , t ∈ [ T ] , (1d) 

 j (t) ≤ MX j , ∀ j ∈ [ J] , t ∈ [ T ] , (1e) 

 j (t) ≥ S j (t − 1) , ∀ j ∈ [ J] , t ∈ [ T ] , (1f) 

 j ∈ { 0 , 1 } , ∀ j ∈ [ J] , (1g) 
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Fig. 1. Sketch of the solution approach (capacity expansion is illustrated by larger facility icons). 
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 j (t) , W j (t) ≥ 0 , ∀ j ∈ [ J] , t ∈ [ T ] , (1h) 

 i j (t) ≥ 0 , ∀ i ∈ [ I] , j ∈ [ J] , t ∈ [ T ] . (1i) 

The objective function (1a) minimizes the total operational cost, 

hich includes construction cost, capacity expansion cost, trans- 

ortation cost, and penalty cost. Constraints (1b) indicate that sup- 

lies allocated to demand site i should be larger than its ex- 

ected demand with a βi fill rate (type-II service level). Constraints 

1c) are the flow conservation constraint. Constraints (1d) ensure 

hat exported supplies should be no larger than their capacity. 

onstraints (1e) state that capacity could only be allocated to an 

pen facility. Constraints (1f) to (1i) are integrity and nonnegative 

onstraints. 

. Solution approach 

To better fit reality, we divide the problem into two phases: a 

onstruction phase and an operational phase (see Fig. 1 ). Specifi- 

ally, we first decide the location and initial capacities of the test- 

ng facilities, and then infrastructures go into service with capac- 

ty expansion decisions in each time period. During the operating 

rocess, it is less time-consuming and more convenient to adjust 

acility capacities facing varying demands. As shown in Fig. 1 a, the 

nitial location and capacity strategies are first determined during 

he construction phase ( t = 1 ); in regard to Fig. 1 b, which is named

he operational phase, capacity adjustment is allowed; for example, 

he capacity of facility C is enlarged in period 2, and the capacities 

f facilities B and D are further expanded in period 3. Moreover, as- 

ignment policies could also be modified; see the red-colored lines 

n Fig. 1 b. 

.1. Basic idea 

Solving problem [P1] requires addressing T time periods simul- 

aneously, which might result in a large-scale MILP. Furthermore, 

s demand parameter d it is unknown in the initial stage, it is un- 

ikely to obtain a perfect estimation of future demand. To circum- 

ent computational difficulties and compensate for the lack of full 

nformation, we propose a two-phase algorithm to solve this prob- 

em, which is in line with reality and easy to implement. 
155 
• Phase I (Construction Phase). Location design and capacity 

initialization: Determine the location X j and the initial ca- 

pacity S j (1) with predicted demand. During the time horizon, 

we evaluate future demand by K ( K = T ) predicted samples, 

which correspond to T different periods, and the k th sample de- 

notes the predicted demand at the corresponding time period. 

Thus, problem [P1] could be considered a single-period location 

and capacity design model with K scenarios. We employ a La- 

grangian relaxation algorithm to solve the reformulated model, 

where an OCO technique, namely, online gradient descent, is 

used to solve the subproblem within each iteration. 
• Phase II (Operational Phase). Dynamic capacity planning: 

Determine the capacity increment �S j (t) , allocation schedule 

Y i j (t) , and corresponding decisions W i (t) dynamically. After ob- 

serving the revealed demand at time period t , we make capac- 

ity planning decisions dynamically, with the objective of mini- 

mizing various costs, including varying construction cost of ca- 

pacity expansion, transportation cost, penalty cost of unmet de- 

mands, and satisfying the service level of each demand site. 

.2. Phase I (construction phase): Location design and capacity 

nitialization 

In this section, we develop a Lagrangian relaxation algorithm 

o determine the location design X j and the initial capacity S j (1) 

iven expected service level targets. For simplicity, we use S j to 

eplace S j (1) in this subsection. 

.2.1. Model formulation 

The multiperiod model is first transformed into a single-period 

odel with K demand scenarios ˆ d i (k ) , k = 1 , · · · , K. Assume that

emand of demand site i follows probability distribution function 

 i and lives in an uncertainty set [ D ] i , i.e., d i ∼ D i , [ D ] i := { d : d ∼
 i } ; then, the model can be reformulated as follows: 

P2] min 

∑ 

j∈ [ J] 
f j X j + 

∑ 

j∈ [ J] 
a j S j + 

∑ 

i ∈ [ I] 
E 

[ 

η
∑ 

j∈ [ J] 
c i j Y i j (d i ) + p i W i (d i ) 

] 

, 

(2a) 

.t. E 

[ ∑ 

j∈ Cov i 

Y i j (d i ) 

] 

≥ βi E D i [ d i ] , ∀ i ∈ [ I] , (2b) 

∑ 

j∈ Cov i 

Y i j (d i ) + W i (d i ) ≥ d i , ∀ i ∈ [ I] , d i ∈ [ D ] i , (2c) 
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∑ 

i ∈ Dem j 

Y i j (d i ) ≤ S j , ∀ j ∈ [ J] , d i ∈ [ D ] i , (2d) 

 j ≤ MX j , ∀ j ∈ [ J] , (2e) 

 j ∈ { 0 , 1 } , ∀ j ∈ [ J] , (2f) 

 j , W j (d i ) ≥ 0 , ∀ j ∈ [ J] , d i ∈ [ D ] i , (2g) 

 i j (d i ) ≥ 0 , ∀ i ∈ [ I] , j ∈ [ J] , d i ∈ [ D ] i . (2h) 

here a j and p i are the corresponding expected values computed 

s 

 j = 

∑ K 
k =1 a jk 

K 

, p j = 

∑ K 
k =1 p jk 

K 

. 

.2.2. Sample average approximation reformulation 

Intuitively, it is generally intractable to solve problem [P2] di- 

ectly with expected terms. To tackle this difficulty, the use of a 

ypical solution approach, SAA, is a popular choice to approximate 

he expectation terms in the objective and constraints by sampling 

demand scenarios 

{ 

ˆ d i (k ) 
} K 

k =1 
, where K is a sufficiently large 

umber. For ease of notation, we denote the capacity that facil- 

ty j allocates to demand site i by Y i j (k ) and the unmet demand of

ustomer i by W i (k ) if d i = 

ˆ d i (k ) . Then, the reformulated model is

ummarized as problem [P3]. 

P3] min 

∑ 

j∈ [ J] 
f j X j + 

∑ 

j∈ [ J] 
a j S j 

+ 

1 

K 

lim inf 
K→∞ 

∑ 

i ∈ [ I] 

[ 

η
∑ 

j∈ [ J] 
c i j Y i j (k ) + p i W i (k ) 

] 

, (3a) 

.t. lim inf 
K→∞ 

∑ K 
k =1 

∑ 

j∈ Cov i 
Y i j (k ) ∑ K 

k =1 
ˆ d i (k ) 

≥ βi , ∀ i ∈ [ I] , (3b) 

∑ 

j∈ Cov i 

Y i j (k ) + W i (k ) ≥ ˆ d i (k ) , ∀ i ∈ [ I] , k ∈ [ K] , (3c) 

∑ 

i ∈ Dem j 

Y i j (k ) ≤ S j , ∀ j ∈ [ J] , k ∈ [ K] , (3d) 

 j ≤ MX j , ∀ j ∈ [ J] , (3e) 

 j ∈ { 0 , 1 } , ∀ j ∈ [ J] , (3f) 

 j ≥ 0 , ∀ j ∈ [ J] , (3g) 

 j (k ) ≥ 0 , ∀ j ∈ [ J] , k ∈ [ K] , (3h) 
 i j (k ) ≥ 0 , ∀ i ∈ [ I] , j ∈ [ J] , k ∈ [ K] . (3i) 
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.2.3. Lagrangian reformulation 

For problem (P3), we consider its Lagrangian dual formulation 

y introducing the Lagrangian dual multiplier λ in correspondence 

ith the service level constraints, which can be formulated as 

P4] max 
λ≥0 

min 

∑ 

j∈ [ J] 
f j X j + 

∑ 

j∈ [ J] 
a j S j 

+ 

1 

K 

K ∑ 

k =1 

∑ 

i ∈ [ I] 

[ 

η
∑ 

j∈ [ J] 
c i j Y i j (k ) + p i W i (k ) 

] 

, 

+ 

∑ 

i ∈ I 
λi 

[ 

βi 

K ∑ 

k =1 

ˆ d i (k ) −
K ∑ 

k =1 

∑ 

j∈ Cov i 

Y i j (k ) 

] 

s.t. (3 c) - (3 i ) . (4a) 

Following the classic paradigm of Nocedal & Wright (2006) , 

roblem [P4] could be solved iteratively by minimizing the in- 

er problem regarding original decision variables ( X , S , Y , W ) and 

aximizing the outer optimization model with respect to the La- 

rangian multiplier ( λ). Suppose in the n th iteration with respect 

o λ, the inner minimization problem with fixed λn 
is [P5]. 

