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Abstract
When data are not normally distributed, researchers are often uncertain whether it is legitimate to use tests that assume Gaussian
errors, or whether one has to either model a more specific error structure or use randomization techniques. Here we use Monte
Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error,
power and utility for parameter estimation. We find that Gaussian models are robust to non-normality over a wide range of
conditions, meaning that p values remain fairly reliable except for data with influential outliers judged at strict alpha levels.
Gaussianmodels also performed well in terms of power across all simulated scenarios. Parameter estimates were mostly unbiased
and precise except if sample sizes were small or the distribution of the predictor was highly skewed. Transformation of data
before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong
contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High
rates of false-positive conclusions can arise for instancewhen overdispersion in count data is not controlled appropriately or when
randomization procedures ignore existing non-independencies in the data. Hence, newly developed statistical methods not only
bring new opportunities, but they can also pose new threats to reliability. We argue that violating the normality assumption bears
risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and particularly
difficult to check during peer review. Scientists and reviewers who are not fully aware of the risks might benefit from preferen-
tially trusting Gaussian mixed models in which random effects account for non-independencies in the data.
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Introduction

In the biological, medical, and social sciences, the validity or
importance of research findings is generally assessed via
statistical significance tests. Significance tests ensure the
trustworthiness of scientific results and should reduce the
amount of random noise entering the scientific literature.
Brunner and Austin (2009) even regard this as the “primary
function of statistical hypothesis testing in the discourse of
science”. However, the validity of parametric significance
tests may depend on whether model assumptions are violated
(Gelman & Hill, 2007; Zuur et al., 2009). In a growing body

of literature, researchers express their concerns about irrepro-
ducible results (Camerer et al., 2018; Ebersole et al., 2016;
Open Science Collaboration, 2015; Silberzahn et al., 2018)
and it has been argued that the inappropriate use of statistics
is a leading cause of irreproducible results (Forstmeier et al.,
2017). Yet researchers may often be uncertain about which
statistical practices enable them to answer their scientific ques-
tions effectively and which might be regarded as error prone.

One of the most widely known assumptions of parametric
statistics is the assumption that errors (model residuals) are
normally distributed (Lumley et al., 2002). This “normality
assumption” underlies the most commonly used tests for sta-
tistical significance, that is linear models “lm” and linear
mixed models “lmm” with Gaussian error, which includes
the often more widely known techniques of regression, t test
and ANOVA. However, empirical data often deviates consid-
erably from normality, and may even be categorical such as
binomial or count data. Recent advances in statistical model-
ing appear to have solved this problem, because it is now
possible to fit generalized linear mixed models “glmm” with
a variety of error distributions (e.g., binomial, Poisson, zero-
inflated Poisson, negative binomial; Harrison et al., 2018;
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O'Hara, 2009) or to use a range of randomization techniques
such as bootstrapping (Good, 2005) in order to obtain p values
and confidence intervals for parameter estimates from data
that does not comply with any of those distributions.

While these developments have supplied experts in statis-
tical modeling with a rich and flexible toolbox, we here argue
that these new tools also have created substantial damage,
because they come with a range of pitfalls that are often not
sufficiently understood by a large majority of scientists who
are not outspoken experts in statistics, but who nevertheless
implement the tools in good faith. The diversity of possible
mistakes is so large and sometimes specific to certain software
applications that we only want to provide some examples that
we have repeatedly come across (see Box 1). Our examples
include failure to account for overdispersion in glmms with
Poisson errors (Forstmeier et al., 2017; Harrison, 2014; Ives,
2015), inadequate resampling in bootstrapping techniques
(e.g., Ihle et al., 2019; Santema et al., 2019), as well as prob-
lems with pseudoreplication due to issues with model conver-
gence (Arnqvist, 2020; Barr et al., 2013; Forstmeier et al.,
2017). These issues may lead to anticonservative p values
and hence a high risk of false-positive claims.

Considering these difficulties, we here want to argue whether
it may often be “the lesser of two evils” when researchers fit
conventional Gaussian (mixed) models to non-normal data, be-
cause, as we will show, Gaussian models are remarkably robust
to non-normality, ensuring that type I errors (false-positive
conclusion) are kept at the desired low rate. Hence, we argue that
for the key purpose of limiting type I errors it may often be fully
legitimate to model binomial or count data in Gaussian models,
and we also would like to raise awareness of some of the pitfalls
inherent to non-Gaussian models.

Box 1 Examples of specialized techniques that may result in a high rate of
false-positive findings due to unrecognized problems of
pseudoreplication

(A) Many researchers, being concerned about fitting an “inappropriate”
Gaussian model, hold the believe that binomial data always requires
modelling a binomial error structure, and that count data mandates
modeling a Poisson-like process. Yet, what they consider to be “more
appropriate for the data at hand” may often fail to acknowledge the
non-independence of events in count data (Forstmeier et al., 2017;
Harrison, 2014, 2015; Ives, 2015). For instance, in a study of butterflies
choosing between two species of host plants for egg laying, an indi-
vidual butterfly may first sit down on species A and deposit a clutch of
50 eggs, followed by a second landing on species B where another 50
eggs are laid. If we characterize the host preference for species A of this
individual by the total number of eggs deposited (p(A) = 0.5, N = 100)
we obtain a highly anticonservative estimate of uncertainty (95% CI
for p(A): 0.398–0.602), while if we base our preference estimate on the
number of landings (p(A) = 0.5, N = 2) we obtain a much more ap-
propriate confidence interval (95% CI for p(A): 0.013–0.987). Even
some methodological “how-to” guides (e.g., Fordyce et al., 2011;
Harrison et al., 2018; Ramsey & Schafer, 2013) forgot to clearly ex-
plain that it is absolutely essential to model the non-independence of

events via random effects or overdispersion parameters (Harrison,
2014, 2015; Ives, 2015; Zuur et al., 2009). Unfortunately,
non-Gaussian models with multiple random effects often fail to reach
model convergence (e.g., Brooks et al., 2017), which often lets re-
searchers settle for a model that ignores non-independence and yields
estimates with inappropriately high confidence and statistical signifi-
cance (Arnqvist, 2020; Barr et al., 2013; Forstmeier et al., 2017)