[P5] φn ( X , S | λ = λn 
, d = 

ˆ d ) 

= min 

∑ 

j∈ [ J] 
f j X j + 

∑ 

j∈ [ J] 
a j S j 

+ 

1 

K 

K ∑ 

k =1 

∑ 

i ∈ [ I] 

[ 

η
∑ 

j∈ [ J] 
c i j Y i j (k ) + p i W i (k ) 

] 

+ 

∑ 

i ∈ I 
λn 

i 

[ 

βi 

K ∑ 

k =1 

ˆ d i (k ) −
K ∑ 

k =1 

∑ 

j∈ Cov i 

Y i j (k ) 

] 

, 

.t. (3 c) - (3 i ) . (5a) 

.2.4. Online gradient descent algorithm for a given lagrangian dual 

ultiplier 

Define ( X 

n ∗, S n ∗) as the optimal solution of [P5] when λ = λn 
, 

.e., ( X 

n ∗, S n ∗) = arg min φn ( X , S | λ = λn 
, d = 

ˆ d ) . Note that problem

P5] requires addressing all demand scenarios simultaneously and 

ould result in a time-consuming MILP if K is large. Instead of 

nding X 

n ∗ and S n ∗ directly, we use an online gradient descent al- 

orithm to develop a feasible capacity profile S n (k − 1) , k ∈ [ K] of

P5], and use these to construct a near-optimal approximation of 

 

n ∗. Afterward, X 

n ∗ could be obtained through a simple injective 

unction π : R 

I + → [0 , 1] I , such that 

 

n ∗ = π( S n ∗) = 

{
1 , if S n ∗ > 0 , 

0 , if S n ∗ = 0 . 
(6) 

s X j can always be observed through the injective function π , we 

nly focus on S j while solving problem [P5]. 

In accordance with the roadmap of the OCO technique, [P5] 

nly depends on 

ˆ d i (k ) , Y i j (k ) and W i (k ) with fixed capacity pro-

le S n (k − 1) and the corresponding location X 

n (k − 1) , k ∈ [ K] .

herefore, we can obtain a decomposed subproblem [P6] by letting 

= λn 
, X = X 

n (k − 1) , S = S n (k − 1) and d = 

ˆ d (k ) . 

P6] f n k ( S 
n (k − 1) , λn 

, ̂  d (k )) 

= min 

∑ 

i ∈ [ I] 

[ ∑ 

j∈ [ J] 
(ηc i j − λn 

i ) Y i j (k ) + p i W i (k ) 

] 

, (7a) 

.t. 
∑ 

j∈ Cov i 

Y i j (k ) + W i (k ) ≥ ˆ d i (k ) , ∀ i ∈ [ I] , (7b) 

∑ 

i ∈ Dem j 

Y i j (k ) ≤ S n j (k − 1) , ∀ j ∈ [ J] , (7c) 
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 j (k ) ≥ 0 , ∀ j ∈ [ J] , (7d) 

 i j (k ) ≥ 0 , ∀ i ∈ [ I] , j ∈ [ J] (7e) 

Based on the dual form of problem [P6], S n 
j 
(k ) could be updated

ccording to the gradient descent direction (find more details in 

tep 3.2 of Algorithm 1 ). With fixed λ, we obtain a near-optimal 

 

n 
j 

after dealing with all K samples. Finally, the entire algorithm 

erminates whenever λ converges. 

.2.5. Procedure of OCO-based lagrangian relaxation 

Detailed procedures of the algorithm are presented as follows: 

lgorithm 1. OCO-based LR for location design and capacity ini- 

ialization algorithm. 

• Input : Demand distribution D 

• Output : Location design X 

∗, capacity initialization S ∗ and the 

initial assignment policy Y ∗. 

• Step 1: Sample generation . Generate K demand samples d (k ) 

independently according to the distribution of demand D , 

where k ∈ [ K ] , and K is a sufficiently large number. Arbitrarily

sort the K samples into a sequence. In the multiperiod problem, 

the K samples can use the forecast demand at T time periods 

directly. 

• Step 2: Initialization. Solve a deterministic model with the av- 

erage demand, i.e., d i = 

∑ K 
k =1 

d jk 
K , and initialize the location and 

capacity decisions. 

[DM] min 

∑ 

j∈ [ J] 
f j X j + 

∑ 

j∈ [ J] 
a j S j + 

∑ 

i ∈ [ I] 
η

∑ 

j∈ [ J] 
c i j Y i j + p i W i , (8a) 

s.t. 
∑ 

j∈ Cov i 

Y i j ≥ βi d i , ∀ i ∈ [ I] , (8b) 

∑ 

j∈ Cov i 

Y i j + W i ≥ d i , ∀ i ∈ [ I] , (8c) 

∑ 

i ∈ Dem j 

Y i j ≤ S j , ∀ j ∈ [ J] , (8d) 

S j ≤ MX j , ∀ j ∈ [ J] , (8e) 

X j ∈ { 0 , 1 } , ∀ j ∈ [ J] , (8f) 

S j , W j ≥ 0 , Y i j ≥ 0 , ∀ i ∈ [ I] , j ∈ [ J] . (8g) 

Assume the optimal solutions of the above DM are X 

∗, S ∗, and 

Y ∗. Set the iteration number n = 0 , and, 

X 

0 = X 

∗
, S 0 = S ∗, λ0 

i := βi d i −
∑ 

j∈ J 
Y ∗i j , ∀ i ∈ [ I] . 

• Step 3: Compute the location design and capacity initial- 

ization . Execute the iteration process. In each iteration n , we 

use the online gradient descent algorithm to compute a near- 

optimal approximation for S n ∗. 

- Step 3.1 . For k = 1 , 2 , . . . , K, do the following: 
∗ Solve the following primal problem given the demand 

scenario ˆ d (k ) and the Lagrangian dual multiplier λn 
: 

min 

∑ 

i ∈ [ I] 

[ ∑ 

j∈ [ J] 
(ηc i j − λn 

i ) Y i j (k ) + p i W i (k ) 

] 

, 
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s.t. 
∑ 

j∈ Cov i 

Y i j (k ) + W i (k ) ≥ ˆ d i (k ) , ∀ i ∈ [ I] , 

∑ 

i ∈ Dem j 

Y i j (k ) ≤ S n j (k − 1) , ∀ j ∈ [ J] , 

W j (k ) ≥ 0 , ∀ j ∈ [ J] , 

Y i j (k ) ≥ 0 , ∀ i ∈ [ I] , j ∈ [ J] , 

∗ Solve the following dual problem: 

max 
∑ 

i ∈ [ I] 

ˆ d i (k ) u i (k ) + 

∑ 

j∈ [ J] 
S n j (k − 1) v j (k ) , 

s.t. b i j 

(
u i (k ) + v j (k ) 

)
≤ ηc i j − λn 

i , ∀ i ∈ [ I] , j ∈ [ J] 

u i (k ) ≤ p i , ∀ i ∈ [ I] , 

u i (k ) ≥ 0 , ∀ i ∈ [ I] , 

v j (k ) ≤ 0 , ∀ j ∈ [ J] , 

where b i j = 1 if c i j ≤ T max , otherwise, b i j = 0 . 
∗ Update the capacity. Denote the step size γ (k ) := 

1 √ 

k 
and 

step direction 

∇ S n 
j 
(k −1) f (·) := 1 S n 

j 
(k −1)=0 · f j + a j + v j (k ) , 

where 1 (·) is the indicator function. v j (t) denotes the 

optimal solution to the dual problem that corresponds 

to the capacity constraint, and thus, its value depends on 

S n (k − 1) . Here, 1 S n 
j 
(k −1)=0 · f j + a j denotes the cost of in- 

creasing capacity, while v j (k ) is the profit as capacity in- 

creases. Therefore, if ∇ S n 
j 
(k −1) f (·) ≤ 0 , the planner tends 

to increase the capacity; otherwise, the capacity should 

be decreased to reduce cost. Thus, we define the gradi- 

ent as follows: 

S n j (k ) := max 

{ 

S n j (k − 1) − γ (k ) ∇ S n 
j 
(k −1) f (·) , 0 

} 

. 

- Step 3.2 . Compute the average capacity and expected alloca- 

tion quantity on each flow over K scenarios: 

S̄ 
n = 

∑ K 
k =1 S 

n (k − 1) 

K 

, Ȳ n i j := 

∑ K 
k =1 Y 

n 
i j 
(k ) 

K 

. 

where Y n 
i j 
(k ) denotes the optimal solution to the primal 

problem in scenario k with fixed λn 
. 

• Step 4: Dual multiplier update . Update the dual multiplier 

λn +1 
as follows: 

λn +1 
i 

:= λn 
i + 

1 √ 

n 

( 

βi 

∑ K 
k =1 d jt 

K 

−
∑ 

j∈ J 
Y n i j 

) 

. 

where 1 √ 

n 
represents the step size. 

• Step 5: Iterate until the algorithm terminates . Define a pre- 

determined tolerance threshold ε and terminate the above pro- 

cess when max i ∈ I 
{
λn +1 

i 
− λn 

i 

}
≤ ε. Then, the optimal capacity 

S ∗ = S̄ 
n 
, the optimal location design X 

∗ = X̄ 

n 
, and the corre- 

sponding initial assignment policy Y ∗ = Ȳ 
n 

constitute the de- 

sired profile. Otherwise, let n = n + 1 and go back to Step 3. 

In Step 3 of Algorithm 1 , we employ an online gradient descent 

lgorithm to achieve a near-optimal approximation of S n ∗. Specifi- 

ally, we aim to minimize the average regret from using 
{

S n (k ) 
}K 

k =1 
ver K scenarios, defined as 

egret (K) := 

1 

K 

[ 

K ∑ 

k=1 

f n k ( λ
n 
, X 

n 
, S n , ̂  d (k)) −

K ∑ 

k=1 

f n k ( λ
n ∗

, X 

n ∗
, S n ∗, ̂  d (k)) 

] 

. 

(11) 

heorem 4.1 is proposed to guarantee the performance of the on- 

ine gradient descent algorithm. That is, the results obtained by the 
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nline gradient descent algorithm are a near-optimal solution of 

 

n ∗. 

heorem 4.1. The average regret of the online gradient descent algo- 

ithm satisfies the following nonasymptotic bound: 

egret (K) ≤ O( 
1 √ 

K 

) . (12) 

roof. The detailed proof is displayed in Appendix A.1 . �

Theorem 4.1 shows that as K tends to infinity, the gap between 

ur method and the optimal solution tends to be 0. This means 

ur method can obtain the optimal solution when K → ∞ . Further- 

ore, our method has an enormous advantage in that the com- 

utational complexity increases linearly with increasing K. There- 

ore, the computational difficulty of our method only depends on 

he complexity of the subprimal and subdual problems. However, 

he traditional method, which can obtain the optimal solutions, 

eeds to address all K samples simultaneously. It is intractable 

hen K → ∞ , since the computational complexity increases expo- 

entially with the increase of K. 

.3. Phase II (Operational Phase): Dynamic capacity planning 

Given the location design X j and capacity initialization S j (1) 

btained from subsection 4.2 , we address a dynamic capacity plan- 

ing problem to fulfill the requirements during the operational 

hase of each time period. In each time period t , we need to de- 

ide the capacity increment �S j (t) , the allocation schedule Y i j (t) 

nd the corresponding unmet demand W i (t) . 

In this subsection, we propose two allocation policies, which 

an be implemented in different requirements: 

• Dynamic allocation (DA) policy with a single objective. This 

policy applies in the scenario where the planner focuses on the 

minimization of the total cost. 
• Adaptive dynamic allocation (ADA) policy with multiple ob- 

jectives. This policy focuses on the case in which the plan- 

ner has multiple predetermined targets and aims to achieve all 

these targets within a long time period. 

.3.1. Dynamic allocation policy with a single objective 

This policy is an intuitive allocation policy that solves the fol- 

owing submodel period by period. For each t, t ∈ [ T ] , 

Sub1(t)] min 

∑ 

j∈ [ J] 
a jt �S j (t) + η

∑ 

i ∈ [ I] 

∑ 

j∈ [ J] 
c i j Y i j (t) + 

∑ 

i ∈ [ I] 
p it W i (t) ,

(13a) 

s.t. 
∑ 

j∈ Cov i 

Y i j (t) ≥ βi d i (t) , ∀ i ∈ [ I] , (13b) 

∑ 

j∈ Cov i 

Y i j (t) + W i (t) ≥ d i (t) , ∀ i ∈ [ I] , (13c) 

∑ 

i ∈ Dem j 

Y i j (t) ≤ �S j (t) + S j (t − 1) , ∀ j ∈ [ J] , (13d) 

�S j (t) ≤ MX j , ∀ j ∈ [ J] , (13e) 

�S j (t) , W j (t) ≥ 0 , ∀ j ∈ [ J] , (13f) 

Y i j (t) ≥ 0 , ∀ i ∈ [ I] , j ∈ [ J] . (13g) 

This policy focuses on the minimization of total cost. 
158 
.3.2. Adaptive dynamic allocation policy 

In practice, planners may have some predetermined targets be- 

ore making decisions. For example, in humanitarian logistics, they 

im to reduce the quantity of the unmet demand to zero. There- 

ore, in this subsection, we adopt an adaptive dynamic allocation 

olicy, which can achieve all these targets if they are attainable 

nd can obtain a point that is closest to the unattainable target. 

To better meet the requirements of this problem compared with 

he dynamic policy in subsection 4.3.1 , we consider the following 

hree objectives: varying capacity construction cost, transportation 

ost, and penalty cost for unmet demand. In addition, other objec- 

ives can also be involved, which has no influence on the following 

nalysis. The three objectives are given as follows: 

 1 (·, d (t)) = 

∑ 

j∈ [ J] 
a jt �S j (t) , 

 2 (·, d (t)) = η
∑ 

i ∈ [ I] 

∑ 

j∈ [ J] 
c i j Y i j (t) , 

 3 (·, d (t)) = 

∑ 

i ∈ [ I] 
p it W i (t) . 

n a long period of time, the decision-maker aims to address the 

ollowing multiobjective problem: 

AM0] min 

{ 

1 

T 

T ∑ 

t=1 

g 1 (·, d (t)) , 
1 

T 

T ∑ 

t=1 

g 2 (·, d (t)) , 
1 

T 

T ∑ 

t=1 

g 3 (·, d (t)) 

} 

,

(14a) 

s.t. 
∑ 

j∈ Cov i 

Y i j (t) ≥ βi d i (t) , ∀ i ∈ [ I] , t ∈ [ T ] , (14b) 

∑ 

j∈ Cov i 

Y i j (t) + W i (t) ≥ d i (t) , ∀ i ∈ [ I] , t ∈ [ T ] , (14c) 

∑ 

i ∈ Dem j 

Y i j (t) ≤ �S j (t) + S j (t − 1) , ∀ j ∈ [ J] , t ∈ [ T ] , 

(14d) 

�S j (t) ≤ MX j , ∀ j ∈ [ J] , t ∈ [ T ] , (14e) 

�S j (t) , W j (t) ≥ 0 , ∀ j ∈ [ J] , t ∈ [ T ] , (14f) 

Y i j (t) ≥ 0 , ∀ i ∈ [ I] , j ∈ [ J] , t ∈ [ T ] . (14g) 

The function g k (·, d ) denotes the k th objective function under 

cenario d . In problem [AM0], each decision is made at period t

sing only the historical information available up to period t , i.e., 

 

�S (s ) , Y (s ) , W (s ) , d (s ) } t−1 
s =1 ∪ { d (t) } , 

hile future information such as { d (t + 1) , · · · , d (T ) } is unknown. 