(B) When observational data do not comply with any distributional
assumption, randomization techniques like bootstrapping seem to offer
an ideal solution for working out the rate at which a certain estimate
arises by chance alone (Good, 2005). However, such resampling can
also be risky in terms of producing false-positive findings if the data is
structured (temporal autocorrelation, random effects; e.g., Ihle et al.,
2019) and if this structure is not accounted for in the resampling regime
(blockwise bootstrap; e.g., Önöz & Bayazit, 2012). Specifically, there
is the risk that non-independence introduces a strong pattern in the
observed data, but, in the simulated data, comparably strong patterns
do not emerge because the confounding non-independencies were
broken up (Ihle et al., 2019). We argue that pseudoreplication is a
well-known problem that has been solved reasonably well within the
framework of mixed models, and the consideration or neglect of es-
sential random effects can be readily judged from tables that present
the model output. In contrast, the issue of pseudoreplication is more
easily overlooked in studies that implement randomization tests, where
the credibility of findings hinges on details of the resampling procedure
that are not understood by the majority of readers. One possible way of
validating a randomization procedure, may be to repeat an experiment
several times, and to combine all the obtained effect estimates with
their SEs in a formal meta-analysis. If the meta-analysis indicates that
there is substantial heterogeneity in effect sizes (I2 > 0), then the SEs
obtained from randomizations were apparently too small
(anticonservative), hence not allowing to draw general conclusions that
would also hold up in independent repetitions of the experiment.
Unfortunately, such validations on real data are not so often carried out
when a new randomization approach is being introduced, and this
shortcoming may imply that numerous empirical studies publish sig-
nificant findings (due to a high type I error rate) before the methodo-
logical glitch gets discovered.

A wide range of opinions about violating
the normality assumption

Throughout the scientific literature, linear models are typically
said to be robust to the violation of the normality assumption
when it comes to hypothesis testing and parameter estimation
as long as outliers are handled properly (Ali & Sharma, 1996;
Box & Watson, 1962; Gelman & Hill, 2007; Lumley et al.,
2002; Miller, 1986; Puth et al., 2014; Ramsey & Schafer,
2013; Schielzeth et al., 2020; Warton et al., 2016; Williams
et al., 2013; Zuur et al., 2010), yet authors seem to differ
notably in their opinion on how serious we should take the
issue of non-normality.

At one end of the spectrum, Gelman and Hill (2007) write
“The regression assumption that is generally least important is
that the errors are normally distributed” and “Thus, in contrast
to many regression textbooks, we do not recommend diagnos-
tics of the normality of regression residuals” (p. 46). At the
other end of the spectrum, Osborne and Waters (2002)
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highlight four assumptions of regression that researchers
should always test, the first of which is the normality assump-
tion. They write “Non-normally distributed variables (highly
skewed or kurtotic variables, or variables with substantial out-
liers) can distort relationships and significance tests”. And
since only few research articles report having tested the as-
sumptions underlying the tests presented, Osborne andWaters
(2002) worry that they are “forced to call into question the
validity of many of these results, conclusions and assertions”.

Between those two ends of the spectrum, many authors
adopt a cautious attitude, and regard models that violate the
distributional assumptions as ranging from “risky” to “not
appropriate”, hence pleading for the use of transformations
(e.g., Bishara & Hittner, 2012; Miller, 1986; Puth et al.,
2014), non-parametric statistics (e.g., Miller, 1986), random-
ization procedures (e.g., Bishara & Hittner, 2012; Puth et al.,
2014), or generalized linear models where the Gaussian error
structure can be changed to other error structures (e.g.,
Poisson, binomial, negative binomial) that may better suit
the nature of the data at hand (Fordyce et al., 2011; Harrison
et al., 2018; O'Hara, 2009; O'Hara & Kotze, 2010; Szöcs &
Schäfer, 2015; Warton et al., 2016;Warton& Hui, 2011). The
latter suggestion, however, may bear a much more serious
risk: while Gaussianmodels are generally accepted to be fairly
robust to non-normal errors (here and in the following, we
mean by “robust” ensuring a reasonably low rate of type I
errors), Poisson models are highly sensitive if their distribu-
tional assumptions are violated (see Box 1), leading to a sub-
stantially increased risk of type I errors if overdispersion re-
mains unaccounted for (Ives, 2015; Szöcs & Schäfer, 2015;
Warton et al., 2016; Warton & Hui, 2011).

In face of this diverse literature, it is rather understandable
that empirical researchers are largely uncertain about the im-
portance of adhering to the normality assumption in general,
and about how much deviation and which form of deviation
might be tolerable under which circumstances (in terms of
sample size and significance level threshold).With the present
article we hope to provide clarification and guidance.

We here use Monte Carlo simulations to explore how vio-
lations of the normality assumption affect the probability of
drawing false-positive conclusions (the rate of type I errors),
because these are the greatest concern in the current reliability
crisis (Open Science Collaboration, 2015).We aim at deriving
simple rules of thumb, which researchers can use to judge
whether the violation may be tolerable and whether the p
value can be trusted. We also assess the effects of violating
the normality assumption in terms of bias and precision on
parameter estimation. Furthermore, we provide an R package
(“TrustGauss”) that researchers can use to explore the effect of
specific distributions on the reliability of p values and param-
eter estimates.

Counter to intuition, but consistent with a considerable body
of literature (Ali & Sharma, 1996; Box & Watson, 1962;

Gelman & Hill, 2007; Lumley et al., 2002; Miller, 1986; Puth
et al., 2014; Ramsey & Schafer, 2013; Schielzeth et al., 2020;
Warton et al., 2016;Williams et al., 2013; Zuur et al., 2010), we
find that violations of the normality of residuals assumption are
rarely problematic for hypothesis testing and parameter estima-
tion, and we argue that the commonly recommended solutions
may bear greater risks than the one to be solved.

The linear regression model and its
assumptions

At this point, we need to briefly introduce the notation for the
model of least squares linear regression. In its simplest form, it
can be formulated as Yi = a + b × Xi + ei, where each element
of the dependent variable Yi is linearly related to the predictor
Xi through the regression coefficient b (slope) and the inter-
cept a. ei is the error or residual term, which describes the
deviations (residuals) of the actual from the true unobserved
(error) or the predicted (residual) Yi and whose sum equals
zero (Gelman & Hill, 2007; Sokal & Rohlf, 1995). An F-test
is usually employed for testing the significance of regression
models (Ali & Sharma, 1996).

Basic statistics texts introduce (about) five assumptions
that need to be met for interpreting all estimates from linear
regression models safely (Box 2: validity, independence, lin-
earity, homoscedasticity of the errors and normality of the
errors; Gelman & Hill, 2007). Out of these assumptions, nor-
mally distributed errors are generally assumed to be the least
important (yet probably the most widely known; Gelman &
Hill, 2007; Lumley et al., 2002). Deviations from normality
usually do not bias regression coefficients (Ramsey &
Schafer, 2013; Williams et al., 2013) or impair hypothesis
testing (no inflated type I error rate, e.g., Bishara & Hittner,
2012; Ives, 2015; Puth et al., 2014; Ramsey & Schafer, 2013;
Szöcs & Schäfer, 2015; Warton et al., 2016) even at relatively
small sample sizes. With large sample sizes ≥ 500 the Central
Limit Theorem guarantees that the regression coefficients are
on average normally distributed (Ali & Sharma, 1996;
Lumley et al., 2002).

Box 2 Five assumptions of regression models: validity, independence,
linearity, homoscedasticity of the errors and normality of the errors
(Gelman & Hill, 2007). Three of these criteria are concerned with the
dependent variable Y, or—to be more precise—the regression error e
(assumptions 2, 4, and 5, see below). The predictor X is often not
considered, although e is supposed to be normal and of equal magni-
tude at every value of X

(1) Validity is not a mathematical assumption per se, but it still poses “the
most challenging step in the analysis” (Gelman & Hill, 2007), namely
that regression should enable the researcher to answer the scientific
question at hand (Kass et al., 2016).
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(2) Each value of the dependent variable Y is influenced by only a single
value of the predictor X, meaning that all observations and regression
errors ei are independent (Quinn & Keough, 2002). Dependence
among observations commonly arises either through cluster (i.e., data
collected on subgroups) or serial effects (i.e., data collected in temporal
or spatial proximity; Ramsey & Schafer, 2013). We will discuss the
independence assumption later because it is arguably the riskiest to
violate in terms of producing type I errors (Zuur et al., 2009; see “A
word of caution”).

(3) The dependent variable Y and the predictors should be linearly (and
additively) related through the regression coefficient b. That being said,
quadratic or higher-order polynomial relationships can also be ac-
commodated by squaring or raising the predictor variable X to a higher
power, because Y is still modelled as a linear function through the
regression coefficient (Williams et al., 2013).

(4) The variance in the regression error e (or the spread of the response
around the regression line) is constant across all values of the predictor
X, i.e., the samples are homoscedastic. Deviations from
homoscedasticity will not bias parameter estimates of the regression
coefficient b (Gelman & Hill, 2007). Slight deviations are thought to
have only little effects on hypothesis testing (Osborne &Waters, 2002)
and can often be dealt with by weighted regression, mean-variance
stabilizing data transformations (e.g., log-transformation) or estimation
of heteroscedasticity-robust standard errors (Huber, 1967; Miller,
1986; White, 1980; Zuur et al., 2009; see “A word of caution” for
further discussion).

(5) The errors of the model should be normally distributed (normality
assumption), which should be tested via inspecting the distribution of
the model residuals e (Zuur et al., 2010). Both visual approaches
(probability or QQ-plots) and formal statistical tests (Shapiro–Wilk)
are commonly applied. Formal tests for normality have been criticized
because they have low power at small sample sizes and almost always
yield significant deviations from normality at large sample sizes
(Ghasemi & Zahediasl, 2012). Thus, researchers are mostly left with
their intuition to decide how severely the normality assumption is
violated and how robust regression is to such violations. A researcher
who examines the effect of a single treatment on multiple dependent
variables (e.g., health parameters) may adhere strictly to the normality
assumption and thus switch forth and back between reporting para-
metric and non-parametric test statistics depending on how strongly the
trait of interest deviates from normality, rendering a comparison of
effect sizes difficult.

Importantly, the robustness of regression methods to devi-
ations from normality of the regression errors e does not only
depend on sample size, but also on the distribution of the
predictor X (Box & Watson, 1962; Mardia, 1971).
Specifically, when the predictor variable X contains a single
outlier, then it is possible that the case coincides with an out-
lier in Y, creating an extreme observation with high leverage
on the regression line. This is the only case where statistical
significance gets seriously misestimated based on the assump-
tion of Gaussian errors in Y which is violated by the outlier in
Y. This problem has been widely recognized (Ali & Sharma,
1996; Box &Watson, 1962; Miller, 1986; Osborne &Waters,
2002; Ramsey & Schafer, 2013; Zuur et al., 2010) leading to
the conclusion that Gaussian models are robust as long as
there are no outliers that occur in X and Y simultaneously.
Conversely, violations of the normality assumption that do
not result in outliers should not lead to elevated rates of type
I errors.

Distributions of empirical data may deviate from a
Gaussian distribution in multiple ways. Rather than being
continuous, data may be discrete, such as integer counts or
even binomial character states (yes/no data). Continuous var-
iables may deviate from normality in terms of skewness
(showing a long tail on one side), kurtosis (curvature leading
to light or heavy tails), and even higher-order moments. All
these deviations are generally thought to be of little concern
(e.g., Bishara &Hittner, 2012), even if they are far from fitting
to the bell-shaped curve, such as binomial data (Cochran,
1950). However, heavily skewed distributions typically result
in outliers, which, depending on the distribution of X, can be
problematic in terms of type I error rates as just explained
above (see also Blair & Lawson, 1982). In our simulations
we try to representatively cover much of the diversity in pos-
sible distributions, in order to provide a broad overview that
extends beyond the existing literature. We focus on fairly
drastic non-normality because only little bias can be expected
from minor violations (Bishara & Hittner, 2012; Glass et al.,
1972; Hack, 1958; Puth et al., 2014).