Next, we define the predetermined multiobjective target. Based 

n the solution of Phase I, we define the multiobjective targets 

= { τ1 , τ2 , τ3 } , where τ1 = 0 , τ2 = η
∑ 

i ∈ [ I] 
∑ 

j∈ [ J] c i j Y 
∗
i j 

, τ3 = 0 , and

 

∗ denotes the achieved assignment solution of Phase I. After ob- 

aining the initial location and capacity decisions in Phase I, we 

urther explain the values of three targets in Phase II as follows: (1) 

inimize the total varying capacity expansion cost; (2) ensure that 

he transportation cost is near the predetermined value in Phase I; 

nd (3) try to decrease the total penalty cost to zero. 

Let αk ( d ) be the debt of objective k under scenario d ; i.e., the 

ifference between target τ and g (·, d ) , α ( d ) := g (·, d ) − τ . In
k k k k k 
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he beginning of each period t + 1 , the average debt of objective k

rom periods 1 to t is recorded as w k (t + 1) ; i.e., 

 k (t + 1) = 

1 

t 

t ∑ 

s =1 

αk (s ) . (15) 

ssentially, w k is positively correlated with the weight of objec- 

ive k . If the required target is not achieved, where w k (t + 1) > 0 ,

e need to give higher priorities to objective k . Otherwise, for 

hose w k (t + 1) ≤ 0 , their corresponding objectives have already 

een achieved, and no additional attention is necessary. Altogether, 

e use the vector w 

+ 
k 
(t) = max { 0 , w k (t) } to quantify the gap be-

ween target τk and the current solution g k ( ·, d (t) ) at period t , 

hich suggests the priority associated with each objective func- 

ion. Next, we introduce our adaptive dynamic allocation policy. 

lgorithm 2. Adaptive dynamic allocation policy for capacity plan- 

ing. 

• Input : Demand { d (1) , d (2) , · · · , d (T ) } . 
• Output : Adjusted capacity ˜ S 

∗
. 

• Step 1 : Initialization. Set t = 1 , initial weight w (1) = { 1 , 1 , 1 } . 
• Step 2 : Solve the subproblem. 

[Sub2(t)] min 

3 ∑ 

k =1 

w 

+ 
k 
(t) · g k (·, d (t)) , (16a) 

s.t. 
∑ 

j∈ Cov i 

Y i j (t) ≥ βi d i (t) , ∀ i ∈ [ I] , (16b) 

∑ 

j∈ Cov i 

Y i j (t) + W i (t) ≥ d i (t) , ∀ i ∈ [ I] , (16c) 

∑ 

i ∈ Dem j 

Y i j (t) ≤ �S j (t) + S j (t − 1) , ∀ j ∈ [ J] , (16d) 

�S j (t) ≤ MX j , ∀ j ∈ [ J] , (16e) 

�S j (t) , W j (t) ≥ 0 , ∀ j ∈ [ J] , (16f) 

Y i j (t) ≥ 0 , ∀ i ∈ [ I] , j ∈ [ J] . (16g) 

• Step 3: Update weights. For k = 1 , 2 , 3 , we update the weights

as follows: 

w 

+ 
k 
(t + 1) = max 

{
(t − 1) w k (t) + g k (·, d (t)) − τk 

t 
, 0 

}
, (17) 

Update t = t + 1 and return to Step 2 if t < T ; otherwise, adjust

the final ˜ S ∗
j 

by the incumbent number �S j ; thus, export ˜ S 
∗ = 

˜ S 
∗ + �S (T ) . 

As a minimization problem, g k (·, d (t)) converges to τk from the 

op during the iterations; therefore, αk ( d ) ≥ 0 at the initial stages. 

efinition (17) indicates that the objectives that deviate much from 

he corresponding target should receive more weight in the next 

eriod. 

Let g ∗
k 

be the performance of objective k with the target-based 

ptimal solution to an expected single-period problem; when ob- 

ective 3 is taken as an example, g ∗
3 

= E [ D ] 

[∑ 

i ∈ [ I] p it W i ( d ) 
]
. More- 

ver, let w 

∗
k 

= τk − g ∗
k 

represent the debt vector of the single-period 

roblem ( g ∗
k 
) with respect to target k ( τk ). Recall the theorem pro-

osed by Lyu et al. (2019b) , which gives the theoretical perfor- 

ance guarantee of the proposed ADA policy w 

+ (T + 1) and the 

xpected single-period model ( w 

∗) + . 
159 
heorem 4.2. ( Lyu et al., 2019b ) Consider the multiperiod, multi- 

bjective dynamic capacity planning problem [AM0] . Weight vector 

 (t) under the ADA policy converges to the optimal weight vector 

 

∗. Specifically, it satisfies the following: 

 

[|| w 

+ (T + 1) || 2 2 

]
− E 

[|| ( w 

∗) + || 2 2 

]
≤ O 

(
1 + log T 

T 

)
, (18) 

here the expectation in inequality (18) is taken over d 1 , d 2 , . . . , d T , 

nd || · || 2 is the Euclidean norm of a vector. 

roof. For the details of the proof, we refer readers to Lyu et al.

2019b) . �

We make the following three remarks about our policy. First, 

ur policy can be used to examine the attainability of any pre- 

etermined targets. If the Euclidean norm of the vector w (T + 1) 

ould not converge to 0 as T increases by using the ADA pol- 

cy, then the corresponding target cannot be attained by any other 

on-anticipative policies. Second, the ADA policy is indeed nonan- 

icipatory since the average vector w (T + 1) at period (t + 1) is 

alculated based on the debt from period 1 to t without observing 

uture information. Third, the ADA policy does not require track- 

ng another status of the system and can be easily applied to solve 

arge-scale problems in real time. 

. Case study 

In this section, we use a case study to verify the efficiency and 

ffectiveness of the proposed approaches. Testing data are gener- 

ted based on a case study related to the preparedness phase of 

esting facility location design under pandemic threats. 

A laptop with an Intel Core 5 Duo 2.2 GB CPU and 4 GB of RAM

nd running Windows 10 is used to conduct all numerical experi- 

ents. We employ CPLEX 12.8 as the MILP, and the procedure ter- 

inates with a relative optimality tolerance 10 −4 . 

.1. Instance generation 

With respect to the time during COVID-19 exposure, we com- 

ine three sources of data as inputs to find the optimal loca- 

ions of testing facilities and their corresponding capacity in Bei- 

ing, China. The first source is from the COVID-19 Data Reposi- 

ory ( Dong, Du, & Gardner, 2020 ), which is attributed to the Center 

or Systems Science and Engineering (CSSE) at Johns Hopkins Univer- 

ity from GitHub ( https://github.com/CSSEGISandData/COVID-19 ). 

he database achieved a complete list of all sources related to 

OVID-19, which includes the time series data of a number of con- 

rmed cases, deaths, and recovered cases. In this paper, we adopt 

he number of active cases in Beijing from January 21, 2020, to 

eptember 27, 2020 (250 days in total). Fig. 2 illustrates the criti- 

al trend of active COVID-19 cases, in which the peak value is 326, 

ccurring on June 30, 2020. 