Simulations to assess effects on p values,
power, and parameter estimates

To illustrate the consequences of violating the normality as-
sumption, we performed Monte Carlo simulations on five
continuous and five discrete distributions that were severely
skewed, platy- and leptokurtic or zero-inflated (distributions
D0–D9, Table 1), going beyond previous studies that exam-
ined less dramatic violations (Bishara & Hittner, 2012; Ives,
2015; Puth et al., 2014; Szöcs & Schäfer, 2015; Warton et al.,
2016) but that are still of biological relevance (Frank, 2009;
Gelman & Hill, 2007; Zuur et al., 2009). For example, mea-
sures of fluctuating asymmetry are distributed half-normally
(distribution D4, Table 1) or survival data can be modelled
using a gamma distribution (distribution D9, Table 1). The R-
code for generating these distributions can be found in the R
package “TrustGauss” in the Supplementary Material, where
we also provide the specific parameter settings used for gen-
erating distributions D0–D9. Moments of these distributions
are provided in Table 1. We explored these 10 distributions
across a range of sample sizes (N = 10, 25, 50, 100, 250, 500,
1000). Starting with the normal distribution D0 for reference,
we sorted the remaining distributions D1–D9 by increasing
tendency to produce strong outliers because these are known
to be problematic (calculated as the average proportion of data
points with Cook’s distance exceeding a critical value (see
below) at a sample size of N = 10). We used these data both
as our dependent variable Y and as our predictor variable X in
linear regressionmodels, yielding 10 × 10 = 100 combinations
of Y and X for each sample size (see Fig. S1 for distributions of
the independent variable Y, the predictor X, and residuals). A
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detailed documentation of the TrustGauss-functions and their
application is provided in the Supplement.

We assessed the significance of all models by comparing
them to models fitted without the predictor of interest and an
F-test wherever possible and used a likelihood ratio test other-
wise (through a call to the anova function; see Supplement for
details). We fitted these models to 50,000 datasets for each
combination of the dependent and predictor variable. We did
not simulate any effect, which means that both the regression
coefficient b and the intercept a were on average zero
(TrustGauss function in the TrustGauss R package). This
enabled us to use the frequency of all models that yielded a p
value ≤ 0.05 as an estimate of the type I error rate at a signifi-
cance level (α) of 0.05. The null distribution of p values is
uniform on the interval [0,1] and because all p values are inde-
pendent and identically distributed, we constructed concentra-
tion bands using a beta-distribution (cf. Casella &Berger, 2002;
Knief et al., 2017; QQ-plots of expected vs. observed p values
are depicted in Fig. S1). We assessed the deviation of observed
from expected -log10(p values) at an expected exponent value
of 3 (p = 10-3; -log10(10

-3) = 3) and 4 (p = 10-4) and by esti-
mating the scale shift parameter υ = σobserved / σexpected (Lin,
1989), where σ is the standard deviation in -log10(p values).We
further calculated studentized residuals (R), hat values (H) and

Cook’s distances (D) as measures of discrepancy, leverage and
influence, respectively, and assessed which proportion
exceeded critical values of R > 2, H > (2 × (k + 1)) / n and D
> 4 / (n - k - 1), where k is the number of regression slopes and n
is the number of observations (Zuur et al., 2007).

Since some of the predictor variables were binary rather
than continuous, our regression models also comprise the sit-
uation of classical two-sample t tests, and we assume that the
results would also generalize to the situation of multiple pre-
dictor levels (ANOVA), which can be decomposed to multi-
ple binary predictors. To demonstrate that our conclusions
from univariate models (involving a single predictor) general-
ize to the multivariate case (involving several predictors), we
fitted the above models with a sample size of N = 100 to the
same ten dependent variables with three normally distributed
predictors and one additional predictor sampled from the ten
different distributions. We compared models including all
four predictors to those including only the three normally dis-
tributed predictors as described above. We further fitted the
above models as mixed-effects models using the lme4 R pack-
age (v1.1-14, Bates et al., 2015). For that we simulated N =
100 independent samples each of which was sampled twice,
such that the single random effect “sample ID” explained
roughly 30% of the variation in Y (TrustGaussLMM

Table 1 Description of the ten simulated distributions of the independent variable Y and the predictor X

Name Sampling distribution Mean Variance Categories Degree of
zero-
inflation

Skewness† Kurtosis† Arguments in TrustGauss§

D0 Gaussian 0 1 - 0 1.9 × 10-5 3.00 DistributionY=“Gaussian”, MeanY.gauss=0,
SDY.gauss=1

D1 Binomial 0.5 0.25 - 0 6.5 × 10-6 1.00 DistributionY=“Binomial”, zeroLevelY.zero=0.5

D2 Gaussian with
categories and
zero-inflation#

0 1 5 0.5 0.64 2.02 DistributionY=“GaussianZeroCategorical”,
MeanY.gauss=3, SDY.gauss=1,
nCategoriesY.cat=5

D3 Gaussian with
zero-inflation#

0 1 - 0.5 0.45 1.69 DistributionY=“GaussianZero”, MeanY.gauss=3,
SDY.gauss=1, zeroLevelY.zero=0.5

D4 Absolute Gaussian# 0 1 - 0 1.00 3.87 DistributionY=“AbsoluteGaussian”,
MeanY.gauss=0, SDY.gauss=1

D5 Student's t 0 2 - 0 0.01 20.71 DistributionY=“StudentsT”, DFY.student=4

D6 Gamma with
categories#

10 100 3 0 3.45 15.09 DistributionY=“GammaCategorical”,
nCategoriesY.cat=3, ShapeY.gamma=1,
ScaleY.gamma=10

D7 Negative Binomial 10 110 - 0 2.00 9.02 DistributionY=“NegativeBinomial”,
ShapeY.gamma=1, ScaleY.gamma=10

D8 Binomial 0.9 0.09 - 0 -2.67 8.12 DistributionY=“Binomial”,
zeroLevelY.zero=0.90

D9 Gamma 10 1000 - 0 6.32 62.84 DistributionY=“Gamma”, ShapeY.gamma=0.1,
ScaleY.gamma=100

#Mean and Variance refer to the distributions prior to adding categories, zero-inflation or taking the absolute values.
† Skewness and kurtosis were estimated from the simulated distributions with 50 million data points using the moments R package (v0.14, Komsta &
Novomestky, 2015).
§ Here we specified the arguments for the dependent variable Y only. However, the specified values are identical for the independent variable X.
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function) and assessed significance as described above
throughmodel comparisons.We encourage readers to try their
own simulations using our R package.

We evaluated power, bias and precision of parameter esti-
mates using a sample size of N = 10, 100, 1000 and the same
ten distributions (D0–D9) as above (TrustGaussTypeII
function). First, we sampled the independent variable Y and the
covariate X from one of the ten distributions, yielding ten × 10 =
100 combinations of Y and X for each sample size. Then, we Z-
transformed the independent variable Y and the covariate X,
which does not change the shape of their distributions but makes
the regression coefficient b equal to the predefined effect size r.
Hence, we obtained expected values for b (see below), but we
stress that the Z-transformation can also be disabled in the
TrustGauss R package. Last, we used an iterative algorithm (SI
technique, Ruscio & Kaczetow, 2008, code taken from
Schönbrodt, 2012 and evaluated by us) that samples from the
Z-transformed distributions of Y and X to introduce a predefined
effect size of r = 0.15, 0.2, and 0.25 in 50,000 simulations.
Additionally, to remove the dominating effect of sample size
on power calculations, we calculated the effect size that would
be needed to reach a power of 0.5 (rounded to the third decimal)
for N = 10, 100, and 1000 if Y and X were normally distributed
using the powerMediation R package (v0.2.9, Dupont &
Plummer, 1998; Qiu, 2018). This yielded effect sizes of 0.59,
0.19, and 0.062, respectively.We then introduced effects of such
magnitudes with their respective sample sizes in 50,000 simula-
tions. For distribution D6 and the combinations of D8 with D9
we were unable to introduce the predefined effect size also at
very large sample sizes (N = 100,000) and we removed those
from further analyses. We estimated power (β) as the proportion
of all simulations that yielded a significant (at α = 0.05 or α =
0.001) regression coefficient b. In the case of normally distribut-
ed Y and X, this yielded power estimates that corresponded well
with the expectations calculated using the powerMediation R
package (v0.2.9, Table S1, Dupont & Plummer, 1998; Qiu,
2018). We used the mean and the coefficient of variation (CV)
of the regression coefficient b as our measures of bias and preci-
sion, respectively.We also assessed interpretability and power of
Gaussian versus binomial (mean = 0.75) and Poisson (mean = 1)
at a sample size of N = 100 by fitting models with a Gaussian,
binomial, or Poisson error structure in the glms. The effect sizes
were chosen such that we reached a power of around 0.5 (see
Table S2 for details on distributions and effect sizes) and models
were fitted to 50,000 of such datasets.

Results

Effects on p values

The rate at which linear regressionmodels with Gaussian error
structure produced false-positive results (type I errors) was

very close to the expected value of 0.05 (Fig. 1b). When
sample size was high (N = 1000), type I error rates ranged
only between 0.044 and 0.052, across the 100 combinations of
distributions of the dependent variable Y and the predictor X.
Hence, despite of even the most dramatic violations of the
normality assumption (see e.g., distributions D8 and D9 in
Fig. 1a), there was no increased risk of obtaining false-
positive results. At N = 100, the range was still remarkably
narrow (0.037–0.058), and only for very low sample sizes (N
= 10) we observed four out of 100 combinations which
yielded notably elevated type I error rates in the range of
0.086 to 0.11. These four cases all involved combinations of
the distributions D8 and D9, which yield extreme leverage
observations (Fig. S2). For this low sample size of N = 10,
there were also cases where type I error rates were clearly too
low (down to 0.015, involving distributions D1–D3 where
extreme values are rarer than under the normal distribution
D0; for details see Fig. S2 and Table S3).

Next, we examine the scale shift parameter (Fig. 1c) which
evaluates the match between observed and expected distribu-
tions of p values across the entire range of p values (not only
the fraction at the 5% cut-off). Whenever either the dependent
variable Y or the predictor X was normally distributed, the ob-
served and expected p values corresponded very well (first row
and first column in Fig. 1c). Accordingly, the p values fell within
the 95% concentration bands across their entire range (rightmost
column in Fig. S1). This observation was unaffected by sample
size (Table S4). However, if both the dependent variable Y and
the predictor X were heavily skewed, consistently inflated p-
values outside the concentration bands occurred, yet this was
almost exclusively limited to the case of N = 10 (Fig. 1c). For
larger sample sizes only the most extreme distribution D9 pro-
duced somewhat unreliable p values (Fig. 1c). This latter effect
of unreliable (mostly anti-conservative) p values was most pro-
nounced when judgements were made at a very strict α-level
(Fig. 1d α = 0.001 and Fig. 1e α = 0.0001). At a sample size of
N = 100, and for α = 0.001, observed -log10(p values) were
biased maximally 3.36-fold when both X and Y were sampled
from distributionD9. Thismeans that p values of about p= 10-10

occurred at a rate of 0.001 (p = 10(-3 × 3.36) = 10-10.08; Fig. 1d). At
N = 100, and for α = 0.0001, the bias was maximally 4.54-fold
(Fig. 1e). Our multivariate and mixed-model simulations con-
firmed that these patterns are general and also apply to models
with multiple predictor variables (Fig. S3) and to models with a
single random intercept (Fig. S4).

Based on the 100 simulated scenarios that we have con-
structed, p values from Gaussian models are highly robust to
even extreme violation of the normality assumption and can
be trusted, except when involving X and Y distributions with
extreme outliers (distribution D9; see also Blair & Lawson,
1982). For very small sample sizes, judgements should pref-
erably be made at α = 0.05 (rather than at more strict thresh-
olds) and should also beware of outliers in both X and Y. The
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same distributions of the dependent and the independent var-
iable introduced the same type I error rates, meaning that
effects were symmetric (Box & Watson, 1962). We reference
the reader to the “A word of caution” section, where we dis-
cuss both the assumption of equal variances of the errors and
the effects of non-normality on other applications of linear
regression.