The second source is demographic and economic data from the 

hinese census bureau or business investigation. The total pop- 

lation of 333 citywide towns from Beijing based on the 5 th 

ational census in 2010 is summarized and is available from 

hina National Knowledge Infrastructure (CNKI) . The average hous- 

ng price of districts in Beijing is derived from Anjuke Corporation 

nd is used to evaluate fixed facilities construction cost. 

The third source is the geographic data from Gaode web API . 

fter the selection of demand sites and facility candidates, we ob- 

ain their corresponding longitudes and latitudes via Python 3.6 

rom Gaode . To better visualize the computational results, bound- 

ry data of the 16 districts of Beijing are also obtained in a similar 

anner. Fig. 3 illustrates the locations of candidate facilities (green 

riangles) and demand sites (black dots), where Fig. 3 a depicts the 

https://github.com/CSSEGISandData/COVID-19
https://navi.cnki.net/KNavi/YearbookDetail?pcode=CYFD%26pykm=YBPCZ%26bh=
https://www.sohu.com/a/328289075_391270
https://lbs.amap.com/api/webservice/summary/
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Fig. 2. Active COVID-19 cases in Beijing from January 21, 2020, to September 27, 2020. 

Fig. 3. Locations of demand sites and facility candidates. 
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istribution of critical nodes across the city, and Fig. 3 b focuses on 

etails in the downtown area. 

The candidate facilities can be generally classified into four cat- 

gories: 3A hospitals, regional hospitals, regional centers for dis- 

ase control and prevention (CDCs), and commercial testing insti- 

utes. Interested readers can find details on facility candidates from 

able D.8 of Appendix D . After gathering data from the above data 

ets, we summarize the input parameters as follows. 

[ J] 66 facility candidates including 3A or regional hospitals, 

regional CDCs and commercial testing institutes. 

[ I] 333 geographical centers of towns across from Beijing. 

[ T ] 250 days from January 21, 2020, to September 27, 2020. 

f j see Table D.8 of Appendix D . 

a jt see Table D.8 of Appendix D . 

c i j distance between facility candidate j and demand site i (km). 

η set as 0.001. 

p it set as 6, ∀ i ∈ [ I] , t ∈ [ T ] . 
d it assume that the number of active cases in period t is N t , 

t ∈ [ T ] , N max = max t∈ [ T ] N t , then 

d it = 

population of town i ∗N t 
N max 

. 

.2. Performance validation of the OCO-based LR 

In Phase I, problem [P2] associated with uncertain demand 

ould be solved by SAA and the OCO-based LR approach. We con- 

uct several numerical experiments to compare the asymptotic 

onsistency and computational efficiency. SAA is solved by CPLEX 
160 
ith a time limit of 3600 seconds. Note that there are many meth- 

ds to solve the SAA formulation, such as Benders decomposi- 

ion. These algorithms do not reduce the complexity of the prob- 

em. Therefore, even if these algorithms can improve computa- 

ional efficiency, the improvement will not be too large. There- 

ore, for convenience, we choose a commercial solver, i.e., CPLEX, 

s a benchmark. The number of input demands K is increased 

rom 100 to 5,0 0 0; let d̄ i be the expected value observed de- 

and of town i from January 21, to September 27, 2020. d ik is uni-

ormly generated from U[0 . 9 ̄d i , 1 . 1 ̄d i ] , ∀ k ∈ { 1 , · · · , K} . We set J ∈
 

10 , 20 , 30 , 40 , 50 , 66 } and I ∈ { 50 , 100 , 150 , 200 , 250 , 333 } , which 

re randomly selected from the 66 facility candidates and 333 

own centers. Each instance is run 10 times, and we summarize 

he average performance. 

Table 2 indicates that CPLEX could not obtain an optimal solu- 

ion for the instances when K ≥ 200 within 3600 seconds, while 

CO-based LR can obtain a near-optimal solution with a linearly 

ncreasing computational time (see Fig. 4 ). Generally, scenario- 

ased approaches are not applicable to the decision problems that 

e work on. We will have a very large number of scenarios, which 

s time-consuming to compute the average value or expectation. 

nterestingly, our OCO-based LR can solve the instance with 66 fa- 

ility candidates and 333 demand sites with 50 0 0 scenarios within 

n hour. The last column represents the objective gap between 

PLEX and OCO-based LR. For instances with few scenarios, say 

 = 100 , OCO-based LR obtains a near-optimal solution (no more 

han 0.3% higher than the optimal values) in no more than one 



K. Liu, C. Liu, X. Xiang et al. European Journal of Operational Research 304 (2023) 150–168 

Table 2 

Comparisons between CPLEX and OCO-based LR for the first-phase problem. 

Para CPLEX OCO-based LR Comparisons 

J I K Time1 Obj1 Time2 Obj2 Gap-Time (%) Gap-Obj (%) 

10 50 100 1623.2 4280.6 3.1 4291.6 99.8 -0.3 

10 50 200 3600.0 4392.2 6.3 4314.2 99.8 1.8 

10 50 500 3600.0 5151.9 14.9 4321.3 99.6 16.1 

10 50 1000 3600.0 – 39.5 4321.5 98.9 –

10 50 5000 3600.0 – 228.4 4321.2 93.7 –

20 100 100 1589.9 8133.7 9.6 8149.1 99.4 -0.2 

20 100 200 3600.0 8362.4 19.0 8192.1 99.5 2.0 

20 100 500 3600.0 9882.1 48.1 8205.6 98.7 17.0 

20 100 1000 3600.0 – 118.6 8205.9 96.7 –

20 100 5000 3600.0 – 691.0 8205.3 80.8 –

30 150 100 1619.7 11205.9 16.6 11214.7 99.0 -0.1 

30 150 200 3600.0 11560.0 34.4 11273.8 99.0 2.5 

30 150 500 3600.0 13964.6 83.8 11292.4 97.7 19.1 

30 150 1000 3600.0 – 196.8 11292.9 94.5 –

30 150 5000 3600.0 – 1197.8 11292.2 66.7 –

40 200 100 1719.2 13772.7 21.9 13790.3 98.7 -0.1 

40 200 200 3600.0 14341.7 49.2 13863.0 98.6 3.3 

40 200 500 3600.0 17720.8 118.8 13885.9 96.7 21.6 

40 200 1000 3600.0 – 265.0 13886.4 92.6 –

40 200 5000 3600.0 – 1642.8 13885.5 54.4 –

50 250 100 1743.2 16306.3 27.6 16330.3 98.4 -0.1 

50 250 200 3600.0 17265.5 60.8 16416.3 98.3 4.9 

50 250 500 3600.0 21315.2 146.6 16443.4 95.9 22.9 

50 250 1000 3600.0 – 316.7 16444.0 91.2 –

50 250 5000 3600.0 – 1905.7 16443.0 47.1 –

66 333 100 1982.9 20529.2 39.0 20538.9 98.0 0.0 

66 333 200 3600.0 21871.7 80.4 20647.1 97.8 5.6 

66 333 500 3600.0 27132.3 205.1 20681.1 94.3 23.8 

66 333 1000 3600.0 – 424.9 20681.9 88.2 –

66 333 5000 3600.0 – 2581.2 20680.6 28.3 –

Note: “–” means no solution can be searched in 3600 seconds. Time1 and Time2 represent the CPU time of CPLEX and OCO-based LR, respectively; Obj1 and Obj2 indicate 

the objective value of CPLEX and OCO-based LR, respectively. Gap-Time = 

Time1-Time2 
Time1 

× 100% and Gap-Obj = 

Obj1-Obj2 
Obj1 

× 100% . 

Fig. 4. Computational time of OCO-based LR with varying numbers of scenarios ( K). 
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inute, while the computational time of CPLEX is more than half 

n hour. The advantage of OCO-based LR is even significant when 

increases. For example, when K = 10 0 0 , CPLEX could not obtain

ny feasible solution within 3600 seconds, and LR converges in no 

ore than 10 minutes. The results of numerical experiments show 

he superiority and effectiveness of our algorithm for solving the 

rst-phase problem. 