Effects on power and parameter estimates

Power of linear regression models with a Gaussian error struc-
ture was only weakly affected by the distributions of Y and X,
whereas sample size and effect size were much more influen-
tial (Fig. 2b, Figs. S5b, S6b). Power appears to vary notably
between distributions when sample size and hence power are

Fig. 1 p values from Gaussian linear regression models are in most cases
unbiased. a Overview of the ten different distributions that we simulated.
Distributions D0 is Gaussian and all remaining distributions are sorted by
their tendency to produce strong outliers. Distributions D1, D2, D6, D7,
and D8 are discrete. The numbers D0–D9 refer to the plots in b–e where
on the Y-axis the distribution of the dependent variable and on the X-axis

of the predictor is indicated. b Type I error rate at an α-level of 0.05 for
sample sizes ofN = 10, 100, and 1000. Red colors represent increased and
blue conservative type I error rates. c Scale shift parameter, d bias in
p values at an expected p value of 10-3 and e bias in p values at an
expected p value of 10-4
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small (N = 10 in Fig. 2b), but this variability rather closely
reflects the corresponding type I error rates shown in Fig. 1b
(Pearson correlation r = 0.69 between Figs. 1b and 2b across
the N = 79 combinations with power estimates at regression
coefficient b = 0.2 and sample size N = 10). To assess the
effects of sample size and non-normality on power, we adjust-
ed the regression coefficients such that power stayed constant
at 50% for normally distributed Y and X at sample sizes ofN =
10, 100 and 1000 (b = 0.59, 0.19 and 0.062, respectively, Fig.
2c). Then, for N = 1000, power was essentially unaffected by
the distribution of Y and X, ranging from 0.48 to 0.52 for all
but one combination of Y and X (β = 0.45 when Y and X are
distributed as D9, that is gamma Γ(0.1, 100), Table 1). In that
particular combination, power was not generally reduced but
the distribution of p values was shifted, such that power could
either be reduced or increased depending on the α-threshold
(at α = 0.001 that combination yielded the highest power). At
N = 100, power varied slightly more (0.44–0.60) but still 87%
of all power estimates were between 0.48 and 0.52. Only at a
sample size of N = 10, power varied considerably between
0.05 and 0.87 (30% of all estimates between 0.48 and 0.52,
Fig. 2c).

For most distributions of Y and X, regression coefficients
were unbiased, which follows from the Lindeberg-Feller
Central Limit Theorem (Lumley et al., 2002). The strongest
bias occurred at a sample size of N = 10 and when the distri-
bution of X was highly skewed (D9), resulting in such a high
frequency of high-leverage observations that the Lindeberg-
Feller Central Limit Theorem did not hold (Fig. S2). In the
most extreme case, the mean regression coefficients at N = 10
were below zero (indicated as additional white squares in Fig.
S5d, S6d). However, the bias shrunk to maximally 1.32-fold
when the sample size increased to N = 100 and to 1.03-fold at
a sample size of N = 1000 (Fig. 2d).

We used the coefficient of variation in regression coeffi-
cients as our measure of the precision of parameter estimates.
Similar to the pattern in bias, regression coefficients were
precise for most distributions of Y and X and the lowest pre-
cision occurred at a sample size of N = 10 and when the
distribution of X was highly skewed (D9). However, there
was no gain in precision when increasing the sample size from
N = 100 toN = 1000 (Fig. 2e) and precision slightly decreased
at larger effect sizes (Fig. S5e, S6e).

We conclude that in our 79 simulated scenarios, neither
power nor bias or precision of parameter estimates are heavily
affected by violations of the normality assumption by both the
distributions of the dependent variable Y and the predictor X,
except when involving predictors with extreme outliers (i.e.,
high leverage, distribution D9). An increase in sample size
protects against severely biased parameter estimates but does
not make estimates more precise.We provide further advice in
the “A word of caution” section.

Comparison between error distributions

In the previous section, we have shown that Gaussian models
are robust to violations of the normality assumption. How do
they perform in comparison to Poisson and binomial models
and how do Poisson models perform if their distributional
assumptions are violated? To address these questions, we
fitted glms with a Gaussian, Poisson, or binomial error struc-
ture to data where the dependent variable Y was Gaussian,
Poisson, or binomial distributed and the predictor variable X
followed a Gaussian, gamma, or binomial distribution. This
allowed us to directly compare the effect of the error structure
on power, bias, and precision of the parameter estimate.
Interestingly, models with a Gaussian error structure were
largely comparable in terms of power and bias to those fitted
using the appropriate error structure. However, parameter es-
timates were less precise using the Gaussian error structure
(Table 2), which argues in favor of the more specialized
models for the purpose of parameter estimation.

More importantly for the reliability of science, and in con-
trast to Gaussian models, Poisson models are not at all robust
to violations of the distribution assumption. For comparison,
we fitted the above univariate models involving the five dis-
crete distributions (D1, D2, D6, D7, D8) with a sample size of
N = 100 using a Poisson error structure (inappropriately). This
yielded heavily biased type I error rates (at α = 0.05) in either
direction ranging from 0 to as high as 0.55 (Fig. 3, right
column, Fig. S7). Yet when also inappropriately modeling
these distributions as Gaussian, type I error rates are very close
to the nominal level of 0.05 (Fig. 3, left column). Controlling
for overdispersion in counts through the use of a glmmwith an
observation-level random effect (Harrison et al., 2018) fixed
the problem of inflated type I error rates for distributions D2
and D7 (Fig. 3, indicated in red) but did not solve the problem
of low power for distributions D1, D6, and D8 (Fig. 3,
indicated in blue). Using a quasi-likelihood method
(“Quasipoisson”, Wedderburn, 1974) provided unbiased type
I error rates, like in the Gaussian models (Fig. 3), but this
quasi-likelihood method is not available in the mixed-effects
package lme4 in R (Bates et al., 2015).

A word of caution

Our finding that violations of the normality assumption are
relatively unproblematic with regard to type I errors should
not be misunderstood as a carte blanche to violate any as-
sumption of linear models. The probably riskiest assumption
to violate (in terms of producing type I errors) is the assump-
tion of independence of data points (Forstmeier et al., 2017;
Kass et al., 2016; Saravanan et al., 2020), because one tends to
overestimate the amount of independent evidence that is
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provided by the data points, which are not real replicates
(hence this is called “pseudoreplication”).

Another assumption that is not to be ignored concerns the
homogeneity of variances across the entire range of the

Fig. 2 Power, bias, and precision of parameter estimates from Gaussian
linear regression models are in most cases unaffected by the distributions
of the dependent variable Y or the predictor X. aOverview of the different
distributions that we simulated, which were the same as in Fig. 1. The
numbers D0–D9 refer to the plots in b–e where on the Y-axis the distri-
bution of the dependent variable and on the X-axis of the predictor is
indicated. b Power at a regression coefficient b = 0.2 for sample sizes

of N = 10, 100, and 1000. Red colors represent increased power. c Power
at regression coefficients b = 0.59, 0.19, and 0.06 for sample sizes of N =
10, 100, and 1000, respectively, where the expected power derived from a
normally distributed Y and X is 0.5. Red colors represent increased and
blue colors decreased power. d Bias and e precision of the regression
coefficient estimates at an expected b = 0.2 for sample sizes of N = 10,
100, and 1000
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predictor variable (Box, 1953; Glass et al., 1972;
McGuinness, 2002; Miller, 1986; Osborne & Waters, 2002;
Ramsey & Schafer, 2013; Williams et al., 2013; Zuur et al.,
2009). Violating this assumption may result in more notable
increases of type I errors (compared to what we examined
here) at least when the violations are drastic. For instance,
when applying a t test that assumes equal variances in both
groups to data that come from substantially different variances
(e.g., σ1

2/ σ2
2 = 0.1), then high rates of type I errors (e.g.,

23%) may be obtained in a situation where sample sizes are
unbalanced (N1 = 15, N2 = 5), namely when the small sample
comes from the more variable group (Glass et al., 1972;
Miller, 1986). Also in this example, it is the influence of out-
liers (small N sampled from large variance) that results in
misleading p values. We further carried out some extra simu-
lations to explore whether non-normality tends to exacerbate
the effects of heteroscedasticity on type I error rates, but we
found that normal and non-normal data behaved practically in
the same way (see Supplementary Methods and Table S5).
Hence, heteroscedasticity can be problematic, but this seems
to be fairly independent of the distribution of the variables.

Diagnostic plots of model residuals over fitted values can
help identifying outliers and recognizing heterogeneity in var-
iances over fitted values. Transformation of variables is often
a helpful remedy if one observes that variance strongly in-
creases with the mean. This typically occurs in comparative
studies, where e.g., body size of species may span several
orders of magnitude (calling for a log-log plot). Most elegant-
ly, heteroscedasticity can be modeled directly, for instance by
using the “weights” argument in lme (see Pinheiro & Bates,
2000, p. 214), which also enables us to test directly whether
allowing for heteroscedasticity increases the fit of the model
significantly. Similarly, heteroscedasticity-consistent standard
errors could be estimated (Hayes & Cai, 2007). For more
advice on handling heteroscedasticity, see McGuinness
(2002).
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ent distributions of the dependent variable Y (rows a to e). Each panel was
summed up across ten different distributions of the predictor X (500,000
simulations per panel with N = 100 data points per simulation). Models
were fitted either as glms with a Gaussian error structure that violate the
normality assumption (first column), as glms with a Quasipoisson error
structure that take overdispersion into account (second column), as
glmms with a Poisson error structure and an observation-level random
effect (OLRE; Harrison et al., 2018) or as glms with a Poisson error
structure that violate the assumption of the Poisson distribution. In each
panel, TIER indicates the realized type I error rate (across the ten different
predictor distributions), highlighted with a color scheme as in Fig. 1b
(blue: below the nominal level of 0.05, red: above the nominal level,
grey: closely matching the nominal level). The dependent variable Y
was distributed as a distribution D1, b distribution D2, c distribution
D6, d distribution D7 or e distribution D8 (see Table 1 and Fig. 1a for
details)
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Another word of caution when running Gaussian models
on non-Gaussian data should be expressed when it comes to
the interpretation of parameter estimates of models. If the goal
of modelling lies in the estimation of parameters (rather than
hypothesis testing) then such models should be regarded with
caution. First, recall that distributions with extreme outliers
are often better characterized by their median than by their
mean, which gets pulled away by extreme values. Second,
parameter estimates for counts or binomial traits may be ac-
ceptable for interpretation when they refer to the average con-
dition (e.g., a typical family having 1.8 children consisting of
50% boys). However, parameter estimates may become non-
sensical outside the typical range of data (e.g., negative counts
or probabilities). In such cases, one might also consider fitting
separate models for parameter estimation and for hypothesis
testing (Warton et al., 2016).

In the above, we were exclusively concerned with associ-
ations between variables, that is parameter estimates derived
from the whole population of data points. However, some-
times we might be interested in predicting the response of
specific individuals in the population and we need to estimate
a prediction interval. In that case, a valid prediction interval
requires the normality assumption to be fulfilled because it is
based directly on the distribution of Y (Lumley et al., 2002;
Ramsey & Schafer, 2013).

Finally, in most of our simulations, we fitted a single pre-
dictor to the non-normal data and observed only minor effects
on the type I errors. Our multivariate (involving several pre-
dictors) and mixed-model (including a single random inter-
cept) simulations confirmed these observations. However,
we did not cover collinearity between predictors or the distri-
bution of random effects, but others have dealt with these
aspects before (Freckleton, 2011; Schielzeth et al., 2020).

The issue of overdispersion in non-Gaussian
models

We have shown that Poisson models yielded heavily biased
type I error rates (at α = 0.05) in either direction ranging from
0 to as high as 0.55 when their distribution assumption is
violated (Fig. 3 right column, Fig. S7). This of course is an
inappropriate use of the Poisson model, but still this is not
uncommonly found in the scientific literature. Such inflations
of type I error rates in glms already have been reported fre-
quently (Ives, 2015; Szöcs & Schäfer, 2015; Warton et al.,
2016; Warton & Hui, 2011; Young et al., 1999) and this
problem threatens the reliability of research whenever such
models are implemented with insufficient statistical expertise.