Figure 5 illustrates the convergence performance of OCO-based 

R based on the empirical data defined in Section 5.1 . Within 3600 

econds, CPLEX obtains an optimal solution with a lower bound 

f 19,965.2 and an upper bound of 23,798.5. LR converges to the 

ear-optimal 20,676.3 in 107 seconds through 26 iterations. 

.3. Performance validation of the two-phase framework 

To validate the effectiveness of our proposed two-phase frame- 

ork, we adopt three benchmark policies: DM-F, DM-P, and DA. 

lthough many methods can be used to solve classic settings, such 

s dynamic programming and Markov decision processes, they are 
161 
ifficult to implement to solve the settings under pandemics, as in- 

roduced in Section 1 . Therefore, we select our own benchmarks. 

pecifically, Policy 1 (DM-F) can obtain the ideal optimal solu- 

ion since it solves the settings in which all future information 

s known in advance. If our methods can achieve a solution very 

lose to the ideal optimal solution, then we can validate that our 

ethod is effective. A total of five methods are implemented to 

olve the instance introduced above. Table 3 summarizes the in- 

uts and methods that have been employed in each policy, and 

etailed descriptions of these approaches are listed below. 

• Policy 1. Deterministic model with full information (DM-F). 

We solve the multiperiod deterministic model [P1] with per- 

fect knowledge of future demand. That is, it is assumed that 

all future information is known at the beginning of the first 

phase. However, it is impossible to obtain such full information 

in practice. Thus, this policy is treated only as a comparison of 

others, which provides the optimal solution in an ideal setting. 
• Policy 2. Deterministic model with predicted information 

(DM-P) . We first apply a forecasting model to predict the future 
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Fig. 5. Convergence of OCO-based LR algorithm (instance with 66 facility candidates, 333 demand cites with K = 250 scenarios). 

Table 3 

Summary of the results for five policies. 

Policy First-Phase Second-Phase: period t

Input Method Input Method 

DM-F Actual demand d it Solve [P1] by CPLEX —- —- 

DM-P Predicted demand ˆ d it Solve [P1] by CPLEX —- —- 

DA —- —- d it , X j (t − 1) , S j (t − 1) Solve single-period problem by CPLEX 

LR-DA Predicted demand ˆ d it OCO-based LR d it , S j (t − 1) Dynamic allocation policy 

LR-ADA Predicted demand ˆ d it OCO-based LR d it , S j (t − 1) ADA policy 

Table 4 

Comparisons of computational time and optimal solution of the five policies . 

Metric DM-F DM-P DA LR-DA LR-ADA 

CPU time (s) 2592 2354 496 769 775 

Fixed cost 10,877 12,022 7591 16,791 16,791 

Varying construction cost 575,880 1,159,160 555,472 621,708 621,810 

Transportation cost 353,817 698,763 426,600 333,656 332,753 

Penalty cost 0 66 0 0 0 

Total cost 940,574 1,870,010 989,663 972,155 971,354 

Total amount of facilities built 24 26 18 34 34 

Gap π (%) 0.0 98.8 5.2 3.4 3.3 

 

s

c

o

a

t

w

c

G

T

s

f

t

t

o

f

t

c

t

p

t

t

p

t

s

p

1

a

5

a

c

demand and then solve the multiperiod deterministic model 

[P1] with predicted demand. In this paper, we generate the pre- 

dicted demand randomly; i.e., the predicted value ˆ d i (t) is lo- 

cated uniformly in the range of [0 . 95 d t (t ) , 1 . 05 d i (t )] . 
• Policy 3. Dynamic allocation policy (DA) . We solve the single- 

period problems iteratively T times, and each problem corre- 

sponds to sequentially realized demand d i (t) . In addition, the 

location and capacity strategies obtained at the current time 

period are set as the inputs of the next time period. 
• Policy 4. Lagrangian relaxation-based dynamic policy (LR- 

DA) . We apply our two-phase approach to solve the problem. In 

the first phase, the LR algorithm introduced in Section 4.2 is in- 

troduced, and the second phase program is approached by the 

dynamic allocation policy in Section 4.3.1 . 
• Policy 5. Lagrangian relaxation-based adaptive dynamic allo- 

cation policy (LR-ADA). The difference between Policies 4 and 

5 is that we employ the ADA policy (see Section 4.3.2 ) in the

second phase of Policy 4. 

Table 4 summarizes the results of the five policies. The results 

how that the last three policies have an obvious advantage in 

omputational time. The DA policy takes less time to solve than 

ur two policies since our policies have one more location design 

nd capacity initialization process. In actuality, the computational 

ime of our two policies is acceptable in practice. For the total cost, 

e define a metric to measure the distance from the last four poli- 

ies to the optimal one as follows: 

ap π = 

T C π − T C DM-F 

T C 
× 100% , ∀ π ∈ { DM-P, DA, LR-DA, LR-ADA } 
DM-F 

162 
he DM-P policy achieves a gap of 98.8%, which means that a very 

mall prediction error leads to enormous cost consumption. There- 

ore, the DM-P policy is not suitable to solve this problem. Our 

wo policies can obtain gaps of 3.4% and 3.3%, which are smaller 

han the gap of 5.2% obtained by the DA policy. In summary, 

ur two policies obtain the solution with the minimum distance 

rom the ideal optimal solution in a very short time. Specifically, 

he LR-ADA policy achieves the solution with the minimum total 

ost. 

Figure 6 shows the results of location decisions in Phase I, and 

he background color represents the total population (which is pro- 

ortional to demand). Note that Policies LR-DA and LR-ADA have 

he same results, which are plotted in Fig. 6 (d). We can observe 

hat our two policies build 34 facilities, more than the other three 

olicies. This is because our policies consider future demand infla- 

ion when making location decisions by using a sample set with K

cenarios. This can help reduce the varying construction and trans- 

ortation cost in the future time period. The DA policy only builds 

8 facilities during the first time period. However, its construction 

nd transportation widely vary cost. 

.4. Real-time performance 

Next, we focus on real-time performance. We define the aver- 

ge cost until time period t , i.e., 

ost t = 

1 

t 

t ∑ 

s =1 

objective value s . 
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Fig. 6. Optimal location strategies. 

Fig. 7. Average cost performance along the time dimension. 
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ig. 7 reports the results along the time dimension. Obviously, the 

M-P policy incurs most of the cost of the capacity expansion due 

o an imprecise prediction. The two-phase LR-DA and LR-ADA poli- 

ies perform well on the metric of varying cost. The transportation 

ost has a trend similar to the demand trend for all of the policies.

pecifically, the LR-DA and LR-ADA policies perform the best, DA 

akes the second place, and the DM-P policy is in the last place. 

s unmet demand is not expected, the unit penalty cost p it is as- 

umed to be relatively large. Therefore, the penalty cost of all poli- 

ies is almost zero, except the DM-P policy, which also has little 

enalty cost. 
163 
We define the regret of total cost (TC) as follows: 

egret π (t) = 

t ∑ 

s =1 

(
T C πs − T C DM-F 

t 

)
, ∀ π ∈ { DM-P, DA, LR-DA, LR-ADA } . 

(19) 

Figure 8 displays the results of regret along the time horizon. 

irst, looking at Fig. 8 (a), we can observe that the DM-P policy 

chieves a very large regret, which means it performs the worst 

mong the four policies. For the DA policy, although it performs 

he best during the first 100 days because of the relatively small 
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Fig. 8. Regret of total cost along the time dimension. 
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xed cost, it obtains a larger regret than our two policies because 

f the increment of varying construction and transportation cost. 

or Fig. 8 (b), it is obvious that the regret of the LR-DA policy fluc-

uates over time, while the LR-ADP policy converges gradually and 

tabilizes. Finally, compared with LR-DA, LR-ADP obtains a smaller 

egret, which highlights its superiority. 

. Conclusions and discussions 

In this paper, we propose a two-phase framework to optimize 

ocation and capacity design strategies during pandemics. Deci- 

ions pre- and postpandemic are merged in a sequential frame- 

ork. In the first phase, strategic decisions, such as facility location 

nd capacity initialization, are determined with predicted demand. 

nstead of solving scenario-based SP by SAA, we creatively develop 

n OCO approach with Lagrangian multipliers and prove its asymp- 

otic consistency. In the second phase, two allocation policies, DA 

nd ADA, are designed to adjust capacities with respect to fluctu- 

ting demands. Compared with the other three traditional policies, 

ur two-phase framework shows great benefits from the perspec- 

ives of computational time and performance validation based on 

 real case study of the COVID-19 situation in Beijing. 

Several observations can be summarized from the numerical re- 

ults. 

• The OCO-based LR method in Phase I overcomes the “curse of 

dimensionality“ by SAA, providing a near-optimal and conver- 

gent solution in polynomial time, which dramatically increases 

computational efficacy. 
• The two-phase framework prefers relatively robust location so- 

lutions (building more facilities at the beginning) and performs 

much better in terms of transportation and penalty costs while 

facing real-time demand volatility. 
• For the two proposed two-phase solution approaches, LR-ADA 

admits a convergent and stable regret compared with LR-DA, 

as the asymptotic consistency of ADA has been theoretically 

proven. 

We present several limitations that could be further explored 

n future research. First, although capacity expansion and pre- 

enting closure of any constructed facilities are common assump- 

ions in a dynamic facility location and capacity planning prob- 

em ( Charles et al., 2016; Jabbarzadeh et al., 2014; Shulman, 1991; 

atsa & Jayaswal, 2021; Yu & Shen, 2020 ), adding capacity is not 
164 
lways commensurate with the background of pandemics. For ex- 

mple, for large-scale infectious diseases (such as COVID-19) that 

ay have multiple waves and reinfections ( Arruda, Pastore, Dias, & 

as, 2021 ), capacity initialization can be very costly based on early 

ata. Incorporating new decisions, such as reducing or relocating 

esting facilities, is a beneficial way to reduce the total operational 

ost during the entire planning horizon. Second, there are many 

ays to formulate similar problems that belong to the scope of 

equential decision-making with uncertainty ( Powell, 2016; 2019a; 

019b ); indeed, sometimes simpler formulations can be discovered. 

or example, the MDP formulation and ADP algorithm are possible 

pproaches to solve the proposed problem, and we leave consider- 

tion of the MDP-based approach to future research. Finally, official 

atasets of an epidemic have been criticized for their poor reliabil- 

ty in terms of underestimation ( Dyer, 2021 ) and statistical tests 

 Silva & Figueiredo Filho, 2021 ), which may lead to unrealistic de- 

and scenarios in the model. Thus, it is necessary to improve the 

eliability of input data before optimization instead of directly im- 

lementing open-access datasets. 
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ppendix A. Proofs 

1. Proof of Theorem 1 

roof. For simplicity, we use f k ( S k −1 ) to replace f n 
k 
( S (k −

) , λn 
, ̂  d (k )) here. First, let us define: 

| G || = max 
S 1 , S 2 ∈ G 

|| S 1 − S 2 || 
|∇ f || = max 

S ∈ G,t=1 , 2 , ... 
||∇ f k ( S k −1 ) || 

ince f k is convex in S . Then we have, 

f k ( S 
∗) ≥ ∇ f k ( S k −1 )( S 

∗ − S k −1 ) + f k ( S k −1 ) 

⇒ f k ( S k −1 ) − f k ( S 
∗) ≤ ∇ f k ( S k −1 )( S k −1 − S ∗) (A.1) 
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Input : Demand distribution D 

Output : Location design X 

∗, capacity initialization S 

∗ and 

the initial assignment policy Y 

∗. 

1 Generate K demand samples d (k ) independently according to 

the distribution of demand D. 

2 Arbitrarily sort the K samples into a sequence. 

3 Solve a deterministic model [DM] with the average demand. 

4 Set the iteration number n = 0 and initialize X 

0 , S 

0 , λ0 
i 
. 

5 while min i ∈ I 
{
λn +1 

i 
− λn 

i 

}
> ε do 

6 for k = 1 , 2 , . . . , K do 

7 Solve the following primal problem given the demand 

scenario ˆ d (k ) and the Lagrangian dual multiplier λn . 

8 Solve the dual problem. 

9 Update the capacity as 

S n 
j 
(k ) := max 

{ 

S n 
j 
(k − 1) − γ (k ) ∇ S n 

j 
(k −1) f (·) , 0 

} 

. 

10 Compute the average capacity S̄ 

n and expected 

capacity planning quantity Ȳ n 
i j 

on each flow over K 

scenarios. 
11 end 

12 Update the dual multiplier λn +1 as 

λn +1 
i 

:= λn 
i 

+ 

1 √ 

n 
(βi 

∑ K 
k =1 

d jt 
K − ∑ 

j∈ J Y n i j 
) . 

13 Let n = n + 1 . 

14 end 

15 Set S 

∗ = S̄ 

n , X 

∗ = X̄ 

n , and Y 

∗ = Ȳ 

n . 

Algorithm 1: The pseudocode of OCO-based LR. 

Input : Demand { d (1) , d (2) , · · · , d (T ) } 
Output : Adjusted capacity ˜ S 

∗

1 Set t = 1 , initial weight w(1) = { 1 , 1 , 1 } . 
2 for t = 1 , . . . , T do 

3 Solve the sub-problem [Sub2(t)]. 

4 for k = 1 , 2 , 3 do 

5 e update the weights as 

w 

+ 
k 
(t + 1) = max 

{ 

(t−1) w k (t)+ g k (·, d (t)) −τk 
t , 0 

} 

. 

6 end 

7 Update ˜ S 

∗ = 

˜ S 

∗ + �S(T ) . 

8 end 

Algorithm 2: The pseudocode of adaptive dynamic allocation 

policy. 

L
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≤

≤
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i  
et define Z k := S k −1 − γ (k ) ∇ f k ( S k −1 ) . It is obvious that, 

 Z k − S ∗) 2 ≥ ( max { Z k , 0 } − S ∗) 2 = ( S k − S ∗) 2 . 

herefore, we have, 

 S k − S ∗) 2 ≤ ( S k −1 − γ (k ) ∇ f k ( S k −1 ) − S ∗) 2 

= ( S k −1 − S ∗) 2 − 2 γ (k )( S k −1 − S ∗) ∇ f k ( S k −1 ) 

+ γ 2 (k ) ∇ f 2 k ( S k −1 ) 

y transforming the above equation, we have, 

 S k −1 − S ∗) ∇ f k ( S k −1 ) ≤
1 

2 γ (k ) 

[
( S k −1 − S ∗) 2 − ( S k −1 − S ∗) 2 

]
+ 

γ (k ) 

2 

||∇ f || 2 (A.2) 
c  

g
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ow, by summing we get: 

Regret (K) 

= 

K ∑ 

k =1 

[ f k ( S k −1 ) − f k ( S 
∗) ] 

K ∑ 

k =1 

[ ( S ∗ − S k −1 ) ∇ f k ( S k −1 ) ] 

K ∑ 

k =1 

{
1 

2 γ (k ) 

[
( S k −1 − S ∗) 2 − ( S k −1 − S ∗) 2 

]
+ 

γ (k ) 

2 
||∇ f || 2 

}

= 

1 

2 γ (1) 
( S 0 − S ∗) 2 − 1 

2 γ (K) 
( S K − S ∗) 2 

+ 

1 

2 

K ∑ 

k =2 

(
1 

γ (k ) 
− 1 

γ (k − 1) 

)
( S k −1 − S ∗) 2 + 

||∇ f || 2 
2 

K ∑ 

k =1 

γ (k ) 

|| G || 2 
{ 

1 

2 γ (1) 
+ 

1 

2 

K ∑ 

k =2 

(
1 

γ (k ) 
− 1 

γ (k − 1) 