First, it is absolutely essential to control for overdispersion
in the data (that is more extreme counts than expected under a
Poisson process), either by using a quasi-likelihood method
(“Quasipoisson”) or by fitting an observation level random

effect (“OLRE”; Fig. 3). Overdispersion may already be pres-
ent when counts refer to discrete natural entities (for example
counts of animals), but may be particularly strong when
Poisson errors are less appropriately applied to measurements
of areas (e.g., counts of pixels or mm2), latencies (e.g., counts
of seconds), or concentrations (e.g., counts of molecules).
Similarly, there may also be overdispersion in counts of suc-
cesses versus failures that are being analyzed in a binomial
model (e.g., fertile versus infertile eggs within a clutch).
Failure to account for overdispersion (as in Fig. 3b, d) will
typically result in very high rates of type I errors (Forstmeier
et al., 2017; Ives, 2015; Szöcs & Schäfer, 2015; Warton et al.,
2016; Warton & Hui, 2011; Young et al., 1999).

Second, even after accounting for overdispersion, some
models may still yield inflated or deflated type I error rates
(not observed in our examples of Fig. 3), therefore requiring
statistical testing via a resampling procedure (Ives, 2015;
Saravanan et al., 2020; Szöcs & Schäfer, 2015; Warton
et al., 2016; Warton & Hui, 2011), but this may also depend
on the software used. While several statistical experts have
explicitly advocated for such a sophisticated approach to
count data (Harrison et al., 2018; O'Hara, 2009; O'Hara &
Kotze, 2010; Szöcs & Schäfer, 2015; Warton et al., 2016),
we are concerned about practicability when non-experts have
to make decisions about the most adequate resampling proce-
dure, particularly when there are also non-independencies in
the data (random effects) that have to be considered. In this
field of still developing statistical approaches, it seems much
easier to get things wrong (and obtain a highly overconfident p
value) than to get everything right (Bolker et al., 2009).

In summary, we are worried that authors being under pres-
sure to present statistically significant findings will misinter-
pret type I errors (due to incorrect implementation) optimisti-
cally as a true finding and misattribute the gained significance
to a presumed gain of power when fitting the “appropriate”
error structure (note that such power gains should be quite
small; see Table 2 and also Szöcs & Schäfer, 2015; Warton
et al., 2016). Moreover, we worry that sophisticated methods
may allow presenting nearly anything as statistically signifi-
cant (Simmons et al., 2011) because complex methods will
only rarely be questioned by reviewers.

Practical advice

Anti-conservative p values usually do not arise from violating
normality in Gaussian models (except for the case of influential
outliers), but rather from various kinds of non-independencies
in the data (see Box 1). While more advanced statistical
methods may lead to additional insights when parameter esti-
mation and prediction are primary objectives, they also bear the
risk of inflated type I error rates. We therefore recommend the
Gaussian mixed-effect model as a trustworthy and universal
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standard tool for hypothesis testing, where transparent reporting
of the model’s random effect structure clarifies to the reader
which non-independencies in the data were accounted for.
Non-normality should not be a strong reason for switching to
a more specialized technique, at least not for hypothesis testing,
and such techniques should only be used with a good under-
standing of the risks involved (see Box 1).

To avoid the negative consequences of strong deviations
from normality that may occur under some conditions (see
Fig. 1) it may be most advisable to apply a rank-based inverse
normal (RIN) transformation (aka rankit scores, Bliss, 1967)
to the data, which can approximately normalize most distribu-
tional shapes and which effectively minimizes type I errors
and maximizes statistical power (Bishara & Hittner, 2012;
Puth et al., 2014). Note that we have avoided transformations
in our study simply to explore the consequences of major non-
normality, but we agree with the general wisdom that trans-
formations can mitigate problems with outliers (Osborne &
Overbay, 2004), heteroscedasticity (McGuinness, 2002), and
sometimes with interpretability of parameter estimates.

In practice, we recommend the following to referees:

(1) When a test assumes Gaussian errors, request a check for
influential observations, particularly if very small p-
values are reported. Consider recommending a RIN-
transformation or other transformations for strong devi-
ations from normality.

(2) For Poisson models or binomial models of counts, al-
ways check whether the issues of overdispersion and
resampling are addressed, otherwise request an ade-
quate control for type I errors or verification with
Gaussian models.

(3) For randomization tests, request clarity about whether
observed patterns may be influenced by non-
independencies in the data that are broken up by the
randomization procedure. If so, ask for possible alterna-
tive ways of testing or of randomizing (e.g., hierarchical
or blockwise bootstrap).

(4) When requesting a switch to more demanding tech-
niques (e.g., non-Gaussian models, randomization tech-
niques), reviewers should accompany this recommen-
dation with sufficient advice, caveats and guidance to
ensure a safe and robust implementation. Otherwise, the
review process may even negatively impact the reliabil-
ity of science if reviewers request analyses that authors
are not confident to implement safely.

Conclusions

If we are interested in statistical hypothesis testing, linear re-
gression models with a Gaussian error structure are generally

robust to violations of the normality assumption. When non-
independencies in the data are accounted for through fitting
the appropriate random effect structure and the other assump-
tions of regression models are checked (see Box 2), judging
p values at the threshold ofα = 0.05 is nearly always safe even
if the data are not normally distributed. However, if both Y and
X are skewed, we should avoid being overly confident in very
small p values and examine whether these result from outliers
in both X and Y (see also Blair & Lawson, 1982; Osborne &
Overbay, 2004). With this caveat in mind, violating the nor-
mality assumption is relatively unproblematic and there is
much to be gained when researchers follow a standardized
way of reporting effect sizes (Lumley et al., 2002). This is
good news also for those who want to apply models with
Gaussian error structure to binomial or count data when
models with other structures fail to reach convergence or pro-
duce nonsensical estimates (e.g., Ives & Garland, 2014;
Plaschke et al., 2019). While Gaussian models are rarely mis-
leading, other approaches (see examples in Box 1) may bear a
non-trivial risk of yielding anti-conservative p values when
applied by scientists with limited statistical expertise.
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