)} 

+ 

||∇ f || 2 
2 

K ∑ 

k =1 

γ (k ) 

= || G || 2 1 

2 γ (K) 
+ 

||∇ f || 2 
2 

K ∑ 

k =1 

γ (k ) 

he first inequality follows (A.1) . The second inequal- 

ty follows (A.2) . The second equality decomposes 
 K 
k =1 

{ 

1 
2 γ (k ) 

[
( S k −1 − S ∗) 2 − ( S k −1 − S ∗) 2 

]} 

into three parts. 

he third equality uses the fact that || S k − S ∗|| ≤ || G || and 

1 
2 γ (K) 

( S K − S ∗) 2 ≥ 0 

Since we define γ (k ) := 

1 √ 

k 
, we obtain, 

K 
 

k =1 

γ (k ) = 

K ∑ 

k =1 

1 √ 

k 
≤ 1 + 

∫ K 

k =1 

dt √ 

k 
= 2 

√ 

K − 1 

Therefore, we have, 

egret (K) ≤ || G || 2 
2 

√ 

K 

+ 

(2 

√ 

K − 1) ||∇ f || 2 
2 K 

= O 

(
1 √ 

K 

)
t is easy to obtain the desire results. �

ppendix B. The pseudocode of OCO-based LR 

The detail procedure of OCO-based LR is presented as follows: 

ppendix C. The pseudocode of adaptive dynamic allocation 

olicy 

The detail procedure of adaptive dynamic allocation policy is 

resented as follows: 

ppendix D. Details of data 

Details on facility candidates are summarized in Table D.8 . We 

lassify the sixty-six facility candidates into four types; let τ repre- 

ent the facility type, and let τ = 1 , 2 , 3 , 4 correspond to a 3A hos-

ital, a regional hospital, a regional CDC and a commercial testing 

nstitute. Assuming the fixed operational cost of a type- τ facility 

s ˜ f τ , then 

˜ f 1 = 200 , ˜ f 2 = 150 , ˜ f 3 = 100 , and 

˜ f 4 = 50 . Since there

re 16 districts in Beijing, let γk be the average house price of dis- 

rict k ( k = 1 , · · · , 16 ); then, the construction cost of facility type τ
n district k is equal to 5 . 5 · (γk / 10 0 0 + 

˜ f τ / 4) , and the operational

ost of facility type- τ in district k is γk / 160 0 0 0 + 

˜ f τ / 160 . The lon-

itudes and latitudes of reported nodes are collected from Gaode . 
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Table D.8 

Details of the 66 facility candidates. 

# Candidate Type District Longitude Latitude f j a jt 

1 3A hospital Changping 116.3293 40.0668 556.300 1.565 

2 3A hospital Chaoyang 116.4034 39.9729 829.500 1.870 

3 3A hospital Chaoyang 116.4545 39.9254 829.500 1.870 

4 3A hospital Chaoyang 116.3789 39.9952 829.500 1.870 

5 3A hospital Chaoyang 116.4583 39.9355 829.500 1.870 

6 3A hospital Chaoyang 116.4272 39.9739 829.500 1.870 

7 3A hospital Fengtai 116.3205 39.8382 727.700 1.755 

8 3A hospital Dongcheng 116.4173 39.9027 796.700 1.835 

9 3A hospital Dongcheng 116.4291 39.9310 796.700 1.835 

10 3A hospital Dongcheng 116.4270 39.9371 796.700 1.835 

11 3A hospital Fengtai 116.2954 39.8621 727.700 1.755 

12 3A hospital Fengtai 116.2778 39.8851 727.700 1.755 

13 3A hospital Fengtai 116.2538 39.8865 727.700 1.755 

14 3A hospital Haidian 116.3070 39.9409 696.800 1.720 

15 3A hospital Haidian 116.3011 39.9216 696.800 1.720 

16 3A hospital Haidian 116.3045 39.9244 696.800 1.720 

17 3A hospital Haidian 116.3240 39.9220 696.800 1.720 

18 3A hospital Haidian 116.2782 39.9070 696.800 1.720 

19 3A hospital Haidian 116.3600 39.9827 696.800 1.720 

20 3A hospital Haidian 116.3182 39.9001 696.800 1.720 

21 3A hospital Haidian 116.2643 39.9108 696.800 1.720 

22 3A hospital Xicheng 116.3513 39.9253 1101.900 2.175 

23 3A hospital Xicheng 116.3846 39.9244 1101.900 2.175 

24 3A hospital Dongcheng 116.4158 39.9128 796.700 1.835 

25 3A hospital Xicheng 116.3807 39.9320 1101.900 2.175 

26 3A hospital Xicheng 116.3544 39.9361 1101.900 2.175 

27 3A hospital Xicheng 116.3754 39.9442 1101.900 2.175 

28 3A hospital Xicheng 116.3905 39.8859 1101.900 2.175 

29 3A hospital Xicheng 116.3516 39.9193 1101.900 2.175 

30 3A hospital Xicheng 116.3624 39.8921 1101.900 2.175 

31 Regional hospital Pinggu 117.1058 40.1462 371.100 1.120 

32 Regional hospital Miyun 116.8704 40.3751 353.900 1.100 

33 Regional hospital Yanqing 115.9727 40.4629 401.900 1.155 

34 Regional hospital Mentougou 116.1017 39.9454 513.900 1.280 

35 Regional hospital Daxing 116.3352 39.7308 515.600 1.285 

36 Regional hospital Shunyi 116.6560 40.1282 484.300 1.250 

37 Regional hospital Shijingshan 116.2134 39.9064 527.200 1.295 

38 Regional hospital Huairou 116.6607 40.3171 365.500 1.115 

39 Regional hospital Tongzhou 116.6597 39.9013 479.800 1.245 

40 Regional hospital Fangshan 116.1404 39.7362 423.200 1.180 

41 Regional CDC Dongcheng 116.4115 39.9563 657.800 1.210 

42 Regional CDC Dongcheng 116.4096 39.8907 657.800 1.210 

43 Regional CDC Xicheng 116.3800 39.9528 963.000 1.550 

44 Regional CDC Chaoyang 116.4568 39.8740 690.600 1.245 

45 Regional CDC Haidian 116.2637 40.0494 557.900 1.095 

46 Regional CDC Fengtai 116.2788 39.8472 588.800 1.130 

47 Regional CDC Shijingshan 116.2082 39.9035 457.800 0.985 

48 Regional CDC Mentougou 116.1024 39.9525 444.400 0.970 

49 Regional CDC Fangshan 116.1506 39.7105 353.800 0.865 

50 Regional CDC Tongzhou 116.6525 39.9005 410.300 0.930 

51 Regional CDC Shunyi 116.6561 40.1295 414.800 0.935 

52 Regional CDC Daxing 116.3346 39.7319 446.100 0.970 

53 Regional CDC Changping 116.2323 40.2278 417.400 0.940 

54 Regional CDC Huairou 116.6314 40.3354 296.100 0.800 

55 Regional CDC Pinggu 117.1051 40.1473 301.700 0.810 

56 Regional CDC Miyun 116.8357 40.3806 284.400 0.790 

57 Regional CDC Yanqing 115.9631 40.4375 332.500 0.845 

58 Regional CDC Haidian 116.3787 39.9709 557.900 1.095 

59 Commercial testing institutes Daxing 116.5425 39.8008 376.700 0.660 

60 Commercial testing institutes Daxing 116.5065 39.7879 376.700 0.660 

61 Commercial testing institutes Fengtai 116.2805 39.8229 519.300 0.820 

62 Commercial testing institutes Chaoyang 116.5296 40.0248 621.100 0.935 

63 Commercial testing institutes Changping 116.2692 40.0987 347.900 0.625 

64 Commercial testing institutes Haidian 116.2347 39.9511 488.400 0.785 

65 Commercial testing institutes Haidian 116.1656 40.0637 488.400 0.785 

66 Commercial testing institutes Daxing 116.3021 39.6819 376.700 0.660 

R

A

A  

A  

A  

B
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